71 RemainderTerm(0.0), nu0(0.0), searchSpace(searchSpace_), normL(nL), normC(nC), chart(chart_), grid(grid_), p(p_), dimx(dimx_), errorEstimator(errorEstimator_)
129 double omegaL,omegaC, Theta, RelNormalSteps, RemainderTerm, normalstepnorm, snormalstepnorm, sbarstepnorm, theta2, nu0;
133 AbstractNormalSolver* normalSolver;
141 std::vector<double> coeff;
143 std::unique_ptr<AbstractFunctionSpaceElement> iterate, trialIterate, correction, scorrection;
144 std::vector<AbstractFunctionSpaceElement* > basisVectors;
145 std::vector<std::tr1::shared_ptr<AbstractFunctionSpaceElement> > bV;
146 std::vector<double> coeffs;
148 std::unique_ptr<AbstractLinearization> normalLinearization;
149 std::unique_ptr<AbstractLinearization> tangentialLinearization;
150 std::unique_ptr<AbstractErrorEstimate> estimate;
Representation of an adaptive grid and a simple set of operations thereon.
Representation of an error estimator.
Abstract Vector for function space algorithms.
Representation of a nonlinear functional.
Base class for algorithms. Provides a unified interface and some simple wrapper routines,...
For optimization with cubic upper bounds method.
void terminationMessage(int flag)
virtual RegularityTest regularityTest(double scalingFactor)
void resetParameters()
Reset all algorithmic parameters to their default values.
virtual IterationParameters const & getParameters()
void solve(AbstractFunctional *fN, AbstractFunctional *fT, AbstractFunctionSpaceElement &x)
Solve the system f=0 with starting value x. On (successful) exit, the solution is x,...
virtual AcceptanceTest evaluateCorrection(AbstractFunctionSpaceElement &correction, AbstractLinearization &lin, CUBThetaModelFunction &mF, double f0, std::vector< double > &coeff)
HypIP(SearchSpaceCreator &searchSpace_, AbstractScalarProduct &nL, AbstractScalarProduct &nC, AbstractChart &chart_, HypIPParameters &p_, int dimx_, AbstractAdaptiveGrid *grid_=0, AbstractCompositeStepErrorEstimator *errorEstimator_=0)
Create Newton's Method, providing a solver, a norm and algorithmic parameters.
virtual void setDesiredRelativeAccuracy(double ra)
set the desired accuracy
virtual Convergence convergenceTest(AbstractFunctionSpaceElement const &correction, AbstractFunctionSpaceElement const &iterate, std::vector< double > &coeff)
Return true, if convergence is detected, false otherwise.
void setDesiredAccuracy(double da)
set the desired accuracy
virtual void updateIterate(AbstractFunctionSpaceElement &iterate, AbstractFunctionSpaceElement &trialIterate, AbstractLinearization const &lin)
virtual void doForAll(LQAction::ToDo td)
To be overloaded by derived class.
LoggedQuantity< double > omegaL
HypIPParameters(double desiredAccuracy_, int maxSteps_)
LoggedQuantity< double > omegaC
Base class for algorithmic parameters.
virtual void reset()
Reset all quantities in this class.
void doAction(LQAction::ToDo td, std::string const &name_="noName")
Some model functions for various purposes.