Building blocks for stationary elasticity problems (linear elasticity and hyperelasticity)
More...
|
class | Kaskade::Elastomechanics::ElasticModulus |
| Material parameters for isotropic linearly elastic materials. More...
|
|
class | Kaskade::Elastomechanics::DetIpm1< dim, Scalar > |
| A class for computing determinants and their derivatives. More...
|
|
class | Kaskade::Elastomechanics::Pstable |
| Numerically stable evaluation of \( (x+1)^p -1 \). More...
|
|
class | Kaskade::Elastomechanics::ShiftedInvariants< dim, Scalar > |
| A class for shifted invariants of a tensor. More...
|
|
class | Kaskade::Elastomechanics::LinearizedGreenLagrangeTensor< Scalar, dim, byValue > |
| Linearized (right) Green-Lagrange strain tensor, the workhorse of linear elastomechanics. More...
|
|
class | Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue > |
| Full (right) Green-Lagrange strain tensor, the workhorse of hyperelasticity. More...
|
|
class | Kaskade::Elastomechanics::SurfaceGreenLagrangeTensor< Scalar, dim, byValue > |
| Full (right) Green-Lagrange strain tensor for displacements from dim-1 to dim. More...
|
|
class | Kaskade::Elastomechanics::ExtendedGreenLagrangeTensor< Scalar, dim, byValue > |
| Full (right) Green-Lagrange strain tensor for displacements from dim-1 to dim. More...
|
|
class | Kaskade::Elastomechanics::IsochoricGreenLagrangeTensor< dim, Scalar > |
| Isochoric part of the full (right) Green-Lagrange strain tensor, used in compressible hyperelasticity. More...
|
|
class | Kaskade::Elastomechanics::StrainView< Displacement, StrainTensor > |
| A function view that provides on the fly computed strain tensors of displacemnts. More...
|
|
class | Kaskade::Elastomechanics::HyperelasticVariationalFunctional< HyperelasticEnergy, StrainTensor > |
| General base class for variational functionals defined in terms of hyperelastic stored energies. More...
|
|
class | Kaskade::Elastomechanics::LameNavier< dim_, Scalar_ > |
| Convenience class for handling linear elastomechanics. More...
|
|
class | Kaskade::Elastomechanics::OrthotropicLameNavier< Scalar, dim > |
| Convenience class for handling orthotropic materials in linear elastomechanics. More...
|
|
class | Kaskade::Elastomechanics::FirstPiolaKirchhoffStress< HyperelasticEnergy, StrainTensor > |
| Represents the first Piola Kirchhoff stress as known in nonlinear elasticity. The Piola-Kirchhoff stress is \( T = F\sigma = (I+u_x) \sigma(u) \). More...
|
|
class | Kaskade::Elastomechanics::MaterialLaws::MaterialLawBase< dim_, Scalar_, MaterialLaw > |
| Base class for hyperelastic material laws, providing default implementations of the stress and the tangent stiffness tensor \( C \). More...
|
|
class | Kaskade::Elastomechanics::MaterialLaws::InvariantsMaterialLaw< Material > |
| Adaptor for hyperelastic material laws, providing an easy way to formulate incompressible material laws in terms of the invariants of the Cauchy-Green strain tensor \( C = I+2E\). More...
|
|
class | Kaskade::Elastomechanics::MaterialLaws::CompressibleInvariantsMaterialLaw< Material, DeviatoricPenalty > |
| Adaptor for hyperelastic material laws, providing an easy way to formulate compressible material laws in terms of the invariants of the isochoric part \( \bar C = C/(det C)^(1/d) \) of the Cauchy-Green strain tensor and a penalization of the deviatoric part \( I_d \). More...
|
|
class | Kaskade::Elastomechanics::MaterialLaws::StVenantKirchhoff< dim, Scalar > |
| The St. Venant-Kirchhoff material, foundation of linear elastomechanics. More...
|
|
class | Kaskade::Elastomechanics::MaterialLaws::OrthotropicLinearMaterial< dim, Scalar > |
| Orthotropic linear material law. More...
|
|
class | Kaskade::Elastomechanics::MaterialLaws::MooneyRivlin< dimension > |
| Mooney-Rivlin material law formulated in terms of the (shifted) invariants \( i_1, i_2, i_3 \) of the doubled Green-Lagrange strain tensor \( 2E \). More...
|
|
class | Kaskade::Elastomechanics::MaterialLaws::NeoHookean< dimension > |
| Neo-Hookean material law formulated in terms of the shifted invariants \( i_1, i_2, i_3 \) of the doubled Green-Lagrange strain tensor \( 2E \). More...
|
|
class | Kaskade::Elastomechanics::MaterialLaws::BlatzKo< dimension > |
| Blatz-Ko material law for rubber foams in terms of the shifted invariants \( i_1, i_2, i_3 \) of the doubled Green-Lagrange strain tensor \( 2E \). More...
|
|
Building blocks for stationary elasticity problems (linear elasticity and hyperelasticity)