KASKADE 7 development version
Public Member Functions | List of all members
Kaskade::MaxValueCriterion Class Reference

Max value refinement criterion. Determines the refinement thresholds such that all cells with an error contribution exceeding a certain fraction of the maximum error contribution are refined. More...

#include <errorest.hh>

Detailed Description

Max value refinement criterion. Determines the refinement thresholds such that all cells with an error contribution exceeding a certain fraction of the maximum error contribution are refined.

Definition at line 114 of file errorest.hh.

Inheritance diagram for Kaskade::MaxValueCriterion:
Kaskade::RefinementCriterion Kaskade::BabuskaRheinboldtCriterion

Public Member Functions

 MaxValueCriterion (double fraction=0.2)
 
std::vector< double > threshold (boost::multi_array< double, 2 > const &normalizedErrors) const
 Computes the thresholds for refinement. More...
 

Constructor & Destructor Documentation

◆ MaxValueCriterion()

Kaskade::MaxValueCriterion::MaxValueCriterion ( double  fraction = 0.2)

Member Function Documentation

◆ threshold()

std::vector< double > Kaskade::RefinementCriterion::threshold ( boost::multi_array< double, 2 > const &  normalizedErrors) const
inherited

Computes the thresholds for refinement.

Parameters
normalizedErrorsa twodimensional array containing the normalized error contribution for each cell and each variable, i.e. normalizedErrors[i][j] contains the error contribution of cell i to the error in variable j, divided by the tolerance, such that the sum over i should not exceed one (for acceptance)
Returns
an array containing a threshold value such that any cell i for which normalizedErrors[i][j] > return[j] for any j is to be refined, or an empty array in case all variables are accurate enough

Referenced by Kaskade::EmbeddedErrorEstimator< VariableSetDescription, Scaling >::estimate().


The documentation for this class was generated from the following file: