KASKADE 7 development version
Public Types | Public Member Functions | List of all members
Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue > Class Template Reference

Full (right) Green-Lagrange strain tensor, the workhorse of hyperelasticity. More...

#include <elasto.hh>

Detailed Description

template<class Scalar, int dim, bool byValue = true>
class Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue >

Full (right) Green-Lagrange strain tensor, the workhorse of hyperelasticity.

The right Green Lagrange strain tensor for a displacement \( u \) is defined as

\[ E = \frac{1}{2}(u_x + u_x^T + u_x^T u_x) = \frac{1}{2}(F^TF - I) = \frac{1}{2}(C-I). \]

Template Parameters
Scalarthe scalar field type, usually double
dimthe spatial dimension, usually 2 or 3
byValueif true (default), the displacement derivative \( u_x \) is stored by value, otherwise by reference

Definition at line 340 of file elasto.hh.

Public Types

typedef Dune::FieldMatrix< Scalar, dim, dim > Tensor
 

Public Member Functions

 GreenLagrangeTensor (Tensor const &du_)
 Constructor. More...
 
 GreenLagrangeTensor ()
 Default constructor. This initializes the displacement derivative to 0, i.e. to the reference configuration. More...
 
void setDisplacementDerivative (Tensor const &du_)
 
Tensor d0 () const
 The linearized Green-Lagrange strain tensor \( E = \frac{1}{2} (u_x + u_x^T + u_x^T u_x) \). More...
 
Tensor d1 (Tensor const &dv) const
 The first derivative of the linearized Green-Lagrange strain tensor in direction dv. More...
 
Tensor d2 (Tensor const &dv, Tensor const &dw) const
 The second derivative of the linearized Green-Lagrange strain tensor in direction dv,dw. More...
 

Member Typedef Documentation

◆ Tensor

template<class Scalar , int dim, bool byValue = true>
typedef Dune::FieldMatrix<Scalar,dim,dim> Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue >::Tensor

Definition at line 343 of file elasto.hh.

Constructor & Destructor Documentation

◆ GreenLagrangeTensor() [1/2]

template<class Scalar , int dim, bool byValue = true>
Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue >::GreenLagrangeTensor ( Tensor const &  du_)
inline

Constructor.

Parameters
duThe spatial derivative of the displacement.

Definition at line 349 of file elasto.hh.

◆ GreenLagrangeTensor() [2/2]

template<class Scalar , int dim, bool byValue = true>
Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue >::GreenLagrangeTensor ( )
inline

Default constructor. This initializes the displacement derivative to 0, i.e. to the reference configuration.

Definition at line 355 of file elasto.hh.

Member Function Documentation

◆ d0()

template<class Scalar , int dim, bool byValue = true>
Tensor Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue >::d0 ( ) const
inline

The linearized Green-Lagrange strain tensor \( E = \frac{1}{2} (u_x + u_x^T + u_x^T u_x) \).

Definition at line 366 of file elasto.hh.

◆ d1()

template<class Scalar , int dim, bool byValue = true>
Tensor Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue >::d1 ( Tensor const &  dv) const
inline

The first derivative of the linearized Green-Lagrange strain tensor in direction dv.

This is \( \E_{u_x}(u_x) v_x = \frac{1}{2}(v_x + v_x^T + v_x^T u_x + u_x^T v_x). \)

Definition at line 373 of file elasto.hh.

◆ d2()

template<class Scalar , int dim, bool byValue = true>
Tensor Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue >::d2 ( Tensor const &  dv,
Tensor const &  dw 
) const
inline

The second derivative of the linearized Green-Lagrange strain tensor in direction dv,dw.

This is \( E_{u_x,u_x}(u_x) [v_x,w_x] = \frac{1}{2}(v_x^T w_x + w_x^T v_x). \)

Definition at line 380 of file elasto.hh.

◆ setDisplacementDerivative()

template<class Scalar , int dim, bool byValue = true>
void Kaskade::Elastomechanics::GreenLagrangeTensor< Scalar, dim, byValue >::setDisplacementDerivative ( Tensor const &  du_)
inline

Definition at line 358 of file elasto.hh.


The documentation for this class was generated from the following file: