KASKADE 7 development version
|
A class implementing a matrix \( K \) mapping a subset of global degrees of freedom (those given by globalIndices()) to local degrees of freedom (shape functions). More...
#include <constantspace.hh>
A class implementing a matrix \( K \) mapping a subset of global degrees of freedom (those given by globalIndices()) to local degrees of freedom (shape functions).
For constant elements, this realizes just the identity.
Definition at line 208 of file constantspace.hh.
Public Member Functions | |
Combiner (Cell const &cell) | |
template<class Matrix > | |
void | rightTransform (Matrix &) const |
In-place computation of \( A \leftarrow A K \). Since \( K \) is the identity, this is a no-op. More... | |
template<int n, int m> | |
void | rightTransform (std::vector< VariationalArg< Scalar, n, m > > &) const |
In-place computation of row vectors \( v \leftarrow v K \). More... | |
template<class Matrix > | |
void | leftPseudoInverse (Matrix &) const |
In-place computation of \( A \leftarrow K^+ A \). More... | |
operator Dune::BCRSMatrix< Dune::FieldMatrix< Scalar, 1, 1 > > () const | |
|
inline |
Definition at line 210 of file constantspace.hh.
|
inline |
In-place computation of \( A \leftarrow K^+ A \).
Definition at line 225 of file constantspace.hh.
|
inline |
Implicit conversion to a sparse matrix. This is just 1.
Definition at line 229 of file constantspace.hh.
|
inline |
In-place computation of \( A \leftarrow A K \). Since \( K \) is the identity, this is a no-op.
Definition at line 217 of file constantspace.hh.
|
inline |
In-place computation of row vectors \( v \leftarrow v K \).
Definition at line 221 of file constantspace.hh.