KASKADE 7 development version
|
A class implementing a matrix \( K \in \R^{n\times m}\) mapping a subset of \( m \) global degrees of freedom (those given by globalIndices()) to \( n \) local degrees of freedom (shape functions). More...
#include <lagrangespace.hh>
A class implementing a matrix \( K \in \R^{n\times m}\) mapping a subset of \( m \) global degrees of freedom (those given by globalIndices()) to \( n \) local degrees of freedom (shape functions).
For Lagrange elements, this usually realizes just the identity. We also support the case that there are no degrees of freedom associated to a cell, i.e. \( m=0 \), see ContinuousLagrangeMapperSubdomain.
Definition at line 174 of file lagrangespace.hh.
Public Member Functions | |
template<class GlobalIndices > | |
Combiner (GlobalIndices const &globalIndices, ShapeFunctionSet const &sfs) | |
template<class Matrix > | |
void | rightTransform (Matrix &A) const |
In-place computation of \( A \leftarrow A K \). Since \( K \) is the identity, this is a no-op. More... | |
template<int d, int k> | |
void | rightTransform (std::vector< VariationalArg< Scalar, d, k > > &v) const |
In-place computation of row vectors \( v \leftarrow v K \). More... | |
template<class Matrix > | |
void | leftPseudoInverse (Matrix &A) const |
In-place computation of \( A \leftarrow K^+ A \). More... | |
operator Dune::BCRSMatrix< Dune::FieldMatrix< Scalar, 1, 1 > > () const | |
|
inline |
Definition at line 178 of file lagrangespace.hh.
|
inline |
In-place computation of \( A \leftarrow K^+ A \).
Definition at line 211 of file lagrangespace.hh.
|
inline |
Implicit conversion to a sparse matrix. This is just the identity.
Definition at line 220 of file lagrangespace.hh.
|
inline |
In-place computation of \( A \leftarrow A K \). Since \( K \) is the identity, this is a no-op.
Definition at line 193 of file lagrangespace.hh.
|
inline |
In-place computation of row vectors \( v \leftarrow v K \).
Definition at line 202 of file lagrangespace.hh.