KASKADE 7 development version
Public Types | Public Member Functions | Protected Attributes | List of all members
Kaskade::GaussTimeGrid Class Reference

spectral time grid for defect correction methods with Gauss points More...

#include <sdc.hh>

Detailed Description

spectral time grid for defect correction methods with Gauss points

For the Gauss time grid, \( t_0 = a \) and \( t_n < b \) hold. Since \( t_0 \) is not used for quadrature, there are \( n \) actual quadrature nodes in use. Thus, Gauss quadrature as defined here is exact for polynomials of degree up to \( 2n-1 \).

Note that collocation with Gauss points is A-stable, and therefore SDC methods on Gauss grids are best for oscillatory problems (e.g., hyperbolic problems). Consider using RadauTimeGrid in other cases.

Definition at line 461 of file sdc.hh.

Inheritance diagram for Kaskade::GaussTimeGrid:
Kaskade::SDCGridImplementationBase Kaskade::SDCTimeGrid

Public Types

typedef Dune::DynamicVector< double > RealVector
 The type used for real vectors. More...
 
typedef DynamicMatrix< double > RealMatrix
 The type used for real (dense) matrices. More...
 

Public Member Functions

 GaussTimeGrid (int n, double a, double b)
 constructs a Gauss grid with \( n+1 \) points on \( [a,b] \) More...
 
virtual void refine (RealMatrix &p)
 perform refinement of the grid, filling the prolongation matrix More...
 
virtual RealMatrix interpolate (RealVector const &x) const
 Compute interpolation coefficients. More...
 
virtual RealVector const & points () const
 Time points in the time step. More...
 
virtual RealMatrix const & integrationMatrix () const
 Integration matrix \( S \). More...
 
virtual RealMatrix const & differentiationMatrix () const
 Differentiation matrix \( D \). More...
 
double point (int k) const
 Time points in the time step. More...
 

Protected Attributes

RealVector pts
 
RealMatrix integ
 
RealMatrix diff
 

Member Typedef Documentation

◆ RealMatrix

The type used for real (dense) matrices.

Definition at line 78 of file sdc.hh.

◆ RealVector

typedef Dune::DynamicVector<double> Kaskade::SDCTimeGrid::RealVector
inherited

The type used for real vectors.

Definition at line 73 of file sdc.hh.

Constructor & Destructor Documentation

◆ GaussTimeGrid()

Kaskade::GaussTimeGrid::GaussTimeGrid ( int  n,
double  a,
double  b 
)

constructs a Gauss grid with \( n+1 \) points on \( [a,b] \)

This may throw LinearAlgebraException.

Member Function Documentation

◆ differentiationMatrix()

virtual RealMatrix const & Kaskade::SDCGridImplementationBase::differentiationMatrix ( ) const
inlinevirtualinherited

Differentiation matrix \( D \).

This computes a matrix such that polynomials given by values at \( t_0, \dots,t_n\) can easily be differentiated.

The Lagrangian interpolation functions \( L_k \) are defined by \( L_k(t_i) = \delta_{ik} , \quad i=0,\dots,n\). The matrix \( D \in \mathbb{R}^{n+1\times n+1}\) contains the values

\[ D_{ik} = \dot L_k(t_i) \]

This way, if \( u \) is defined in terms of its function values \( v_i = u(t_i) \), its derivatives can be evaluated by a matrix-vector multiplication:

\[ \dot u(\tau_i) = (Dv)_i \]

Implements Kaskade::SDCTimeGrid.

Definition at line 183 of file sdc.hh.

◆ integrationMatrix()

virtual RealMatrix const & Kaskade::SDCGridImplementationBase::integrationMatrix ( ) const
inlinevirtualinherited

Integration matrix \( S \).

This computes a matrix such that functions given by values at \( t_0,\dots,t_n\) can be easily integrated.

Interpolation is based on the nodes \(t_0\dots,t_n\). Depending on the actual implementation, the initial point \( t_0 \) might be ignored (i.e. have a quadrature weight of 0).

The Lagrangian interpolation functions \( L_k \) are defined by \( L_k(t_i) = \delta_{ik},\quad i=1,\dots,n \). The matrix \( S \in \mathbb{R}^{n\times n+1}\) contains the values

\[ S_{ik} = \int_{\tau=t_i}^{t_{i+1}} L_k(\tau) \, d\tau \]

(the leading column being zero). This way, if \( u \) is defined in terms of its function values \( v_i = u(t_i),\quad i=1,\dots,n \), the integrals can be evaluated by a matrix-vector multiplication:

\[ \int_{\tau=t_i}^{t_{i+1}} u(\tau) \, d\tau = (Sv)_i \]

Implements Kaskade::SDCTimeGrid.

Definition at line 178 of file sdc.hh.

◆ interpolate()

virtual RealMatrix Kaskade::GaussTimeGrid::interpolate ( RealVector const &  x) const
virtual

Compute interpolation coefficients.

Returns a matrix \( w \in \mathbb{R}^{m+1\times n+1} \), such that the interpolation polynomial \( p \) to the values \( y_i \) at grid points \( t_i \) can be evaluated as

\[ p(x_i) = \sum_{j=0}^n w_{ij} y_j, \quad i=0,\dots,m. \]

Implements Kaskade::SDCTimeGrid.

◆ point()

double Kaskade::SDCTimeGrid::point ( int  k) const
inlineinherited

Time points in the time step.

This is a convenice function.

Definition at line 94 of file sdc.hh.

◆ points()

virtual RealVector const & Kaskade::SDCGridImplementationBase::points ( ) const
inlinevirtualinherited

Time points in the time step.

The time step \( [t_0, t_n] \) contains \( n+1 \) time points \( t_i \), including the end points. Those are provided here. The time points are stored in increasing order.

Implements Kaskade::SDCTimeGrid.

Definition at line 173 of file sdc.hh.

◆ refine()

virtual void Kaskade::GaussTimeGrid::refine ( RealMatrix p)
virtual

perform refinement of the grid, filling the prolongation matrix

This may throw LinearAlgebraException.

Implements Kaskade::SDCTimeGrid.

Member Data Documentation

◆ diff

RealMatrix Kaskade::SDCGridImplementationBase::diff
protectedinherited

Definition at line 192 of file sdc.hh.

Referenced by Kaskade::SDCGridImplementationBase::differentiationMatrix().

◆ integ

RealMatrix Kaskade::SDCGridImplementationBase::integ
protectedinherited

Definition at line 191 of file sdc.hh.

Referenced by Kaskade::SDCGridImplementationBase::integrationMatrix().

◆ pts

RealVector Kaskade::SDCGridImplementationBase::pts
protectedinherited

Definition at line 190 of file sdc.hh.

Referenced by Kaskade::SDCGridImplementationBase::points().


The documentation for this class was generated from the following file: