KASKADE 7 development version
|
Numerically stable evaluation of \( (x+1)^p -1 \). More...
#include <elasto.hh>
Numerically stable evaluation of \( (x+1)^p -1 \).
The direct evaluation is numerically instable around zero due to cancellation of leading digits. This class performs a Taylor expansion around zero and achieves a stable evaluation.
Public Member Functions | |
Pstable (double p_, double x_) | |
Constructor. More... | |
double | d0 () const |
double | d1 (double dx) const |
double | d2 (double dx1, double dx2) const |
Kaskade::Elastomechanics::Pstable::Pstable | ( | double | p_, |
double | x_ | ||
) |
Constructor.
p | exponent |
x | argument, x > -1 has to hold |
|
inline |
|
inline |
|
inline |
Definition at line 221 of file elasto.hh.
Referenced by Kaskade::Elastomechanics::MaterialLaws::BlatzKo< dimension >::d2(), and Kaskade::Elastomechanics::IsochoricGreenLagrangeTensor< dim, Scalar >::d2().