KASKADE 7 development version
|
A namespace containing various material laws. More...
Classes | |
class | BlatzKo |
Blatz-Ko material law for rubber foams in terms of the shifted invariants \( i_1, i_2, i_3 \) of the doubled Green-Lagrange strain tensor \( 2E \). More... | |
class | CompressibleInvariantsMaterialLaw |
Adaptor for hyperelastic material laws, providing an easy way to formulate compressible material laws in terms of the invariants of the isochoric part \( \bar C = C/(det C)^(1/d) \) of the Cauchy-Green strain tensor and a penalization of the deviatoric part \( I_d \). More... | |
class | InvariantsMaterialLaw |
Adaptor for hyperelastic material laws, providing an easy way to formulate incompressible material laws in terms of the invariants of the Cauchy-Green strain tensor \( C = I+2E\). More... | |
class | MaterialLawBase |
Base class for hyperelastic material laws, providing default implementations of the stress and the tangent stiffness tensor \( C \). More... | |
class | MooneyRivlin |
Mooney-Rivlin material law formulated in terms of the (shifted) invariants \( i_1, i_2, i_3 \) of the doubled Green-Lagrange strain tensor \( 2E \). More... | |
class | NeoHookean |
Neo-Hookean material law formulated in terms of the shifted invariants \( i_1, i_2, i_3 \) of the doubled Green-Lagrange strain tensor \( 2E \). More... | |
class | OrthotropicLinearMaterial |
Orthotropic linear material law. More... | |
class | OrthotropicNonLinearMaterial |
class | StVenantKirchhoff |
The St. Venant-Kirchhoff material, foundation of linear elastomechanics. More... | |
class | ViscoPlasticEnergy |
An adaptor for using hyperelastic stored energies for viscoplasticity. More... | |
Functions | |
template<int dim, class Scalar > | |
Scalar | vonMisesStress (Dune::FieldMatrix< Scalar, dim, dim > const &stress) |
Computes the von Mises equivalent stress \( \sigma_v \). More... | |
template<int dim, class Scalar = double> | |
Dune::FieldVector< Scalar, dim *(dim+1)/2 > | duvautLionsJ2Flow (Dune::FieldMatrix< Scalar, dim, dim > const &cauchyStress, Dune::FieldMatrix< Scalar, dim *(dim+1)/2, dim *(dim+1)/2 > const &C, double tau, double sigmaY) |
A simple Duvaut-Lions flow rule with \( J_2 \) (von Mises) yield surface. More... | |
A namespace containing various material laws.
Hyperelastic material laws define a stored energy density \( W(E) \) in terms of the Green-Lagrange strain tensor \( E \).