KASKADE 7 development version
|
A class for computing permutations of local vertex numbers of simplex subentities to a globally unique ordering. More...
#include <gridcombinatorics.hh>
A class for computing permutations of local vertex numbers of simplex subentities to a globally unique ordering.
Use this to compute globally unique numberings of degrees of freedom, as necessary for global continuity of finite element functions.
Definition at line 146 of file gridcombinatorics.hh.
Public Member Functions | |
template<class IndexSet , class Cell > | |
GlobalBarycentricPermutation (IndexSet const &is, Cell const &cell) | |
template<int codim> | |
std::array< int, dimension+1-codim > | barycentricSubsetPermutation (int e) const |
Computes a permutation of barycentric coordinates to globally unique ordering. More... | |
template<class OutIter > | |
void | barycentricSubsetPermutation (int e, int codim, OutIter out) const |
A dynamic interface to barycentricSubsetPermutation. More... | |
|
inline |
Definition at line 150 of file gridcombinatorics.hh.
|
inline |
Computes a permutation of barycentric coordinates to globally unique ordering.
codim | the codimension of the considered subentity |
e | the subentity number in the cell (among those of given codimension) |
If \( i \) is a barycentric coordinate direction according to the globally unique ordering, \( \pi(i) \) is its cell-local barycentric coordinate direction in the reference element.
Definition at line 166 of file gridcombinatorics.hh.
Referenced by Kaskade::ContinuousLagrangeMapperImplementation< ScalarType, GV, ShapeFunctionFilter >::entityIndex(), and Kaskade::HdivMapper< ScalarType, GV >::update().
|
inline |
A dynamic interface to barycentricSubsetPermutation.
e | the subentity number in the cell (among those of given codimension) |
codim | the codimension of the subentity |
out | points to at least dimension+1-codim entries to be filled |
Definition at line 194 of file gridcombinatorics.hh.