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Abstract

The honey bee standard brain (HBS) serves as a 3D platform for the visuali-

sation of neuronal morphologies of different brain preparations. The registra-

tion of single neurons into the HBS requires a time-consuming manual seg-

mentation of neuropil boundaries in confocal image data. Therefore it would

be desirable to automate the segmentation process. A model-based autoseg-

mentation approach was succesfully applied for medical data by Lamecker

et. al [2]. This method uses a-priori information about the shape of the

segmented structure and features of the image data during the segmentation

process. In this work, I want to figure out, if this method can be adapted to

confocal image data. Therefore I establish it for the segmentation of a single

bee brain structure, the right median calyx. At first I was able to solve the

problem of the initialization of the model-based segmentation by an affine

registration of the individual confocal dataset to the standard grey value

dataset. In order to enlarge the variability of an existing statistical shape

model of the calyx consisting of 18 training shapes, I extended it by another

27 training shapes. For the adjustment of this model I analysed grey value

profiles along surface normals of the training data. On the basis of a profile

model I developed a displacement algorithm for the adjustment of the model

to a confocal image dataset. Then I tested the automatic segmentation with

the different sized shape models and the developed displacement algorithm

for 45 confocal image datasets. In 80% of the segmentations, the result was

good compared to the manual segmentations. In some cases the profile model

failed. Furthermore there were sometimes large maximal distances between

manual and automatic segmentation, because the profile model did not fit

the particular profile. The segmentation result could be improved with the

extended model.



Chapter 1

Introduction

1.1 Motivation

Because of its remarkable abilities in navigation, communication, visual and

olfactory learning and memory processing, the honeybee, Apis mellifera, has

become an interesting object for the research of the neuronal correlates of

learning and behaviour. The workerbee’s brain is smaller than 1mm3 and

contains approximately 820000 neurons. It is used as a model for the study

of elementary learning procedures at the level of single neurons and neural

circuits. Due to the accumulated knowledge about its neuroanatomy the

activity of single marked neurons can be analysed with electrophysiological

recordings or optical imaging. Elementary neuronal processes are based on

neuronal circuits consisting of many neurons. The synaptic conjunctions of

the participating neurons have to be identified to model their interaction.
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1.2 Honeybee standard brain atlas

In insects, neuroanatomical methods are used to interpret the results of in-

tracellulary staining of neurons which are part of the brain circuitry. But the

study of parts of the neural network needs numerous preparations from dif-

feren animals with different stained neurons. Due to the variable shape of the

individual brains the relative spatial position of neurons stained in different

preparations can not be easily determined. Therefore a 3D anatomical refer-

ence map is needed to integrate the whole data. This function is fullfiled by

an averge shape atlas of the honeybee brain, which consists of 22 segmented

brain structures (neuropiles) computed from 20 beebrains, Brandt et. al

2005 [1]. The 3D honeybee brainatlas (HBS) helps to understand the 3D

morphology, topographical relationships and putative connectivities of the

neural network. The method of confocal microskopy was a prerequisite for

the atlas generation, because it allows the recording of optical cross-section

of whole brains without doing mechanical sections of the brain with light

microscopy resolution. To integrate a stained neuron into the atlas, simul-

tanous staining of the neuron with a dye and immunostaining of its neuropil

is done in the preparation. Then the neuropil outlines have to be manually

segmented on every optical slice of the 3D data volume such that each voxel

corresponds to a certain label for a neuropil. The resulting so called label

fields are mapped to the corresponding standard brain labels by an affine

and elastic registration. The computed affine transformation matrix and the

deformation field are finally applied to the neuron to fit it into the atlas.

1.3 Aim of this work

Registration of single neurons in the honeybee brain atlas requires the time-

consuming manual segmentation of neuropiles in confocal image data with

the aid of visualization software Amira 1. Statistical shape models are al-

1Mercury Computer Sysems, http://www.amiravis.com/
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ready succesfully used for the automatic segmentation of medical image data

(CT) [2]. They model the variability of objects of a certain class by princi-

ple component analysis consisting of a small number of training shapes. In

order to achieve a correct model of a biological structure one needs to find

the anatomical corresponding points on all training shapes. In this work the

model-based automatic segmentation strategy is applied to confocal image

data. As a first approach the task of autosegmentation of neuropiles is fo-

cused to one brain structure, the calyx, which is a part of the mushroom

body (see Fig.2.3). An already existing model of the calyx, which consists of

18 training shapes is extended by 27 shapes to improve its ability to adjust

to shapes, that are not included in the model. For the adjustment of the

model to the immuno-stained confocal data a displacement algorithm is es-

tablished, which uses the features of the grey value profiles along the surface

normals in each point for the suitable displacement. The method is tested

for the automatic segmentation of immuno-stained confocal immage data.
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Chapter 2

Foundations

2.1 3D Reconstruction of Bee Brain Struc-

tures

2.1.1 Confocal Imaging

Confocal Laser Scanning Microscopy offers the acquisition of 3D image data

of bee brains with high resolution providing an insight into the 3D morphol-

ogy of neurons. A laser emits photons, which are focussed at a point in the

object. The reflected fluorescence signal of the object is displayed through

the lens at the pinhole and detected by a photomultiplier. The object is

scanned in layers. Du to the focussing of the light structures beyond the

focal plane are less illuminated and the fluorescent images are not focussed

at the pinhole. Using a very good lens and a small pinhole single optical

sections can be up to 1 µm thick. After recording of the whole object, the

3D image stack is recomposed of all layers.
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2.1.2 Aquisition of confocal Images

Dissected brains from adult, foragers honeybees were stained using a im-

munohistological protocol. They were treated with a primary antibody

against synapse proteins (SYNORF1) and labeled with a fluorescent Cy3-

conjugated secondary antibody. Whole mounts are imaged with a confocal

laser scanning microscope. Fig. 2.1 shows sections of a confocal image stack

of a synapsin stained bee brain. For more details see [1].

Figure 2.1: Frontal and horizontal grey value section from a confocal 3D image
stack of synapsin stained bee brain

2.1.3 Manuel segmentation of confocal images

In immunostained confocal image stacks anatomically distinct regions of the

bee brain were defined using the segmentation editor from Amira 1. These

so-called label fields are created by assigning voxels for each label, which

1Mercury Computer Sysems, http://www.amiravis.com/
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represent a coding for a particular brain structure (Fig.2.2). In the semi-

automatic segmentation technique accurate free-hand manual segmentation

are supported by tools provided by the Amira segmentation editor, such

as edge-tracing and progating contour, are used. For 3D segmentation in-

terpolation between slices can be performed. These techniques have to be

controlled carefully, because they tend to cut edges in the direction where

the structure of interest is curved. For the neuropile anlysed in this study (

the calyces of the mushroom bodies (Fig.2.3) this is true at their distal ends.

Amira allows the use of multiple label fields (22 materials in the HoneyBee

Standard brain (HBS, Fig.2.3).

Figure 2.2: Manual segmentation with the segmentation editor in Amira.

2.1.4 3D Reconstruction of individual Bee Brains

On the basis of the 2D label fields the surfaces of 3D brain neuropiles are

reconstructed. Triangular surface models, like the HBS, are representing

the boundaries of the segmented structures. The boundaries are considered

as interfaces between the different materials. In Amira a marching-cube

algorithm is used, which extracts the boundary surfaces between the voxels

belonging to different materials (labels). For a more detailled account on

these issues see review by Maye et al. [4].
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Figure 2.3: The Honey Bee Standard Brain (HBS). α: α lobe, β: β lobe, AL:
antennal lobe, CB: central body, LC: lateral calyx, MC: median calyx, Lo: lobula,
Me: medulla, PL: protocerebral lobe, SOG: suboesophageal ganglion, scale 500
µm

2.1.5 Registration of Neurons into the Standard Brain

A major use of the average shape-atlas of the honeybee is the fitting of indi-

vidual neurons stained in different preparations into a common framework.

That allows to perform a detailled comparative analysis of the topographi-

cal and fine structural details of neuron morphology (Fig. 2.4). Prerequisite

for fitting neurons into the Standard Atlas is the accurate and reliable lo-

calization of region boundaries during the registration process (see chapter

1). This is true for manual (or semi-automatic) and fully automatic seg-

mentation techniques, though the advantage of the latter is that interaction

of human experts are reduced. Labeling performed by different segmenters

often leads to variable results. Therefore it would be advantageous to use

a-priori knowledge, as e.g. implemented in average shape models.
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Figure 2.4: Identified neurons (AL-F1, Pe1, PN) registered into the honey bee
standard brain. AL: antennal lobe, MC: median calyx, LC: lateral calyx. The
optic lobes are omitted in this view. Figure provided by Neurobiology Lab
Prof.Dr.Menzel

2.2 Model-based segmentation

Model-based segmentation combines apriori information about the 3D shape

of already reconstructed surfaces with characteristic features of the image

data. In this section the model-based segmentation method developed by

Lamecker et al. is introduced ( [2], [3]). In the first part the construction

of 3D statistical shape models is described. The second part deals with the

model-based segmentation process, which combines the 3D shape inforamtion

of the generated statistical shape model with characteristic features of grey

value profiles.
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2.2.1 Statistical 3D Shape Models

Training Set

A 3D statistical shape model represents the mean shape and the shape vari-

ability of several individual surfaces from which it is made (training surfaces).

The training shapes used for the modeling should be a good representation

of the structure. They should not contain any artefacts, which could result

in distortions in the statistic of the model. To obtain the training shapes, the

image data is segmented and triangular surfaces are reconstructed from the

labeled images. Then the surfaces are simplified, because the reconstructed

surfaces contain mostly too much triangles, which contain no neccessary in-

fomation about the shape. In order to remove surface artefacts the training

surfaces are smoothed.

Correspondence problem

For the construction of a statistical shape model from a set of training shapes

the shape information of single surfaces has to be fused. The problem arises

how shape information of the different surfaces should be combined to ob-

tain a biological meaningful model. This results in the problem of finding

anatomical meaningful correspondences between the training surfaces (cor-

respondence problem). One solution is to divide all surfaces into the same

characteristic regions homeomorph to a disc (named patches, see example in

fig.3.1 in chapter 3). One reconstructed model is selected as reference surface

and remeshed to a homogeneous triangulation. Corresponding patches of the

reference- and all training surfaces are matched to the unit disc (radius 1,

centered in the origin). The reference patch serves as a common domain.

Its triangulation is mapped to the geometry of all corresponding training

patches. This results in equal number and arrangement but different loca-

tions of triangles in all surfaces i.e. each point of the reference surface has

its definite counterpart in the remaining training surfaces.
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Alignment

In the statistical analysis of the training shapes the spatial distances of a

point in the training surface to its corresponding point in the reference surface

is computed. Before this can be done, all surfaces must be located in the

same coordinate system. For that purpose all training shapes are transferred

to the coordinate system of the reference surface via a rigid transformation

minimizing the distances between corresponding points.

Principle component analysis

Principle component analysis (PCA) is a method used to reduce the dimen-

sionality of multidimensional data by preserving those features of the data,

which show the greatest variance among the data. The mathematical defini-

tion of the PCA is a orthogonal linear transformation of the data to a new

coordinate system in the way that the greatest variance of the data lies on

the first coordinate (called the first principle component), the second greatest

variance on the second coordinate, and so on.

Each triangular training shape Si (i = 1, . . . , N) can be described via m dis-

crete points on its surface resulting in a vector vi ∈ R3m. The corresponding

points of the training shapes are modeled via principle component analysis

(PCA). Each shape vector vi sampled by m surface points vi ∈ R3m can be

expressed by the linear model:

vi = v + Pbi = v +
∑

k

pkbk
i k = 1, . . . , m

whereas v is the mean shape vector and P =
{

pk
}

the matrix of eigenvec-

tors of the covariance matrix. The eigenvalues describe the variation in the

direction of the associated eigenvectors. b =
{

bk
}

are the ahape weights,

which control the modes of variation. This results in a linear model of the

shape variability of the training shape. It represents the mean shape v of

all surfaces from the training set with regard to a common triangualation

10



and the deviations from it contained in the shape modes b of the variance P.

The degrees of freedom of the model S are the shape parameters b and the

transformation T:

S(b,T) = T(v + Pb)

2.2.2 Segmentation process

At first the model must be roughly placed inside the segmented structure.

Then the task is to find the form parameters b* and the transformation T*,

which minimizes the distance of the model S to the autosegmented shape R:

(b∗, T ∗) = arg minb,T ‖R − S(b, T )‖2 = arg minb,T ‖R − T (v + Pb)‖2

The model adapts to the individual shape of the structure by an iterative

adjustment of the position and the shape of the model with respect to the 3D

image. In each iteration the one-dimensional gray value profiles along vertex

normals for each vertex are computed. A displacement algorithm analyses

these profiles and computes a suitable displacement vector for each vertex

normal to the surface (Fig. 3.6). All displacement vectors form a vector

field, which is applied to the vertices of the model. Based on the new shape

the next iteration is computed. The shape of the model is limited by the

variability of the training data, i.e. their shape parameters. In order to

find a displacement algorithm, which uses information about the grey value

profiles, the features of these profiles have to be modeled (profile model).

11



Chapter 3

Automatic Segmentation of the

calyx from confocal images

The model-based automatic segmentation approach by Lamecker [2], which

is explained in chapter 2 uses apriori knowledge about the shape of already

reconstructed surfaces and features of the image data. This method is already

in use for the segmentation of medical image data (CT, [2], [3]). The aim

of this work is to adapt it for the segmentation of confocal images. I confine

myself to the segmentation of one structure, the right median calyx, which

is a part of the mushroom body of the bee brain. I extended an already

existing 3D statistical shape model consisting of 18 training data by another

27 shapes and use it for the segmentation of calyces in confocal image data.

The 3D model and the extension of its training set is described in section 1.

Before the model-based segmentation process (chapter 2) can start the model

has to be positioned within the segmented structure. The 3D image acqui-

sition of medical data uses a reference coordinate system, which facilitate

the initialization of the model in the data. Confocal imaging lacks such a

reference system. The orientation of bee brains differs in confocal recordings.

I found out, that an affine registration of the confocal image to a reference

12



image could compensate for this and initialize the model within the structure

(section 2).

The shape model is adjusted to the individual grey value dataset via an anal-

ysis of grey value profiles along vertex normals for each vertex of the model

surface. For each vertex of the model surface, a displacement algorithm com-

putes the direction of a displacement vector normal to the surface using the

current one dimensional gray value profile. The segmentation is an iterative

process. In each iteration the shape parameters b and the transformation

T of the model are modified with respect to the direction of the computed

displacement vectors. For the segmentation of confocal images I analysed the

grey value profiles in confocal images (section 3). On the basis of a profile

model I developed a displacement algorithm (section 4).

3.1 Statistical 3D Shape Model of the calyx

For the extension of the calyx model I reconstructed the surfaces of manual

segmented synapsin stained confocal images of forager bee brains. The con-

focal images and segmentations were provided by Robert Brandt and Nicola

Stollhof. I simplified the generated triangular surfaces to 11000 triangles, be-

cause the original calyx model consists of about 10800 triangles. In order to

find anatomical meaningful correspondences surfaces were devided manually

into 6 regions (patches, Fig. 3.1) using the Surface Path Editor in Amira.

The patch decomposition follows along recognizable shape features of the

calyx surface. It was already defined in the original calyx model. The PCA

analysis of the corresponding surface points was done from the 45 training

shapes, resulting in a statistical shape model with 44 shape modes. The

calyx model consists of the average shape and the principal variations of the

training shapes contained in the eigenmodes. The degrees of freedom i.e.

the shape parameters of the model are limited by the minimal and maximal

shape parameters of the 45 training surfaces. The minimal and maximal vari-

ability of the three eigenmodes with the largest variance is shown in Fig 3.2.
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Figure 3.1: top: mushroom body with left and median calyx (LC, MC) and
peduncle (Pe), lobes and calyx model; bottom: patch decomposition (0-5), lip (li),
collar (co), basal ring (br)

The modeling process was done using the Amira visualization and modeling

software.

3.2 Initialization by affine Registration

First of all the approximate localisation of the right median calyx in the 3D

confocal image has to be found. This can be done by an interactive manual

transformation of the mean calyx model in the 3D image. However, I use

an affine registration of the 3D grey value image to the standard 3D grey

value image. The parameters rotation, scaling and translation are optimized

to maximize the correspondence between the grey value voxels of the two 3D

data sets. In the parameter dialog of Amira’s affine registration module I

14



Figure 3.2: Variability of the statistical shape model of the calyx containing 45
training shapes: The minimal (a) and maximal (b) variability of the shape modes
with the largest (1), second largest (2) and third largest(3) variance are shown in
horizontal and frontal view

used the mutual information as a similarity measure. At first I transformed

the calyx model in the Honey bee standard brain. Then the position of the

calyx model in the 3D image is initialized by applying the inverse transfor-

mation matrix of the computed affine registration to the model (see Fig.3.3.

Because individual bee brains differ in their anatomy, an affine registration

is not sufficient for automatic segmentation. However, it suits well for the

initialization of the automatic segmentation process.

Figure 3.3: Procedure for the initialization of the calyx model in the arbitrary
dataset: 1. affine transformation of the model to the honey bee Standard. 2.
computation of the affine registration of the arbitrary dataset into the Standard
grey value dateset, the inverse transformation of the affine registration is applied
to the model.

15



3.3 Grey value profile model

The one-dimensional profiles along vertex normals of a training shape has

characteristic recognizable features. The derivative of a grey value profile is

the relationship between the height and the width of a peak in a grey value

profile. Bright-dark transitions from inside to the outside of the calyx are

visible as a maximum of the grey value profile inside the structure and a

minimum outside. If the intensity of the grey values decreases, a minimum

can be found in its derivative. If it increases, the derivative reaches a max-

imum. In Fig. 3.5 examples for grey value profiles and their derivatives in

one confocal image dataset is shown. In order to develop a displacement

algorithm for the adjustment of the calyx model to the grey value data, I

analysed the grey value profiles and their derivatives along vertex normals of

10 already segmented confocal image datasets with Amira’s ExamineProfile

module (Fig. 3.4). The synapsin staining of the bee brains results in im-

ages with high contrast in the lip and basal ring subregions of the calyces

(Fig. 2.1). Although a standardized protocol for the synapsin staining is

used, the intensity of the grey values and the contrast varies between differ-

ent preparation. Mostly the boundaries of the neuropiles are easily detectable

by the synapsin staining, but the contrast varies significantly in depth be-

cause of an uneven penetration of the antibodies in the brain preparation.

The grey value profiles are different in distinct regions of the calyx. For cer-

tain regions or patches I tried to classify the grey value profiles (Fig. 3.5).

A fixed profile is not necessarily characteristic for one region/patch, but a

region has certain features for the grey values, because of its position relative

to other brain structures. For example there is no neighbouring structure

near the lip region, such that it shows high bright- dark contrast. In this

region the boundary of the calyx is easily detectable by a minimum in the

derivative. (Fig. 3.5, profile 1).

16



Figure 3.4: Analysis of grey value profiles with Amiras ExamineProfileEditor

3.4 Displacement algorithm

Since the confocal images of the bee brains show uneven staining, it is not

possible to find a constant threshold value for a thresholding displacement al-

gorithm. For example mostly the lip is very bright and the collar is relatively

dark. I tried to define region specific intensities for the inside of the calyx for

each defined patche. But this is difficult because of an intensity gradient in

depth of the confocal image stack. It worked better when the threshold value

is approximated from the actual profile. If there is a large contrast between

inside and outside grey values, the threshold value lies approximate in the

middle of the maximum and minimum grey value. Therefore in this case the

algorithm is independent of any gradient in depth. An additonal feature of

the images from synapsin stained bee brains are intense edges (see collar in

Fig.3.4). However, an algorithm, which uses only edge information all the

17



Figure 3.5: Grey value profiles (g) and their derivatives (d) with a length of 100 µm along
vertex normals and corresponding oblique slices with 1D profile in red (x is the position in
the profile). In 1-4 profiles of the same dataset are shown, the blue line marks the boundary
of the calyx surface: 1: in lip region (li) strong bright-dark contrast and edges (minimum
in derivative). 2: in collar region (co), neighbouring to left median calyx, boundary at
a bright-dark transition of grey values, where the derivative reaches its minimum. 3: in
collar region, neighbouring to the right lateral calyx, the boundaries of the structures are
fused with bright grey values in the middle (maximum of profile). 4: basal ring (br),
nearby peduncle, inside darker than outside, between the maxima a narrow minimum in
the profile. 18



Figure 3.6: Displacement of the calyx model in the image data, blue color means
the displacement vectors point outwards, red means they point inwards, displace-
ment vectors shown as yellow arrows.

time, does not work reliable, because closely neighbouring structures have

also strong edges and sometimes there are no edges at all. Further problem

is the low contrast and weak edges within the mushroom body and at the

boundary towards basal ring, peduncle and the boundary towards the neigh-

bouring lateral calyx. The model-based method could compensate for the

lack of utilizable information in these profiles. A combination of a thresh-

olding with the edge detection improved the segmentation result, but the

boundary between calyx and peduncle remains difficult to detect, because

peduncle and basal ring are both bright and between them there is a faint

dark edge (see Fig. 3.5, profile 4). There are also difficulties if the proto-

cerebral lobe is positioned nearby the collar, which is much more brighter

and has stronger edges than the collar boundary or if the boundary of the

lateral calyx is too close. The algorithm should treat these cases separately,

such that the model will not be guided into neighbouring structures or ad-

justed to wrong edges in the image. These problems lead to the following

algorithm, which should detect the described cases and choose between the

fitting displacement strategy. It needs information about the intensity of the

grey values of the actual picture, because they are varying between different

confocal scans.
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Therefore after the Initialization and a rigid adjustment of the model the pa-

rameters for the displacement algorithm (except the absolute gradient value)

are computed through a histogram analysis of the gray values inside the ca-

lyx. The histogram analysis, which is implemented in Amira, computes the

frequency of grey values. It can also compute a reverse thresholding, which

I expect to result in an approximation of the minimal grey value outside the

calyx and the maximal grey value outside the calyx.

In the segmentations performed below, I estimated the minimal grey value

outside the calyx as the grey value, which at least 90% of the voxels reach.

The maximal grey value outside the calyx represents the grey value of more

brighter neighbouring structures (protocerebral lobe and neighbouring ca-

lyces). I used the grey value, which 5% of the grey values reached. The

mean grey value was the computed mean grey value of all voxels.

Parameter

• mean grey value of calyx (ḡ)

• minimal grey value outside of calyx (outMin)

• maximal grey value outside of calyx (outMax)

• absolute gradient (absDiff)

Let g(i) be the grey value at position i in the profile, and px the position in

the middle of the profile. At first the maximal grey value (gmax), the min-

imal grey value (gmin), the maximal value (dmax) and the minimal value of

the derivative (dmin) and their indices are computed from the profile. In the

following section I describe each step of the algorithm.
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displacement algorithm

The calyx is brighter than the outside, if no neighbouring strucure is close.

1a) if g(px) > ḡ:

It is likely, that px lies inside the calyx, it should search outwards until it

finds a local minimum in the profile with a grey value less than the average

grey value of the structure, i.e. find the index ilocMin,(ilocMin > px) with

g(ilocMin) < ḡ and g(ilocMin + 1) > ḡ,

1b) if g(px) < ḡ:

It is likely, that px lies outside the calyx, search inwards until a grey value

larger than the mean calyx grey value is found, i.e. find ilocMin, (ilocMin < px)

with g(ilocMin) < ḡ and g(ilocMin − 1) > ḡ, if there is a j > px with g(j) > ḡ.

2.a) if ilocMin was found in 1. assume that a local maximum further inside

lies within the calyx, find the local maximum ilocMax with ilocMax < ilocMin.

2.b) if gmax > outMax and (imin < imax):

If the absolute maximum of the profile is bigger than a threshold and the

absolute minimum lies further inside than the maximum, there might be a

brighter adjacent structure e.g. neighbouring calyx or somata. Between the

structures there should be a local minimum. The boundary of the calyx lies

then further inside of the minimum, between the local minimum and a local

maximum.

It searches for a local minimum ilocMin with ilocMin < imax and the next local

maximum ilocMax further inside with ilocMax < ilocMin.

3.) The boundary of the calyx lies approximately in the middle of the found

local minimum and maximum, i.e. go to px = 1

2
(ilocMin + ilocMax).

4.) To find the edge of the calyx, the local minimum of the derivative is

searched with locMinD > absDiff .

5.) If case 2a or 2b are not right, and the gradient in the profile is very
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low, try a thresholding adjustment with threshold = 1

2
(gmin + gmax). Then

go to local minimum of the profile.

6.) If the gradient is very strong:

6a) If gmax > outMin und imax < imin and the absolute value of the maxi-

mum of the derivative is larger than the one of the minimum (|dmax| > |dmin|):

go directly to the absolute maximum of the derivative.

6b) if the condition under 6a) is not fulfilled, go directly to the absolute

minimum of the derivative.
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Chapter 4

Results

The outcome of the described automatic segmentation process of confocal

image data depends on three components:

1. The affine registration of the particular grey value dataset to the Stan-

dard grey value dataset, which initializes the position of the model in

the grey value dataset.

2. The ability of the gray value profile model to suit for synapsin stained

confocal test datasets.

3. The ability of the model to adjust to arbitrary shapes, i.e. the com-

pleteness of the model

The affine registration to the Standard grey value dataset was performed

for 45 confocal 3D image stacks from synapsin stained bee brains. 18 of

the tested datasets are the basis of the honey bee Standard brain atlas.

For all datasets the affine registration worked, such that the transformation

parameters could be used for an approximate positioning of the model in the

region of the right median calyx in the confocal dataset.

The ability of the developed profile model to adapt to profiles of arbitrary

grey value datasets is tested by the segmentation of the mentioned confocal
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datasets from which the model was made (Leave-all-in segmentation test).

The segmentation process is therefore independent of the model. It depends

only on the profile model and the segmentation strategy.

The compactness of a statistical shape model is defined as the number of

shape modes, which it needs at least to describe the variability of a shape.

The completeness of a statistical shape model is its ability to adjust to arbi-

trary shapes (generalization ability).

To improve the completeness of the calyx model, I extended it with 27 shapes.

Then I performed the automatic segmentation of the 45 confocal datasets

with different sized models including 18, 34 and 45 training shapes. The

grey value datasets were the same used for the modeling process, but for

the performed segmentation test the respective shape was removed from the

model (Leave-one-out segmentation Test).

To evaluate the results of the automatic segmentations (Leave-all-in and

Leave-one-out segmentation tests), the manual segmentation is used as a

gold-standard. The following distance measures are used to compare the

automatic and manual segmentation result. They are either based on 2-sided

distances of surfaces or Volume overlaps of label fields.

4.1 Evaluation

The following surface distance measures are two-sided distance measures.

The distance d(x, S ′) between a point x on a surface S and the surface S’ is

the minimum over the normed distances of the point x of S and all points x’

in S’, where ‖.‖2 is the euclidean norm:

d(x, S ′) = min
︸ ︷︷ ︸

x′∈S′

‖x − x′‖2

|S| is the area of the surface S.
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4.1.1 Symmetric surface distance

Mean Distance

The mean distance of two surfaces is defined as the sum over the distances

of all points of the surface S to the surface S’ plus the sum over the distances

of all points of S’ to S, divided by the sum of the areas of the surfaces:

dmean(S, S ′) =
1

|S| + |S ′|

(∫

x∈S
d(x, S ′)dS +

∫

x′∈S′

d(x, S)dS

)

Root Mean Square Distance

The root mean square distance of two surfaces is the root of the normed sum

of the squared distances of all points of the surface S to the surface S’ and

all points of the surface S’ to S.

dRMS(S, S ′) =

√

1

|S| + |S ′|

(∫

x∈S
d(x, S ′)2dS +

∫

x∈S′

d(x, S)2dS

)

Maximum Distance

The maximum distance of two surfaces is defined as the maximum of the

maximal distance of the surface S’ to the points of the surface S and the

maximal distance of the surface S to the points of the surface S’.

dmax(S, S ′) = max



max
︸ ︷︷ ︸

x∈S

d(x, S ′), max
︸ ︷︷ ︸

x∈S′

d(x, S)





4.1.2 Volume overlap

To compare the overlap of the label fields of the automatic and manuel seg-

mentation, the symmetric volume difference of the labelfields is measured.
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The labelfield of the automatic segmentation is computed by sampling the

interior of the surface on a regular grid using scan conversion with the original

confocal dataset as grid.

voverlap(S, S ′) =
2|VS ∩ VS′|

|VS| + |VS′|)

4.2 Segmentation of training data

To evaluate the profile model I performed an automatic segmentation of 45

confocal datasets, which are included in the model (Leave-all-in segmenta-

tion). In Fig. 4.1 the four steps of the segmentation process is shown. The

outcome of the segmentations is very different for single datasets ( fig.4.3).

For 28 out of 45 (62%) the result is very good with respect to the mean sur-

face distance, which is ≤ 3.5µm and the volume overlap ≥ 92%. For another

10 datasets (20%) the result is good: surface distances < 4.4µm and volume

overlaps ≥ 90%. For the remaining datasets the result is worse, for 5 of them

the mean surface distance is bigger than 5µm and the volume overlap ranges

between 83% and 89%. For 2 datasets the profile model fails, for the other

ones the mean distances of the surfaces and label fields of the automatic and

manual segmentations are evaluated with the distance measures in section 1.

Often the maximal surface distances are very large ( 26.7 ± 11.8µm ). The

mean surface distance of the result and the gold standard is 3.5 ± 1.1µm.

The mean Volume overlap of the label fields of the manual and automatic

segmentation is 92%. The datasets, for which the profile model failed, do not

belong to the Standard data. However, excluding these outsiders, the seg-

mentation did not work better for the Standard data (mean surface distance

3.7µm compared to 3.4µm for the other datasets).
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Segmentation Tests

dmean [µm] dRMS [µm] dmax [µm] voverlap [%]
Leave-all-in (45) 3.5 ± 1.1 4.8 ± 1.7 26.7 ± 11.8 92.0 ± 2.4
Leave-one-out (17) 5.3 ± 1.5 6.9 ± 2.2 31.8 ± 13.3 87.8 ± 4.0
Leave-one-out (33) 4.4 ± 0.9 5.8 ± 1.3 29.4 ± 10.7 89.9 ± 2.3
Leave-one-out (44) 4.5 ± 1.0 6.1 ± 1.6 33.0 ± 12.0 89.7 ± 2.4
Leave-one-out (44) F 4.0 ± 1.0 5.9 ± 1.6 34.4 ± 12.3 90.9 ± 2.2

Shape model optimization Test
Leave-one-out (44) 3.0 ± 0.6 3.8 ± 0.8 17.7 ± 4.5 93.2 ± 0.02

Table 4.1: Average two-sided surface distances and volume overlaps of label
fields between manual and automatic segmentation of the Leave-all-in and
Leave-one-out segmentations with different sized models (number of training
shapes of the used model in brackets), in the last row of the segmentation
tests a free form deformation step allows the model to deform beyond its
shape captured by the training data. Below the result of the shape model
optimization test with a model containing 44 training shapes is displayed.

4.3 Extension of the calyx model

4.3.1 Compactness of the calyx model

Increasing the number of training shapes contained in the model enlarges

the number of shape modes, i.e. a larger model has more degrees of freedom.

The original statistical shape model of the calyx was made of 18 training

shapes, resulting in 17 shape modes. The enlarged model consists of 45

training shapes, i.e. 44 shape modes. I want to figure out how many of

the shape modes are at least needed to describe the shape of the training

data (compactness of the model). The smaller model needs 12 out of 17

modes to cover 95% of its total variance, i.e. 70% of the shape modes are

sufficient to describe the shape of the training data (Fig. 4.2). The extended

model needs 23 shapes out of 44 shape modes to describe the variance of the

training data, i.e. 52% of the total number of shape modes (Fig. 4.2). Thus

the model made of 45 training shapes has increased compactness compared

to the smaller model made of 18 shapes. This result means, that theoretical

not all 44 have to be included in the segmentation process, 23 shape modes
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should be sufficient.

4.3.2 Completeness of the calyx model

The ability of the model to describe arbitrary shapes (completeness) can

be tested by a shape optimization to its training shapes. Therefore each

of the 45 training shapes is removed separately from the model and then

the model consisting of the remaining 44 shapes is matched to the removed

shape by the computation of a rigid transformation and shape parameters

which minimize the symmetric root mean square distance between the model

and the particular surface. An arbitrary shape can be described by the

model with a mean surface distance of 3.0 ± 0.6µm and maximal surface

distance of 17.7 ± 4.5µm (see Tab. 4.1). This number is a lower bound for

the segmentation result using the model with 45 training shapes. Even with

the best suited profile model and displacement algorithm, this boundary

would not be exceeded.

4.4 Segmentation of arbitrary test data

In order to automatically segment arbitrary datasets, the model should be

able to adjust to arbitrary shapes and the profile model should be suitable

for profiles of the particular dataset. To test this generalization ability of

the model made of 45 training shapes and the profile model one shape of the

training shapes is removed and then the segmentation is performed with the

reduced model. The performed test is called Leave-one-out segmentation,

because the tested dataset is not contained in the model. The result depends

on both the profile model and the variability of the model. The profile model

fails in two datasets. They were excluded from the computation of the mean

surface distances in Tab. 4.1. Fig. 4.3 shows the surface distances of the

Leave-all-in and Leave-one-out segmentation for the remaining 43 datasets.

The mean surface distance of the Leave-one-out segmentation is 4.5±1.0µm
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compared to 3.5±1.1µm in the Leave-all-in segmentation. The mean volume

overlap of the Leave-one-out segmentation is about 90% and for the Leave-

all-in segmentation 92%, see Tab. 4.1. In the Leave-one-out segmentation

test incorrect segmentations occured at the boundary of the calyx to the

peduncle and the lip boundary. The segmentation of the boundary to the

peduncle was even incorrect in the Leave-all-in segmentations, where the lip-

boundary was correct (see example in Fig. 4.4). To improve the adjustment

of the model in the lip-regions I tested a free form deformation step at the

end of the decribed segmentation procedure. It turned out to improve the

overall segmentation result, with a mean surface distance to the manual

segmentaion of 4.0± 1.0µ m compared to 4.5± 1.0µ m without the free form

deformation step. However, the maximum surface distance is larger: 34.4 ±

12.3µm compared to 33.0 ± 12.0µm. The volume overlap of the label fields

improved to 90.9±2.2 compared to 89.7±2.4%. I compared the segmentation

results obtained with and without the free form deformation step. In regions,

where the profile model fits, e.g. the lip boundary and parts of the collar

region, the free form deformation improves the segmentation result. But in

parts of the calyx, e.g. near the peduncle or the neighbouring left calyx the

result gets worse (see example in Fig. 4.5).

I asked whether the segmentation result becomes better with a larger model.

Therefore I performed the Leave-one-out Test with 45 training data and mod-

els with 17, 33 and 44 training shapes. The result is displayed in Tab. 4.1.

The orignal model made of 18 training shapes reached a mean surface dis-

tance of manual and automatic segmentation of 5.2 ± 1.4µm. The extended

model with 34 shapes performs better (4.4±0.9µm). The largest model with

45 shapes can not perform better than the model with 34 shapes. Fig.4.6

shows the volume overlap between manual and automatic segmentations for

the segmentations with the smaller model (17 training shapes) and the en-

larged model (44 training shapes) of 45 confocal datasets. In most cases

the larger model performs better. For the Standard data the segmentations

obtained with the different models is very similar. It seems, that the seg-

mentation result for the Standard data is better than for the other datasets.
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The average surface distance of the Standard data compared with the averge

surface distance of the other datasets is similar, but the non Standard data

show higher variability in their segmentaion results.
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Figure 4.1: The four steps of the segmenation process for a dataset contained
in the model is shown. 1: initial positioning of the mean model in the confocal
dataset. 2: result of the affine registration of the confocal dataset to the Standard
reference dataset. 3: result of the rigid transformation of the model. 4: result of
the optimization of position and shape parameters of the model.
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Figure 4.2: Cumulative relative variance of the model containing 18 (a) and 45
(b) training shapes.

Figure 4.3: Comparison between surface distances from manuel and automatic
segmentation for a segmentation with the model containing the segmented dataset
(Leave-all-in Test: b) and not containing it (Leave-one-out Test: a). The results
for the segmentation of 43 confocal datasets with a shape model with 45 (a) and
44 (b) training shapes are displayed.
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Figure 4.4: In two depths of the image stack the manual (a) and the automatic segmen-
tations (b,c) and the difference image of (a) and (c) are shown. Incorrect autosegmented
regions are marked with a red arrow. The mean surface distance between manual and
Leave-one-out segmentation is 4.13µm and the volume overlap of the corresponding label
fields is 91.1%.
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Figure 4.5: In two depths of the image stack the manual (a) and automatic segmen-
tations (b,c) and the difference image of a,b and a,c are shown. Incorrect autosegmented
regions are marked with a red arrow.
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Figure 4.6: Comparison between the volume overlap of manual and automatic
segmentation for the Leave-one-out segmentation using different sized models con-
taining 44 (b) and 17 (c) training shapes. The results for the segmentation of
all tested 45 confocal datasets are displayed, the first 18 datasets belong to the
Standard data. The upper bound for the volume overlap which can be achieved
with the model containing 44 shapes is the result of the shape model optimization
to the datasets (a).
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Chapter 5

Discussion

In principle the profile model fits for the tested confocal datasets: 80% of the

datasets have surface distances ≤ 4.4µm and volume overlaps ≥ 90% in the

Leave-all-in segmentation test (Tab.4.1,Fig. 4.3) . The large maximal surface

distances indicate, that in some regions of the calyx, the profile model makes

mistakes.

The completeness of the extended model with 45 training shapes was tested

in a shape model optimization test (Leave-one-out test). With a perfect

fitting profile model this statistical shape model would be able to adjust to

arbitrary shapes with a mean surface distance of 3.0 ± 0.6µm and a root

mean square distance of 3.8±0.8µm, which would result in a volume overlap

of 93%. The root mean square distance in the Leave-all-in segmentation is

larger than the root mean square distance of the Leave-one-out test of the

computed shape model optimization (4.8µm versus 3.8µm). I expected it

to be smaller, because in the Leave-all-in segmentation test the segmented

shape is contained in the model. This fact demonstrates, that the profile

model should be improved.

The result of the Leave-one-out segmentations could be improved with a

larger model containg 33 training shapes compared to 17 training shapes.

A further extension could not produce better results. In some cases the
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result becomes even worse with the model containing 44 shapes compared to

the ones with a model containing 33 shapes, such that the mean maximal

surface distance and the RMS distance is bigger (see tab.4.1). The fact that

the results can get worse with more degrees of freedom of the model reveals

some weakness of the profile model.

It is very difficult to find a profile model, which suits the segmented confocal

datasets in different preparations. The staining of the confocal images is

varying, such that the intensity and contrast can be different. The segmen-

tation result for the Standard data was less variable than for the other data.

It was similar using the model with 17 shapes and the one with 44 shapes (

Fig. 4.6). There are different possible reasons for that effect. The first is the

fact, that these Standard data sets were included in the computation of the

average Standard grey value dataset, which I used as the reference dataset

for the affine registration of the individual grey value datasets for the ini-

tialization of the model. I have not measured, if the outcome of the affine

registration was significantly better than for the other datasets. But since

in the performed segmentations the model boundary did not move far away

from the calyx boudary, I suppose that the effect of different initialization

results would be small. The second reason could be, that the staining of the

different preparations of the bee Standard dataset is more reliable than for

the remaining datasets. The third possible reason could be, that the shape of

the calyces of the original model with 18 training shapes are very similar to

each other and differ very much from the shape of the calyces which I added

to the model.

In some segmentations, the statistical shape model was not able to adjust

to the individual shape, especially at the borders of parts of the lip and

the collar. Except for some regions e.g. near the peduncle, where it is

difficult to detect the boundary of the calyx during profile analysis, a free

form deformation step at the end of the segmentation process could improve

the result (Fig. 4.5). The mean surface distance were 4.0µm compared to

4.5µm without the free form deformation step (volume overlap 91% and 90%.

The result might be even better, if it could be avoided that a deformation
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occurs in regions where the profile does not contain enough information.

That could be done by a region-specific free form deformation approach.
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Chapter 6

Conclusions and Outlook

In this work I used a heuristic approach to model grey value profiles of very

divergent datasets. I tried to model varying profiles in the analysed grey

value datasets. It turned out to be difficult to consider all found profiles in a

displacement algorithm. Therefore I would suggest to model the features of

the grey value profiles via a statistical analysis e.g. clustering method. The

displacement algorithm could then choose the suitable displacement by a kind

of comparison of the features of the actual profile and the modeled profiles.

I think the variability of the extended statistical shape model of the calyx

would be sufficient to use it for the automatic segmention of confocal image

data. A free form deformation step can be used to improve its adaptation to

individual calyx shapes in highly variable regions e.g. the lip.

The model-based segmentation depends on the chosen staining technique.

Even with a given staining method, here immuno-stained, the segmented

confocal image datasets vary in their grey values. This results in variable

outcome of the automatic segmentation (Fig. 4.6).

Despite of the described difficulties arising with confocal image data, the

described model-based segmentation approach has some advantages. It uses

a-priori information about the segmented shape and can therefore compen-

sate for the different background knowledge of a particular brain structure
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of the human segmenters. Even with a slightly incomplete segmentation re-

sult less time would be needed for the correction than with semi-automatic

segmentation.
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