KASKADE 7 development version
|
A hyperelastic material law formulated in terms of the invariants \( I_1, I_2, I_3 \) of the Cauchy-Green strain tensor \( C \). More...
#include <concepts.hh>
A hyperelastic material law formulated in terms of the invariants \( I_1, I_2, I_3 \) of the Cauchy-Green strain tensor \( C \).
Definition at line 703 of file concepts.hh.
Public Types | |
using | Scalar = unspecified |
The scalar field type (usually double). More... | |
using | Invariants = Dune::FieldVector< Scalar, dim > |
A dim-dimensional vector type. More... | |
Public Member Functions | |
void | InvariantsMaterialConcept (Invariants const &i,...) |
Constructs the material at shifted invariants \( i \). More... | |
Scalar | d0 () const |
Evaluates the stored energy density \( W(I) \). More... | |
Scalar | d1 (Invariants const &i1) const |
Evaluates the first directional derivative \( W'(I)\tilde I \). More... | |
Scalar | d2 (Invariants const &i1, Invariants const &i2) const |
Evaluates the second directional derivative \( W''(\epsilon)\epsilon_1\epsilon_2 \). More... | |
Static Public Attributes | |
static int const | dim = unspecified |
The spatial dimension (usually 2 or 3). More... | |
A dim-dimensional vector type.
Definition at line 719 of file concepts.hh.
using InvariantsMaterialConcept::Scalar = unspecified |
The scalar field type (usually double).
Definition at line 709 of file concepts.hh.
void InvariantsMaterialConcept::InvariantsMaterialConcept | ( | Invariants const & | i, |
... | |||
) |
Constructs the material at shifted invariants \( i \).
The invariants of \( A \) are not given by their actual value \( I_k \), but in the shifted invariants \( i_k \) such that \( i_k(I) = 0 \). This allows a numerically stable evaluation of the material laws in the vicinity of the reference configuration.
For \( d=2 \) we have \( i_1 = I_1-2 = \mathrm{tr}(A)-2 \) and \( i_2 = I_2-1 = |A| - 1 \). For \( d=3 \) we have \( i_1 = I_1-3 = \mathrm{tr}(A)-3 \), \( i_2 = I_2-3 = \frac{1}{2}(\mathrm{tr}(A)^2 - \mathrm{tr}(A^2)) - 3\), and \( i_3 = I_3-1 = |A| - 1 \).
i | the shifted invariants |
Scalar InvariantsMaterialConcept::d0 | ( | ) | const |
Evaluates the stored energy density \( W(I) \).
Scalar InvariantsMaterialConcept::d1 | ( | Invariants const & | i1 | ) | const |
Evaluates the first directional derivative \( W'(I)\tilde I \).
Scalar InvariantsMaterialConcept::d2 | ( | Invariants const & | i1, |
Invariants const & | i2 | ||
) | const |
Evaluates the second directional derivative \( W''(\epsilon)\epsilon_1\epsilon_2 \).
|
static |
The spatial dimension (usually 2 or 3).
Definition at line 714 of file concepts.hh.