KASKADE 7 development version
|
Classes | |
class | Kaskade::AbstractFunctionSpaceElement |
Abstract Vector for function space algorithms. More... | |
class | Kaskade::AbstractLinearization |
Abstract linearization. More... | |
class | Kaskade::AbstractPreconditioner |
class | Kaskade::AbstractFlushConnection |
Abstract connection. More... | |
class | Kaskade::AbstractConnectedLinearization |
class | Kaskade::AbstractFunctional |
Representation of a nonlinear functional. More... | |
class | Kaskade::AbstractParameters |
Representation of parameters. More... | |
class | Kaskade::Parameters< ParameterType > |
...for parameter dependent functionals, implements AbstractParameters More... | |
class | Kaskade::AbstractParameterFunctional |
Creates a functional from a homotopy of functionals by inserting a parameter. More... | |
class | Kaskade::AbstractNewtonDirection |
Class that models the functionality of a (possibly inexact) linear solver. More... | |
class | Kaskade::AbstractChart |
class | Kaskade::AbstractNorm |
class | Kaskade::AbstractScalarProduct |
class | Kaskade::AbstractErrorEstimate |
Representation of an error estimate, i.e. the output of an error estimator. More... | |
class | Kaskade::AbstractErrorEstimator |
Representation of an error estimator. More... | |
class | Kaskade::AbstractAdaptiveGrid |
Representation of an adaptive grid and a simple set of operations thereon. More... | |
class | Kaskade::AbstractHierarchicalErrorEstimator |
class | Kaskade::ContinuousScalarFunction |
class | Kaskade::DifferentiableScalarFunction |
Functions | |
template<class ParameterType > | |
Parameters< ParameterType > | Kaskade::makePars (ParameterType const &p) |
Here the basic elements are represented as abstract base classes, on which algorithms with dynamic polymorphism can be built.
Parameters< ParameterType > Kaskade::makePars | ( | ParameterType const & | p | ) |
Definition at line 254 of file abstract_interface.hh.
Referenced by InteriorPointTangentialPredictor< IPF, DomainVector >::computePredictor(), InteriorPointTangentialPredictor< IPF, DomainVector >::finalizeHomotopy(), InteriorPointTangentialPredictor< IPF, DomainVector >::updateIterate(), and InteriorPointTangentialPredictor< IPF, DomainVector >::updateModelOfHomotopy().