KASKADE 7 development version
Classes | Functions
Kaskade::Elastomechanics::MaterialLaws Namespace Reference

A namespace containing various material laws. More...

Classes

class  BlatzKo
 Blatz-Ko material law for rubber foams in terms of the shifted invariants \( i_1, i_2, i_3 \) of the doubled Green-Lagrange strain tensor \( 2E \). More...
 
class  CompressibleInvariantsMaterialLaw
 Adaptor for hyperelastic material laws, providing an easy way to formulate compressible material laws in terms of the invariants of the isochoric part \( \bar C = C/(det C)^(1/d) \) of the Cauchy-Green strain tensor and a penalization of the deviatoric part \( I_d \). More...
 
class  InvariantsMaterialLaw
 Adaptor for hyperelastic material laws, providing an easy way to formulate incompressible material laws in terms of the invariants of the Cauchy-Green strain tensor \( C = I+2E\). More...
 
class  MaterialLawBase
 Base class for hyperelastic material laws, providing default implementations of the stress and the tangent stiffness tensor \( C \). More...
 
class  MooneyRivlin
 Mooney-Rivlin material law formulated in terms of the (shifted) invariants \( i_1, i_2, i_3 \) of the doubled Green-Lagrange strain tensor \( 2E \). More...
 
class  NeoHookean
 Neo-Hookean material law formulated in terms of the shifted invariants \( i_1, i_2, i_3 \) of the doubled Green-Lagrange strain tensor \( 2E \). More...
 
class  OrthotropicLinearMaterial
 Orthotropic linear material law. More...
 
class  OrthotropicNonLinearMaterial
 
class  StVenantKirchhoff
 The St. Venant-Kirchhoff material, foundation of linear elastomechanics. More...
 
class  ViscoPlasticEnergy
 An adaptor for using hyperelastic stored energies for viscoplasticity. More...
 

Functions

template<int dim, class Scalar >
Scalar vonMisesStress (Dune::FieldMatrix< Scalar, dim, dim > const &stress)
 Computes the von Mises equivalent stress \( \sigma_v \). More...
 
template<int dim, class Scalar = double>
Dune::FieldVector< Scalar, dim *(dim+1)/2 > duvautLionsJ2Flow (Dune::FieldMatrix< Scalar, dim, dim > const &cauchyStress, Dune::FieldMatrix< Scalar, dim *(dim+1)/2, dim *(dim+1)/2 > const &C, double tau, double sigmaY)
 A simple Duvaut-Lions flow rule with \( J_2 \) (von Mises) yield surface. More...
 

Detailed Description

A namespace containing various material laws.

Hyperelastic material laws define a stored energy density \( W(E) \) in terms of the Green-Lagrange strain tensor \( E \).