KASKADE 7 development version
|
#include <modelCreator.hh>
Creates a quadratic model, parametrized by nu with argument(vector) tau, such that \( q_{\nu}(\tau) = f'(x_0)\delta x+\frac{1}{2}L_{xx}(x_0,p_0)\delta x^2 \) where \( \delta x = \nu \delta n + \tau \delta t \) Uses the identity \( f'(x_0)\delta x = L_x(x_0,p_0)\delta t+\nu p_0 c(x_0) \)
Definition at line 23 of file modelCreator.hh.
Public Member Functions | |
QuadraticModelCreator (AbstractFunctionSpaceElement const &normalStep, std::vector< std::shared_ptr< AbstractFunctionSpaceElement > >const &tangentialBasis, LagrangeLinearization const &lagrangeLinearization, double residualCorrection=0) | |
QuadraticFunction | create (double nu) const |
Kaskade::QuadraticModelCreator::QuadraticModelCreator | ( | AbstractFunctionSpaceElement const & | normalStep, |
std::vector< std::shared_ptr< AbstractFunctionSpaceElement > >const & | tangentialBasis, | ||
LagrangeLinearization const & | lagrangeLinearization, | ||
double | residualCorrection = 0 |
||
) |
QuadraticFunction Kaskade::QuadraticModelCreator::create | ( | double | nu | ) | const |