KASKADE 7 development version
|
Lagrange shape functions on an equidistant grid over the simplex. These are polynomial basis functions \( p_i \) over the unit simplex, together with interpolation nodes \( \xi_j \), such that \( p_i(\xi_j) = \delta_{ij} \) holds. More...
#include <lagrangeshapefunctions.hh>
Lagrange shape functions on an equidistant grid over the simplex. These are polynomial basis functions \( p_i \) over the unit simplex, together with interpolation nodes \( \xi_j \), such that \( p_i(\xi_j) = \delta_{ij} \) holds.
Definition at line 313 of file lagrangeshapefunctions.hh.
Public Types | |
using | Vector = Dune::FieldVector< Real, dim > |
Public Member Functions | |
EquidistantLagrange (int order) | |
Constructor. More... | |
Vector | nodalPosition (int i) const |
The spatial location of the interpolation node \( \xi_i \) associated with the i-th basis function. More... | |
Real | value (int i, Vector const &xi) const |
Real | derivative (int i, int dir, Vector const &xi) const |
Real | derivative2 (int i, int dir1, int dir2, Vector const &xi) const |
int | size () const |
The number of Lagrange polynomials. More... | |
int | order () const |
The polynomial ansatz order of this Lagrange basis. More... | |
std::array< int, dim+1 > | index (int i) const |
Protected Attributes | |
int | myOrder |
std::vector< std::array< int, dim+1 > > | ls |
using Kaskade::EquidistantLagrange< dim, Real >::Vector = Dune::FieldVector<Real,dim> |
Definition at line 316 of file lagrangeshapefunctions.hh.
Kaskade::EquidistantLagrange< dim, Real >::EquidistantLagrange | ( | int | order | ) |
Constructor.
l | the barycentric index of the shape function with nonnegative entries. The order of the shape function is \( p = \sum_{i=0}^d l_i \). |
Real Kaskade::EquidistantLagrange< dim, Real >::derivative | ( | int | i, |
int | dir, | ||
Vector const & | xi | ||
) | const |
Real Kaskade::EquidistantLagrange< dim, Real >::derivative2 | ( | int | i, |
int | dir1, | ||
int | dir2, | ||
Vector const & | xi | ||
) | const |
|
inlineinherited |
Definition at line 293 of file lagrangeshapefunctions.hh.
Vector Kaskade::EquidistantLagrange< dim, Real >::nodalPosition | ( | int | i | ) | const |
The spatial location of the interpolation node \( \xi_i \) associated with the i-th basis function.
|
inlineinherited |
The polynomial ansatz order of this Lagrange basis.
Definition at line 288 of file lagrangeshapefunctions.hh.
|
inlineinherited |
The number of Lagrange polynomials.
Definition at line 280 of file lagrangeshapefunctions.hh.
Real Kaskade::EquidistantLagrange< dim, Real >::value | ( | int | i, |
Vector const & | xi | ||
) | const |
|
protectedinherited |
Definition at line 300 of file lagrangeshapefunctions.hh.
Referenced by Kaskade::LagrangeBase< dim >::index(), and Kaskade::LagrangeBase< dim >::size().
|
protectedinherited |
Definition at line 299 of file lagrangeshapefunctions.hh.
Referenced by Kaskade::LagrangeBase< dim >::order().