KASKADE 7 development version
Public Member Functions | List of all members
Kaskade::BabuskaRheinboldtCriterion Class Reference

Babuska-Rheinboldt refinement criterion. Determines the refinement thresholds such that all cells with an error contribution exceeding the expected error contribution of the worst cell after refinement will be marked. This tends to equilibrate the error contributions quite fast. More...

#include <errorest.hh>

Detailed Description

Babuska-Rheinboldt refinement criterion. Determines the refinement thresholds such that all cells with an error contribution exceeding the expected error contribution of the worst cell after refinement will be marked. This tends to equilibrate the error contributions quite fast.

Note that the local convergence order should be estimated (important in the vicinity of singularities) but is here assumed to be the fixed specified order.

Definition at line 134 of file errorest.hh.

Inheritance diagram for Kaskade::BabuskaRheinboldtCriterion:
Kaskade::MaxValueCriterion Kaskade::RefinementCriterion

Public Member Functions

 BabuskaRheinboldtCriterion (std::vector< int > const &order)
 
std::vector< double > threshold (boost::multi_array< double, 2 > const &normalizedErrors) const
 Computes the thresholds for refinement. More...
 

Constructor & Destructor Documentation

◆ BabuskaRheinboldtCriterion()

Kaskade::BabuskaRheinboldtCriterion::BabuskaRheinboldtCriterion ( std::vector< int > const &  order)

Member Function Documentation

◆ threshold()

std::vector< double > Kaskade::RefinementCriterion::threshold ( boost::multi_array< double, 2 > const &  normalizedErrors) const
inherited

Computes the thresholds for refinement.

Parameters
normalizedErrorsa twodimensional array containing the normalized error contribution for each cell and each variable, i.e. normalizedErrors[i][j] contains the error contribution of cell i to the error in variable j, divided by the tolerance, such that the sum over i should not exceed one (for acceptance)
Returns
an array containing a threshold value such that any cell i for which normalizedErrors[i][j] > return[j] for any j is to be refined, or an empty array in case all variables are accurate enough

Referenced by Kaskade::EmbeddedErrorEstimator< VariableSetDescription, Scaling >::estimate().


The documentation for this class was generated from the following file: