KASKADE 7 development version
Public Types | Public Member Functions | List of all members
Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner > Class Template Reference

Preconditioned chebyshev semi iteration. More...

#include <chebyshev.hh>

Detailed Description

template<class Operator, bool isPreconditioner = false>
class Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >

Preconditioned chebyshev semi iteration.

Standard implementation based on a three-term recurrence and explicit computation of the residuals to avoid accumulation of round of errors in the computation of the residuals. In contrast to Krylov methods this does not slow down convergence (see Gutknecht,Röllin: The Chebyshev iteration revisited).

The Chebyshev semi-iteration requires bounds on the spectrum! Currently we only provide these bounds for tetrahedral elements (3D!) with piecewise linear ansatz functions. For more bounds see a.o. "Wathen: Realistic eigenvalue bounds for the Galerkin mass matrix the spectrum of the preconditioned mass matrix". For reason of consistency with the published bounds the implementation is restricted to a one-step Jacobi preconditioner.

Definition at line 53 of file chebyshev.hh.

Inheritance diagram for Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >:

Public Types

typedef Operator::Domain Domain
 
typedef Operator::Range Range
 

Public Member Functions

 ChebyshevSemiIteration (Operator const &A_, double tol, size_t steps, size_t verbose_=0)
 
virtual ~ChebyshevSemiIteration ()
 
virtual void pre (Domain &, Range &)
 
virtual void post (Domain &)
 
virtual void apply (Domain &x, Range const &y)
 
void initForMassMatrix_TetrahedralQ1Elements ()
 Init spectral bounds for the mass matrix arising from tetrahedral discretization of the domain and linear elements. More...
 
void setSteps (size_t steps)
 

Member Typedef Documentation

◆ Domain

template<class Operator , bool isPreconditioner = false>
typedef Operator::Domain Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >::Domain

Definition at line 56 of file chebyshev.hh.

◆ Range

template<class Operator , bool isPreconditioner = false>
typedef Operator::Range Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >::Range

Definition at line 57 of file chebyshev.hh.

Constructor & Destructor Documentation

◆ ChebyshevSemiIteration()

template<class Operator , bool isPreconditioner = false>
Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >::ChebyshevSemiIteration ( Operator const &  A_,
double  tol,
size_t  steps,
size_t  verbose_ = 0 
)
inline

Definition at line 59 of file chebyshev.hh.

◆ ~ChebyshevSemiIteration()

template<class Operator , bool isPreconditioner = false>
virtual Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >::~ChebyshevSemiIteration ( )
inlinevirtual

Definition at line 63 of file chebyshev.hh.

Member Function Documentation

◆ apply()

template<class Operator , bool isPreconditioner = false>
virtual void Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >::apply ( Domain x,
Range const &  y 
)
inlinevirtual

◆ initForMassMatrix_TetrahedralQ1Elements()

template<class Operator , bool isPreconditioner = false>
void Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >::initForMassMatrix_TetrahedralQ1Elements ( )
inline

Init spectral bounds for the mass matrix arising from tetrahedral discretization of the domain and linear elements.

According to "Wathen: Realistic eigenvalue bounds for the Galerkin mass matrix" the spectrum of the preconditioned mass matrix is contained in \([\frac{1}{2},\frac{5}{2}]\). For chebyshev semi-iteration the bounds on the spectrum are in general given in the form \( [a-b,a+b] \) yielding the coefficients \(a=1.5,\ b=1\). See Wathen,Rees: "Chebyshev semi-iteration in preconditioning for problems including the mass matrix".

Definition at line 133 of file chebyshev.hh.

Referenced by Kaskade::InexactTangentSpacePreconditioner< Functional, Assembler, components, exactConstraint >::InexactTangentSpacePreconditioner(), Kaskade::InexactTangentSpacePreconditionerILU< Functional, Assembler, components, exactConstraint >::InexactTangentSpacePreconditionerILU(), Kaskade::NormalStepPreconditioner< Functional, Assembler >::NormalStepPreconditioner(), Kaskade::NormalStepPreconditioner3< Functional, Assembler, components >::NormalStepPreconditioner3(), Kaskade::YetAnotherHBErrorEstimator< Functional, VariableSetDescription, ExtensionVariableSetDescription, ExtensionSpace, NormFunctional, RefinementStrategy, lump, components, ReferenceSolution, ReferenceOperator >::operator()(), Kaskade::YetAnotherHBErrorEstimator_Elasticity< Functional, VariableSetDescription, ExtensionVariableSetDescription, ExtensionSpace, NormFunctional, RefinementStrategy, lump, components >::operator()(), Kaskade::TangentSpacePreconditioner< Functional, Assembler, components >::TangentSpacePreconditioner(), and Kaskade::TangentSpacePreconditioner2< Functional, Assembler, components >::TangentSpacePreconditioner2().

◆ post()

template<class Operator , bool isPreconditioner = false>
virtual void Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >::post ( Domain )
inlinevirtual

Definition at line 66 of file chebyshev.hh.

◆ pre()

template<class Operator , bool isPreconditioner = false>
virtual void Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >::pre ( Domain ,
Range  
)
inlinevirtual

Definition at line 65 of file chebyshev.hh.

◆ setSteps()

template<class Operator , bool isPreconditioner = false>
void Kaskade::ChebyshevSemiIteration< Operator, isPreconditioner >::setSteps ( size_t  steps)
inline

The documentation for this class was generated from the following file: