
Freie Universität Berlin
Fachbereich für Mathematik und Informatik
Institut für Mathematik

Diplomarbeit

Generation of constrained
high-quality multi-material

tetrahedral meshes

Max Kahnt
Matrikel-Nr. 4105950

30. April 2012

Betreut durch

Prof. Dr. Konrad Polthier

Eidesstattliche Erklärung Hiermit erkläre ich an Eides statt, dass ich die vorliegende
Arbeit selbstständig und ohne fremde Hilfe verfasst und keine anderen als die angegebe-
nen Hilfsmittel verwendet habe. Die Arbeit wurde in gleicher oder ähnlicher Form
keiner anderen Prüfungsbehörde vorgelegt.

Berlin, den 30. April 2012

Contents

1 Motivation 1

1.1 Introduction . 1
1.2 Challenges in tetrahedral mesh generation 1
1.3 Structure of the thesis . 2

2 Related work 5

2.1 Tetrahedral mesh generation . 5
2.2 General definitions . 9

2.2.1 Decomposition of space . 10
2.2.2 Voronoi diagrams . 11
2.2.3 Delaunay triangulations . 13
2.2.4 Delaunay triangulation properties 15

2.3 Oracle-based volume meshing . 16
2.3.1 Domain description and approximation 16
2.3.2 Generic Delaunay refinement scheme 17
2.3.3 Oracle-based algorithm . 20
2.3.4 Output guarantees and termination 21
2.3.5 Limitations of the original oracle-based approach 24

3 Preserving segments in a Delaunay triangulation 27

3.1 Preserving isolated segments . 27
3.1.1 Algorithm . 29
3.1.2 Output guarantees and termination 30

3.2 Preparing arbitrary segments . 41
3.2.1 Algorithm . 43
3.2.2 Termination . 44

3.3 Extended mesh generation algorithm 46
3.3.1 Relaxing previous assumptions 47

3.3.2 Termination and Output guarantees 51
3.3.3 Discussion . 52

4 Implementation and Applications 55

4.1 Implementation . 55
4.2 Application example . 57
4.3 Conclusion . 59

5 Discussion and Conclusion 61

5.1 Conclusion . 61
5.2 Discussion . 62

1 Motivation

1.1 Introduction

Real-world problems that can be described by partial differential equations (PDEs) are
generally not solved analytically. Either they are too complex or no mathematical the-
ory exists that explicitly constructs an appropriate solution for arbitrary PDE boundary
conditions. The space for which the PDE is to be solved is called the domain as from
now on. It typically is bounded and can be embedded in 3-dimensional Euclidean space.
Finite element methods are a common tool to approximate the solution of such PDEs
numerically.
The finite element method requires the discretisation of the space of interest into so-
called finite elements in order to perform the necessary computations piecewise. The
type of finite elements chosen depends on the application. Polyhedral cells allow to lin-
early approximate the boundary and offer a discretisation that is easy to handle. Along
with decompositions into hexahedral elements, tetrahedral meshes form the majority
of unstructured meshes (see Owen (1998)). Because any polyhedron can be subdi-
vided into tetrahedra, such meshes are the most general. Although certain applications
might favor other polyhedra or even mixed meshes, this study is focussing on tetrahedral
meshes.

1.2 Challenges in tetrahedral mesh generation

When tetrahedral meshes are used to compute solutions for PDEs by finite element anal-
ysis, the realization of the mesh plays an important role in the performance of the finite
element computation. Ideally the mesh would be directly optimized w.r.t. the respective
problem and the computational outcome. Such general optimization strategies are hard
to obtain because the parameter space is huge. Additionally the actual problem might

1

not be known precisely by the time the mesh is generated. Instead properties of the fi-
nite element methods are transferred to simpler measures on the meshes, e.g. count, size
and shape of the elements. From these quantities, the accuracy of the preceding finite
element computation can be estimated and its error can be bounded. Unfortunately it
is not always possible to produce meshes that are optimal w.r.t. all of these quantities
because they are usually not mutually independent and contradict one another. Hence
the challenge lies in trading off as little as possible.

A mesh should approximate the boundary of the domain well, e.g. the Hausdorff dis-
tance from domain boundary to the mesh boundary should be kept low. One way to
achieve this is to use small elements. Note that boundaries do not always have to be
exterior boundaries. For domains exhibiting several distinct regions, the interior bound-
aries have to be approximated as well.
Using smaller elements necessarily increases their count for a fixed domain. Because
computations are performed element-wise in the finite element method, its complexity
is usually highly related to the number of elements of the mesh.
Further the shape of the tetrahedra plays a crucial role in the outcome of finite element
computations. A tetrahedron exhibits several dihedral angles, which is the angle be-
tween two of its triangular faces, and they are good indicator of the element’s quality in
terms of shape.

In summary, the mesh generation method does not necessarily have to know about the
underlying problem. The demands of the discretisation can be formulated in sizing and
shape criteria. A tetrahedral mesh generator should aim at creating a mesh that satisfies
these needs while producing as few elements as possible.

This thesis presents a method to generate tetrahedral meshes with provable quality prop-
erties. It avoids generating unnecessary elements while providing a good geometric
approximation due to a criteria-driven refinement scheme.

1.3 Structure of the thesis

We begin with an examination of existing approaches in tetrahedral grid generation.
Special attention is given to their applicability and performance in specific multi-material
settings. Recently, a method has been proposed that simplifies straightforward treatment
of such setups but does not perform optimal w.r.t. the number of elements inserted to

2

achieve high geometric accuracy. An investigation of the mechanisms used will lead to
an approach to extend the method.

In chapter 3 our algorithmic extension is introduced conceptually. A proof that empha-
sises the validity of the approach is given. The strategy is gradually refined and extended
to finally yield a coherent upgrading of the original method. The guaranteed properties
of the extension are discussed as well as its restrictions.

In chapter 4 the algorithmic development framework is presented and the actual im-
plementation is described. A current research problem in orthopedic surgery is ad-
dressed.

Finally the proposed approach is summarised. It is investigated to what extent it solves
the original problem. A comparison with other existing approaches and implementa-
tions shows the relative advantages and disadvantages and highlights further topics of
research.

3

2 Related work

This chapter explains how to evaluate the quality of tetrahedral meshes and introduces
current methods to generate them. Particular attention is paid to the practical usability,
which emphasises the advantages of a recent approach. An introduction to the concepts
used in this approach leads to a detailed review and investigation of the method.

2.1 Tetrahedral mesh generation

Good linear finite element. Shewchuk (2002) extensively discusses how to evaluate
the fitness of a tetrahedral mesh for finite element computations. A brief summary is
given:
Creating smaller tetrahedra allows to decrease the interpolation error. Element size
can be adjusted locally where the function changes quickly over the domain and in the
vicinity of important geometric features. But generating a lot of unnecessarily small
elements slows down the PDE approximation process and should be avoided. Finally,
large dihedral angles compromise the interpolation error of the gradient function. This
effect is only local. As Shewchuk (2002) shows, the minimal dihedral angle in the
overall mesh highly relates to the condition of the finite element’s stiffness matrix. A
low minimal dihedral angle causes a high condition number which again slows down
the convergence speed of the finite element computations significantly or even makes
the results unreliable. In other words, the higher the minimal dihedral angle, the lower
the discretisation error. By this result, shape has a global influence on the computational
outcome.

A major difficulty for current mes generation methods results from the choice of repre-
sentation of the input, i.e. the domain to be discretised. Its description might be complex
or even inconsistent. For instance in case of multi-material domains, the regions are of-
ten defined separately, casually as different data types. Hence, below we will investigate

5

tetrahedral mesh generation methods w.r.t. their demands on the input representation,
especially for multi-material settings. The precomputations necessary in such setups
will also be taken into account. To evaluate the resulting meshes, the quality properties
of interest are the geometric approximation accuracy, the overall element count, and the
guaranteed size and shape of the tetrahedra.

Explicit boundary representation. Many methods require the input domain to be
given as a single consistent boundary representation. We begin with an investigation of
the effort to derive such a representation in cases where it is not available directly, e.g.
applications that entail investigating the interaction of objects that are not combined
originally. Objects that may change their relative position significantly imply such a
setting. Creating a consistent boundary representation of the fusion requires the explicit
evaluation of the configuration of the separate domains. Difficulties arise where objects
overlap and a decision has to be made in order to assign the overlap region to one domain
or the other (or none). These configurations can be encoded in Boolean operations
preserving the material assignments.

To perform Boolean operations on a set of boundaries, their intersections have to be
computed. Further their intrinsic connectivity has to be adjusted eventually and the
parts to discard have to be identified. While the boundary is maintained very accurately,
this approach itself is subject to robustness issues for degenerate cases.
Performing Boolean operations on voxel data is easy and robust, because the Boolean
prescriptions can simply be evaluated cell-wise. Then a surface has to be derived, e.g.
using Hege et al. (1997). A conversion into voxel space might cause an essential loss of
information. Curved 1-dimensional features cannot be represented smoothly with this
approach.
Of course Boolean operations can also be performed with other geometric models, e.g.
other B-reps and CSG. Still, deriving a single consistent surface mesh requires con-
verting the separate domains to suitable representations and another conversion of the
Boolean result.

Different approaches exists to generate tetrahedral meshes and a common classification
outlines two important approaches: Advancing front methods and Delaunay refinement
strategies, differing from each other in the way the mesh vertices are chosen. Variational
schemes usually assume the presence of an initial mesh that is subject to optimization

6

(see Alliez et al. (2005)). Such approaches are not considered as original mesh gener-
ators for that reason. Despite the classification of the methods, hybrid methods exits
of course, where the advantages of both approaches (or those not mentioned here) are
attempted to be exploited.

Advancing front methods. The advancing front technique starts with a given sur-
face mesh. The surface is promoted into the interior, generating layers of tetrahedra.
The result conforms to the boundary. This can be advantageous or disadvantageous, de-
pending on whether the boundary triangulation needs to be preserved exactly for some
reason or has to be derived for mesh generation specifically. Advancing front methods
have difficulties in successfully closing up their fronts with provably quality for arbitrary
surfaces. A basic method is described by Löhner and Parikh (1988), advanced choice of
locations to insert points employ elaborate strategies, e.g. Radovitzky and Ortiz (2000),
Yang et al. (2005).
Schöberl (1997) present an advancing front approach that derives its initial front (the
boundary) from a given CSG representation. Intersection tests are performed recursively
in order to determine points at possible singularities and assure a good approximation
of the bounding surface.

Delaunay refinement strategies. Based on the mathematical concept of a Delau-
nay triangulation, these methods aim at inserting vertices at the right locations in or-
der to refine an initial coarse mesh such that it meets the constraints on the elements’
shape and size. Based on a two-dimensional method by Chew (1989) many strategies
have been developed and properties of the Delaunay triangulation have been exploited
to obtain provable mesh quality (Ruppert (1995)). The approach has been adapted to
three-dimensional mesh generation.
Shewchuk (2002) denotes that the radius-edge ratio is the measure naturally improved
with Ruppert-like Delaunay refinement strategies. Refining tetrahedra with small radius-
edge ratio removes most types of tetrahedra that bear small angles, but those that are
called slivers. Several approaches aim at removing them from meshes where the radius-
edge ratio has been optimized beforehand (see Edelsbrunner et al. (2000), Cheng et al.
(2000)).

Because most of the following methods require them, we introduce two types of bound-
ary representations: A piecewise linear complex (PLC), which was introduced by Miller

7

et al. (1996), is a general boundary description consisting of vertices, together with a
collection of segments and facets. A piecwise smooth complex (PSC) allows the surface
patches to be smooth, as well as the curves where surface patches are stiched together.

Si and Gärtner (2005) has its focus on generating tetrahedra for a given PLC with the
least number of points added. The concept of a constrained Delaunay triangulation is
used to determine the location where to insert points in order to recover the boundary of
the PLC accurately. An implementation is publicly available in the realisation in Tetgen
(Si (2006)). Quality issues are not dealt with in the original algorithm, but an extension
based on Shewchuk (1998) is implemented that guarantees termination if no angle less
than 90◦is present in the input PLC. Si (2006) claims that their algorithm terminates if
no input angle less than 60◦and a radius-edge ratio below 2 can be guaranteed.

Cheng et al. (2004) address the issue of handling small input angles. Again the input
is a PLC. Their approach terminates with arbitrary angles and they show that resulting
tetrahedra not respecting the radius-edge length criterion are caused by (and lie close
to) small angles not allowing for an improvement with their method.

Rineau and Yvinec (2008) assume a more general input, namely a PSC. Their algorithm
suffers from a severe angle restriction though, presuming that no point exhibits smooth
patches meeting at an angle less than π

2 .
Cheng et al. (2010) propose a method to mesh PSCs that has no constraints on the input
angles. While they focus on the theoretical guarantees and put implementational as-
pects aside, Dey and Levine (2009) trades off theoretical guarantees for implementable
quality. Both approaches require the explicit representation of the PSC.

Most of the above approaches, i.e. advancing front and Delaunay methods, can deal
with multi-material setups (although they are rarely mentioned in the articles cited). The
methods that leave the boundaries unchanged allow for a material-wise application. The
other methods may change the boundary but do not restrict the boundaries to separate
interior from exterior. Hence internal boundaries can also be treated and an assignment
of materials according to the tetrahedra barycenters can be accomplished on all resulting
meshes.

An abstract domain: The oracle. While the above methods rely on a certain ex-
plicit input representation, Oudot et al. (2005) propose a Delaunay refinement algo-

8

rithm, that handles the input more abstractly through a so-called oracle. They require
the oracle to reliably respond to only two types of simple queries:

1. for a point p determine the material it belongs to and
2. for a line segment e compute one intersection of e with the boundary, if any.

The demands in item 2 can be reduced to an inquiry of the existence of an intersection,
because the computation of the point can always be performed by segment subdivision
and the use of item 1 up to arbitrary decimal precision.
An algorithm relying on this black-boxing idea, can access a consistent representation
of the domain. The point queries of item 1 have to be handled such that they respect the
Boolean configuration of the composed domain and can be evaluated separately. None
of the problems arise that are involved in computing a single consistent boundary rep-
resentation as long as the point queries can be handled robustly for each subdomain.

For setups that require the fusion of several different domains, the oracle approach is
advantageous in comparison to those that need rely on a boundary representation. The
oracle can well be understood as an inifitesimal version of a voxel data approach, but still
differs in the fact that evaluation at a point is only triggered on concrete query. However,
it also shares a disadvantage with the voxel data representation: The boundaries are not
known explicitly. Point insertion is guided by the refinement rules only. Oudot et al.
(2005) employ the second query type of the oracle (item 2) in order to approximate
the boundary well. However, they exclude boundaries exhibiting non-smoothness from
the algorithm and their proofs consequently. 1-dimensional features are unlikely to
be accurately recovered in the resulting grid correspondingly, a desirable property still
missing and motivating this thesis.

2.2 General definitions

This section introduces the mathematical concepts, the Delaunay mesh generation pro-
cess is based on. As a starting point, a specific structure to separate decompositions of
space with nice intersection properties from the arbitrary ones will be introduced. Fur-
ther there is a natural way of assigning regions to a set of points in space, which yields
an appropriate decomposition of space and, if the points are chosen appropriately, of

9

the domain of interest. By the concept of duality, an associated decomposition is de-
rived which can be proven to yield a tetrahedral mesh for negligible assumptions. The
statements in this chapter are given without proofs.

2.2.1 Decomposition of space

The geometric structures that will be observed in this chapter can be generalized with
a simple mathematical concept. We stick to the notion of a complex, i.e. a system
of hierarchically ordered elements with certain intersection properties, decomposing a
topological space. The hierarchy is understood w.r.t. the elements dimension. As we
will deal with triangulations in R3, it suffices in this context to introduce the complexes
mostly according to Edelsbrunner and Harer (2010).

Definition 2.2.1.1 (Abstract simplicial complex). An abstract simplicial complex is a

finite collection of sets A such that α ∈ A, β ⊂ α implies β ∈ A and the dimension of the

complex is the maximum dimension of any of its simplices.

Remark 2.2.1.1. The sets in A are its simplices, the dimension of a simplex is dimα =

cardα − 1.

Theorem 2.2.1.1 (Geometric realization of an abstract simplicial complex). Every ab-

stract simplicial complex of dimension d has a geometric realization in R2d+1.

Remark 2.2.1.2. As our final meshes will consist of simplices of dimension 3, we can
assure there is a geometric realization in R7. This is not very helpful w.r.t. the discretisa-
tion of a 3D-object. Fortunately we don’t have to go this way round (define the complex
first, then embed it into Euclidean space) but derive a 3-complex embedded in R3 by
construction.

Definition 2.2.1.2 (Simplex). A k-simplex is the convex hull of k+1 affinely independent

points in Rd. Its dimension is k. A face of a simplex σ is a subset τ and we write τ ≤ σ.

We call τ a proper subface of σ if τ (σ.

We use special names for the first few dimensions, vertex for 0-simplex, edge for 1-
simplex, triangle for 2-simplex, and tetrahedron for 3-simplex.

Definition 2.2.1.3 (Simplicial complex). A simplicial complex is a finite collection of

simplices K such that σ ∈ K and τ ≤ σ implies τ ∈ K, and σ,σ0 ∈ K implies σ ∩ σ0 is

either empty or a face of both.

10

In order to discretise the domain using tetrahedra, we aim at finding or generating a
simplicial complex. However, there is a generalization of these complexes that allows
for a little more generic decomposition and which we will start off from.

Definition 2.2.1.4 (Polytope). A polytope is an intersection of a finite number of half-

spaces. The dimension of the polytope is the smallest dimension of a proper affine

subspace one can restrict the original space to without affecting the polytope.

Remark 2.2.1.3. There might exist infinitely many such descriptions. However the min-
imal set of half-spaces is unique.
We are restricting to convex polytopes. Up to dimension three, we call a bounded poly-
tope vertex, edge, polygon, or polyhedron respectively. A face of a polytope is an in-
tersection of the polytope with a halfspace such that none of the interior points of the
polytope lie on the boundary of the halfspace (actually it suffices to look at the intersec-
tions with hyperplanes to obtain the proper faces).

Definition 2.2.1.5 (Polytopal complex). A polytopal complex K is a set of polytopes

such that every face of a polytope in K is also in K and the intersection of any two

polytopes in K is a face of both. The polytopes in K are called its cells.

Evidently simplicial complexes are polytopal complexes, and apparently, the converse
is not true for all polytopal complexes.

2.2.2 Voronoi diagrams

Generating complexes is quite costly if all cells have to be constructed manually, es-
pecially because one has to take care of not contradicting its properties. But there is
a useful concept in computational geometry that allows to access the advantages of
complexes without generating the cells explicitly. Instead we start with a simple set of
points (the vertices) in some metric space (V, d) and have a look at the Voronoi decom-
position.

Definition 2.2.2.1 (Voronoi region). Let P be a finite set of points in (V, d). For p ∈ P,

we define the Voronoi region of p as

V(p) := {x | ∀q ∈ P : d(x, p) ≤ d(x, q)}

11

Remark 2.2.2.1 (Voronoi faces). For Q ⊂ P any non-empty

V(Q) :=
⋂
q∈Q

V(q)

is called a face and for two faces α = V(Q1), β = V(Q2)

α ⊂ β⇐⇒ Q1 ⊃ Q2.

Definition 2.2.2.2 (Voronoi diagram). The Voronoi diagram is defined as

Vor (P) :=
⋃
Q⊂P

V(Q)

P1 P2

P3

P4

P5
P6

P7

P8

Figure 2.1: Voronoi diagram in the
plane. Voronoi edges and Voronoi
facets (and Voronoi cells in 3-
dimensional space) might be bounded
or unbounded. All are the intersection
of finite half spaces. The cell a point
Pi is contained in is the set of points in
space closest to it.

P1 P2

P3

P4

P5
P6

P7

P8

Figure 2.2: The dual Delaunay triangu-
lation. Triangulates the convex hull of
the point set. In 2-dimensional space
each Voronoi facet has a dual Delaunay
edge. The do not necessarily intersect.
The same holds in higher dimensions.

Lemma 2.2.2.1 (Face convexity in Rd). All faces of Vor (P) are convex.

Lemma 2.2.2.2 (Voronoi diagram is polytopal complex).

12

Definition 2.2.2.3 (General position). Let P be a finite point set in Rd. We say P is in

general position, iff no d + 2 points lie on a common (d − 1)-sphere.

Note: We assume P is in R3 and in general position as from now.

Remark 2.2.2.2. Let f ∈ Vor (P) be an i-dimensional face of the Voronoi complex of P.
Then for f holds:

∃!Q ⊂ P, |Q| = i :
⋂
p∈Q

V(p) = V(Q) = f

For i = 1, . . . , 4 we call f resp. a Voronoi cell, Voronoi facet, Voronoi edge and Voronoi

vertex. i ≥ 5 is disqualified by the imposed general position condition on the vertices of
P.
A face f ∈ Vor (P) might be bounded or unbounded in case it is a Voronoi cell, facet or
edge; see fig. 2.1.

Voronoi diagrams are partitions of the space that are used in many different kinds of
application. However we are mainly interested in its geometric dual.

2.2.3 Delaunay triangulations

Definition 2.2.3.1 (Delaunay complex). Let P as before. The vertices of Del(P) are

precisely the points of P and {pi}1≤i≤4 points are connected by a hyperedge iff there is

a sphere centered at point x which passes through the points p1, . . . , pi and does not

contain any point p ∈ P \ {pi}1≤i≤4.

Lemma 2.2.3.1. The Delaunay complex of P is a simplicial complex.

Remark 2.2.3.1 (Delaunay complex is Delaunay triangulation). In R3 the Delaunay
faces are called vertices, edges, triangles and tetrahedra respectively. Due to the general
position of the points those can be guaranteed to be geometrically non-degenerate:

- there can be no 4-hyperedge with all 4 vertices on the boundary of a circle without
simultaneously having a sphere passing through these points and any other point
of the point set (assumed |P| > 4 and not all points are contained in some affine
2-dimensional subspace)

- neither can there be a 3-hyperedge with all 3 vertices on a straight line.

13

Vor (P) and Del(P) are unique by definition. For P in general position Del(P) is a
triangulation of P as described above, also being unique and by that means from now
on also called the Delaunay triangulation.

Lemma 2.2.3.2. The Delaunay complex Del(P) is the dual of the corresponding Voronoi

complex Vor (P) and vice versa.

Hence, for points in general position there is a one-to-one-relation of elements in the
Delaunay complex and those in the Voronoi complex (see fig. 2.2). By this means we
introduce another convention. Delaunay elements are simply identified by the points
of P they are incident to, i.e. pqr is a Delaunay triangle. Correspondingly Voronoi
elements are identified by their dual, i.e. Vpqr is the Voronoi edge that is dual to the
Delaunay triangle pqr.

Definition 2.2.3.2 (Restricted Delaunay triangulation, adapted but according to Dey
(2007), Definition 1.8). Let P be a set of points and S ⊂ R3. The restricted Delaunay
triangulation of P with respect to S is

Del|S (P) =
⋃
Q⊂P

V(Q) ∩ S , ∅

Remark 2.2.3.2. We slightly depart from this general definition as proposed in Boisson-
nat and Oudot (2005). Let ∂O be a surface. Then

Del|∂O(P) = {p1 p2 p3 ∈ Del(P) | Vp1 p2 p3 ∩ S , ∅}

contains only those triangles whose dual intersects the surface and their subfaces. We
neglect other lower-dimensional faces and assume that no higher-dimensional element
is in the restricted triangulation.
We proceed analogously for volumes O ⊂ R3. Then

Del|O(P) = {p1 p2 p3 p4 ∈ Del(P) | Vp1 p2 p3 p4 ∩ O , ∅}

contains only those tetrahedra (and their subfaces) whose circumcenter is within O. The
restricted Delaunay triangulations still are subcomplexes of the Delaunay triangulation.

Definition 2.2.3.3 (Conforming Delaunay triangulation). Let C be a simplicial complex.

14

P is said to conform to C, iff

∀Q ∈ C ∃R ⊂ Del(P) : Q =
⋃
r∈R

r

in words that each simplex of C occurs (possibly subdivided) also in the Delaunay tri-

angulation of P. Del(P) is then said to be a conforming Delaunay triangulation of (or

respecting) C.

2.2.4 Delaunay triangulation properties

Empty-sphere criterion. By definition of the Delaunay triangulation, for each face f

there is at least one sphere passing through the vertices of f not containing any other
point of the point set. Furthermore the inverse also holds, i.e. if there is sphere passing
through p1, . . . , pi not containing any other point of the point set, then there is a Delau-
nay face p1 . . . pi. Such a ball will be called a Delaunay ball from now on. This property
can be excessively exploited, e.g. when incrementally building a Delaunay triangulation
by successively inserting points.

Definition 2.2.4.1 (Circumsphere, -center, -radius). For a point set Q a circumsphere S

is a sphere passing through all points of Q. It might not be unique in case |Q| < 4 or

not existent if |Q| > 4 in R3. The circumcenter is the center and the circumradius is the

radius of such a sphere.

For |Q‖ = 2 the smallest circumsphere is called the diametral sphere or diametral ball.

Encroached tetrahedra. As the Delaunay ball of a tetrahedron is unique (it is exactly
the circumsphere), we can directly state whether the insertion of an additional point
q < P affects a tetrahedron of Del(P). A tetrahedron t in Del(P) with circumcenter c and
circumradius r is said to be encroached by a point q iff d(c, q) < r. If t is encroached
by q then t < Del(P ∪ {q}). With this notion the work pioneered by Bowyer (1981) and
Watson (1981) can be used to
Incrementally build the Delaunay triangulation of a finite point set P, |P| = n. Let
Pi = {p1, . . . , pi}. Start with P4. Assuming these points are not all contained in a hyper-
plane, Del(P4) contains the corresponding tetrahedron and all its faces. For algorithmic
reasons one also inserts virtual, infinite Delaunay elements, i.e. a point at infinity and
edges, triangles and tetrahedra connecting the faces forming the respective convex hull

15

of P to this vertex. Now for a new point p5 we identify all encroached tetrahedra, re-
move them from the triangulation, leaving a star-shaped cavity at p5. It can be shown
that the new faces to be formed can be created by simply connecting all cavity-enclosing
facets to p5, yielding Del(P5). Repeat analogously with the other points up to pn and
obviously Del(Pn) = Del(P).

The existence and type of cavity also shows that such point insertions are local only,
making it a valuable tool for our mesh generation algorithm later on.

Encroached triangle. A triangle t = nop may have several Delaunay balls. Assume
each triangle has an associated Delaunay ball B(c, r). A triangle is said to be encroached
by q < P iff q ∈ B(c, r). It is not true that an encroached triangle will not occur in the
extended point set P ∪ {q}, but iff both tetrahedra t1, t2 incident to t are encroached by
q.

2.3 Oracle-based volume meshing

This section will introduce further definitions that are relevant in the understanding of
the work of Oudot et al. (2005). The generic design of similar algorithms is explained
as well as the realization of the authors. Oudot et al. (2005) formulate their strategy
as an abstract set of rules. Based on these, the validity of the approach is proved and
some guarantees on the output are provided. Finally, the restrictions of the algorithm
are discussed to emphasise the subsequent efforts.

2.3.1 Domain description and approximation

Definition 2.3.1.1 (Labeling function, material). Let z : R3 → {0, . . . , n}, n ∈ N. Then

we define

Oi := {x ∈ R3 | z(x) = i}

If Oi bounded for all i > 0 then we call z a labeling function, Oi the i − th material and

∂Oi its boundary.

Remark 2.3.1.1. The above definition resembles the use of a labeling function in Pons
et al. (2007). When the term ∂O occurs in the remainder of this thesis, then we are

16

either in the context of having a labeling function defining only a single material or
∂O =

⋃
i>0 ∂Oi.

Definition 2.3.1.2 (Medial axis). The medial axis of ∂O, denoted by M, is the topo-

logical closure of the set of points of R3 that have more than one nearest neighbour in

∂O.

Definition 2.3.1.3 (Distance to the medial axis). For a point x ∈ R3, we call distance to
the medial axis dM(x) at x the Euclidean distance from x to the medial axis of ∂O.

Remark 2.3.1.2. What we call distance to the medial axis is sometimes also called the
local feature size. We avoid this notion whatsoever, because in Boissonnat and Oudot
(2005) it is used in a slightly different meaning.

Definition 2.3.1.4 (Reach). We define the reach of ∂O the minimal distance to the medial

axis, i.e.

reach(∂O) = inf{dM(x) | x ∈ ∂O}

Definition 2.3.1.5 (ε-sample). A finite point set P is an ε-sample of ∂O if ∀x ∈ ∂O :
P ∩ B(x, εdM(x)) , ∅.

Definition 2.3.1.6 (Loose ε-sample). A finite point set P is a loose ε-sample of ∂O if the

two following conditions are verified:

1. ∀x ∈ ∂O ∩ Vor E(P) : P ∩ B(x, εdM(x)) , ∅
2. Del|∂O(P) has vertices on all the connected components of ∂O

where Vor E(P) denotes the set of all edges of Vor (P).

Definition 2.3.1.7 (Sparse sample). Given a positive constant κ and a positive 1-Lipschitz

function φ, a point sample P of ∂O is said to be (κ, φ)-sparse if ∀x ∈ P : d (x, P \ {x}) ≥
κ φ.

Remark 2.3.1.3. An ε-sample is said to be κ-sparse if ∀x ∈ P : d (x, P \ {x}) ≥ κ ε dM(x).

2.3.2 Generic Delaunay refinement scheme

Domain. Let
z : R3 → {0, . . . , n}, n ∈ N

17

be a labeling function where z−1(0) is the exterior and z−1(i) represents a distinct material
for each i > 0. z describes the multi-material domain that is to be discretised.

Quality criteria. Let further

a1, . . . , ak : R3 × R3 × R3 → R, b1, . . . , bl : R3 × R3 × R3 × R3 → R

be size and shape criteria for triangles (a j) resp. tetrahedra (b j).
For logical reasons the shape rating should generally be invariant under similarity trans-
formations whilst the sizing certainly depends on the scale but should still be invariant
to rigid transformations. Please note that nevertheless one might want to apply different
criteria depending on the location in space.

Initial point set. Let P0 ⊂ ∂O be a set of points, such that the restricted Delaunay
triangulation has vertices on all connected components of ∂O.

Mesh criteria

• Facet shape and size ai

• Tetra. shape and size bi

Mesh generation

• Point set
• Delaunay triangulation
• List of bad elements
• Refine until done

Oracle

• Abstract domain description

element bad?

pt. queries pt. and line queries

Figure 2.3: Interaction of mesh generation method, quality criteria and the abstract do-
main representation. Point queries are used to obtain the corresponding material. Line
queries are used to determine the location of points to insert in order to approximate the
boundary fo the domain.

18

Algorithm Starting off with an initial point set, the key idea is to adjust its Delau-
nay triangulation to fit the user-given set of criteria by successive insertion of points.
The criteria and the strategy how to achieve their compliance is put into a set of rules
operating on elements of the Delaunay triangulation or restricted Delaunay subsets.

Rineau and Yvinec (2007) propose a software design to implement such strategies and
claim that their approach fits all known Delaunay refinement algorithms. The whole
meshing procedure is tied up into so-called meshing levels, each dealing with the shape
and quality criteria of Delaunay cells of a single dimension only. It is assured that
point insertions triggered by higher dimensional cells do not contradict existing lower
dimensional Delaunay elements by the notion of encroachment.

We present a Generic Delaunay refinement algorithm (p. 19). A cell (triangle t or
tetrahedron u) of the Delaunay triangulation is called bad, if a j(t) > 0 resp. b j(u) > 0
for some j. Please note that not all computations have to be done repeatedly from
scratch, e.g. the changes of Del(P) can be computed incrementally and also lists of
bad triangles and tetrahedra which get updated progressively allow to reduce retrieval
computations.

Generic Delaunay refinement algorithm

1. Initialize P = P0.
2. Compute Del(P) and if necessary restricted versions.
3. If there is a bad surface triangle t:

a) Choose p, e.g. p ∈ {Vt ∩ Del(P)|∂O}

b) Update P = P ∪ {p}
c) Return to item 2

4. If there is bad tetrahedron u:

a) Let q be the circumcenter of u.
b) If q encroaches on some surface triangle t goto item 3a
c) Update P = P ∪ {q}
d) Return to item 2

5. Done.

Result From the structure of the algorithm it is clear that it cares first for the satisfac-
tion of the triangle criteria (a j) followed by those for the tetrahedra (b j). The algorithm

19

terminates when all criteria are fulfilled, therefore the result can be guaranteed to satisfy
all of them. Hence, the crucial point is to show the termination of the algorithm.

During the course of the algorithm that is to be presented, an iterative and greedy strat-
egy leads to successive point insertions in P. After each insertion, the overall Delaunay
triangulation Del(P) as well as its restricted associate Del|∂O(P) is updated accordingly.
Elements of Del|∂O(P) are called facets. Each facet f has by definition at least one in-
tersection of its (Voronoi) dual with ∂O and by property of this Voronoi element, all
these intersection points are equally far from the vertices of f (the distance is different
for distinct intersection points though). For each facet f an arbitrary intersection point
is chosen that serves as the center of a so-called surface Delaunay ball passing through
the vertices of f .

2.3.3 Oracle-based algorithm

Oudot et al. (2005) present a three-dimensional meshing algorithm that derives from the
surface meshing method of Boissonnat and Oudot (2005) and extends the results therein
to the volumetric mesh generation. Rule Set R (p. 20) is a complete description of the
strategy as a set of rules. The rules are repeatedly considered according to their order
until no more element coincides with a rule premise.

Rule Set R

R1 if a facet f of D|O(P) does not have its three vertices on ∂O, then refine f ;
R2 if a facet f has a surface Delaunay ball B(c, r) with ratio r

σ(c) > α, then refine
f ;

R3 if a tetrahedron t of D|∂O(P) has a has a circumradius r greater than σ(c),
where c is the circumcenter of t, or if t has a radius-edge ratio greater
than B, then consider the circumcenter c of t:

R3.1 if c is not included in any surface Delaunay ball, then insert c in P;
R3.2 else, insert in P the center of one surface Delaunay ball containing

c.

For a facet f let B f (r f , c f) be the associated surface Delaunay ball; for a tetrahedron t

20

let Bt(ut, ct) be the circumsphere. The criteria implied by the rules are the following:

a1(f) = σ(c f) − r f(a1)

a2(f) =

0 all vertices of f are in ∂O

1 else
(a2)

a3(f) = ασ(c f) − r f(a3)

b1(t) = σ(ct) − rt(b1)

b2(t) = B − r/e(t)(b2)

Actually a1 is not present in the rule set of Oudot et al. (2005). It is mentioned here
for completeness because the volume mesh generation process presumes the results of
Boissonnat and Oudot (2005) who use a1 only. Now it is claimed that the algorithm
implicitly guarantees the same results as in Boissonnat and Oudot (2005) (for suitable
input). Omitting a1 and looking at what happens when a2, a3 are satisfied both for
the first time in the meshing process, shows that this is actually true: a2 should not have
been violated at all up to this point because the initial point set as well as all additionally
inserted points are chosen to be in ∂O; and if all points satisfy a3 for α < 1 then this
obviously implies the satisfaction of a1.

2.3.4 Output guarantees and termination

Relying on the fact that a1 is implied by a2, a3, Oudot et al. (2005) claim that the algo-
rithm initially constructs a point set Pi that is a 1

3 -sparse 0.09-sample of ∂O, or equiva-
lently

∀x ∈ ∂O : d(x, Pi) ≤ 0.09dM(x)

∀p ∈ Pi : d(p, Pi \ {p}) ≥ 0.03dM(p)

Remark 2.3.4.1. We state that this is not entirely true although the implications remain
valid, because a1 has been replaced by a2, a3. There is no rule imposing that triangles
t with higher value a3(t) are dealt with primarily. Such a rule would imply that indeed
at some time when a3 is triggered, the assumptions are valid, and it would be a natural
choice in an implementation. But as this is not the case, there might be point insertions
occurring in the algorithm of Oudot et al. (2005) due to a3 that would not have been

21

triggered in the algorithm of Boissonnat and Oudot (2005). Thus Pi can be only said
to be κ-sparse 0.09-sample for some κ ≤ 1. Still this is a constant and only this fact is
required for the termination proof (we try to consider this observation in remark 3.1.2.1).
Also in Boissonnat and Oudot (2005) the size of the facets is upper bounded by a user-
given σ and most of the termination and approximation proofs assume σ ≈ εdM for
some ε. Now, choosingσ substantially smaller than these bounds will cause refinements
that take the sample way below the defined sparseness. Again it still holds that during
the course of the algorithm there will be some κ replacing the chosen 1

3 in order to yield
the desired bound.

The labeling function in this approach is binary, i.e. it only separates exterior from
the interior that we want to generate a mesh for. The crucial theorem to approx-
imate O appropriately relies on a sufficiently dense sampling P of its boundary ∂O

which is supposed to be a 2-manifold that is (1) compact, (2) orientable, (3) and twice-
differentiable.

Remark 2.3.4.2. Note that with our definition we are not dealing with an abstract 2-
manifold any more. It suffices to have O bounded to assure compactness, because we
are in R3 and closeness is imposed by definition of O. Orientability is also ensured. So
the only relevant condition is the smoothness of the surface.

Remark 2.3.4.3. As stated in Oudot et al. (2005), ∂O being C1,1 implies that the reach

is positive, i.e. infx∈∂O dM(x) > 0.

The choice of σ essentially determines the approximation quality of the result. This is
formulated in the following statements.

Lemma 2.3.4.1 (Lemma 6.3 in Boissonnat and Oudot (2005)). If σ ≤ εdM, then, upon

termination of the algorithm, P is a loose ε-sample of ∂O.

Theorem 2.3.4.1 (Theorem 1 in Oudot et al. (2005)). If P is a loose ε-sample of ∂O

with ε ≤ 0.09, then D|∂O(P) is a closed 2-manifold ambient isotopic to ∂O at Hausdorff

distance O(ε2) from ∂O and its normals approximate the normals of ∂O within an error

of O(ε). Moreover, ∂O is covered by the surface Delaunay balls of P and P is a ε(1 +

8.5ε)-sample of ∂O.

At this point we have to make sure that σ ≤ εdM, ε ≤ 0.09 in order to access the results
of the theorem, whenever a1 is satisfied. As this criterion has been replaced with a2, a3,
the theorem can be extended to

22

Theorem 2.3.4.2 (Theorem 2 in Oudot et al. (2005)). D|O(P) is a 3-manifold ambient

isotopic to O at Hausdorff distance O(ε2) from O where ε = min
{
0.09, supx∈∂O

ασ(x)
dM(x)

}
.

Moreover, the surface Delaunay balls of P cover ∂O.

Remark 2.3.4.4. In Oudot et al. (2005), the theorem involves the closure O. Note that
with our definition of O it is a premise that all Oi are closed.

As mentioned in the paper, the theorem’s premises hold for P whenever rule R3 is trig-
gered (i.e. no criterion a j has been provoked), especially ∂O is covered by the surface
Delaunay balls of P. This is essential in the proof of termination of the algorithm. How-
ever rules b1, b2 are not superfluous as we are interested in generating a good tetrahedral
mesh. Proving termination of the algorithm guarantees fulfillment of the size and shape
criteria for tetrahedra in whatever range B and α are allowed to be chosen.

In order to prove the termination of the algorithm, we need

Definition 2.3.4.1 (Insertion radius, Definition 6 from Oudot et al. (2005)). Given a

point p inserted in P by the algorithm, the insertion radius of p, or r(p) for short, is

the Euclidean distance from p to P right before its insertion (which is the length of the

smallest Delaunay edge created when p is inserted). The insertion radius of a point p

of the initial point set Pi is the Euclidean distance from p to Pi \ {p}.

Defining for x ∈ O the sizing function generalizations

σ0(x) := inf{d(x, x′) + dM(x′)|x′ ∈ ∂O}

σ′(x) := min{ασ(x), 0.03σ0(x)}

σ0 has been proven to be 1-Lipschitz and if σ is 1-Lipschitz, σ′ is γ-Lipschitz, γ =

max{α, 0.03}. This yields access to the main lemma needed for the termination proof.

Lemma 2.3.4.2 (Lemma 6 of Oudot et al. (2005)). If α < 1
5 and B ≥ 4

1−5γ then the

following conditions are verified

∀p ∈ P : r(p) ≥ σ′(p)(C1)

∀p ∈ P \ P|∂O : δ(p) ≥
1

1 − γ
σ′(p)(C2)

23

where δ(p) is the Euclidean distance from p to ∂O.

Proving that the balls (B(p))p∈P with radius 1
2(1+γ)σ

′(p) are pairwise disjoint (Lemma
7 in Oudot et al. (2005)) and that for any p ∈ P, B(p) ∩ O contains a ball of radius

1
4(1+γ)σ

′(p) (Lemma 8 in Oudot et al. (2005)) prepares proving

Theorem 2.3.4.3 (Oudot et al. (2005)). If α < 1
5 and B ≥ 4

1−5γ , then the output point

sample P verifies

|P| = O
(∫

O

dx
σ3

0(x)
+

∫
O

dx
σ3(x)

)
where σ0 depends only on O (not on σ).

Arguing thatσ0, σ are both positive and continuous over O, which is compact, the bound
is finite. Because the algorithm inserts one point in P per iteration (w.r.t. the rule set)
and never removes points from P, the algorithm terminates (Corollary 2 in Oudot et al.
(2005)).

2.3.5 Limitations of the original oracle-based approach

The quality of the resulting mesh of the method of Oudot et al. (2005) is not exposed
explicitly. The shape criterion optimized in their approach is the radius-edge ratio,
bounded by a user-given value B. This has only slight influence on the resulting mini-
mal dihedral angle. Post-processing methods that assume Delaunay meshes with good
radius-edge ratio aim at removing the remaining elements with low minimal dihedral
angles, which are so-called slivers, by slightly perturbing vertices (see Edelsbrunner
et al. (2000)) or modifying the metric used in the Voronoi diagram and the dual Delau-
nay triangulation (see Cheng et al. (2000)).

Settings involving multi-material domains put further demands on the mesh generation
algorithm. There must be a strategy to assign materials to the tetrahedra. Pons et al.
(2007) employ the oracle to determine restricted Delaunay triangulations Del|Oi for each
material separately. By the consistency of the oracle, this yields a consistent decompo-
sition of the tetrahedra into the single material parts. It is assured that the boundaries

24

conform with this decomposition, mainly because the lemmata of Oudot et al. (2005)
can be applied for each material Oi separately.

Lemma 2.3.5.1 (Lemma 5 of Oudot et al. (2005)). The surface Delaunay balls of P and

those of P|∂O are the same.

When dealing with multi-material domains we will employ the material assignment
proposed by Pons et al. (2007) but refer to the method by Oudot et al. (2005), because
all theoretical results are retained from them.

Non-smooth boundaries. Not all multi-material domains can be handled as a result
of the extension by Pons et al. (2007). Such domains induce boundaries that are non-
manifold or disconnected or both. The case where ∂O is manifold but disconnected
is handled perfectly by the algorithm as-is. But multi-material junctions rarely can be
assumed to be smooth in non-manifold cases, i.e. there is a ∂Oi not smooth. Of course,
this is a weakness of the approach by Oudot et al. (2005) already, because they exclude
non-smooth boundaries.

In practice, the boundary is not explicitly known by the mesh generation algorithm,
because it is hidden within the oracle. By that reason the approach can be applied to
domains exhibiting non-smoothnesses, because for each finite sample point set of the
boundary of the domain ∂O there is a domain O′ with smooth boundary ∂O′ containing
the point set as well. The termination and approximation proofs do not apply in that
case because some properties of O have to be bounded a-priori, e.g. the reach. When
applying the algorithm to such boundaries, the sizing field satisfying σ ≤ 0.09dM is
replaced by one with positive lower bound, trading off the ε-sampling properties in the
region of trimming. Without this deviation, it would not be able to handle any piecewise
smooth input properly, especially surface triangulations enclosing the domain.
We call features of the domain non-smoothnesses due to multi-material junctions, sharp
edges of domains or simply any arbitrary curve if it has some meaning for the domain.
Albeit many elements might be introduced in the features vicinity by adjusting the sizing
field, there is no guarantee that smooth feature curves will be adequately represented in
the resulting mesh.

Apart from facet and tetrahedron sizing criteria that can be applied with different values
per material, Pons et al. (2007) propose a sizing criterion that enables to tune the facet
sizing adaptively during the mesh generation process. A facet distance bound g indicates

25

a facet (Delaunay element pqr) to be too large if the distance d(i1, i2) > g exceeds this
bound where Vpqr the dual Delaunay segment (or ray) and i1, i2 its intersections with
pqr and ∂O. This criterion is highly related to the curvature, i.e. it tends to enforce the
generation of smaller elements in regions of high curvature of the boundary.

We propose an extension to the algorithm by Oudot et al. (2005) that aims at preserving
an a-priori discretised representation of such features. Particularly we expect to provide
a method that generates less elements in areas where the approximation of a feature is
driven by a surface distance criterion. At the same time we expect providing higher
geometric accuracy in this area due to the explicit representation of the feature.

26

3 Preserving segments in a

Delaunay triangulation

We have seen that the oracle approach yields a very general concept to deal with ar-
bitrary input domains. The Delaunay refinement strategy by Oudot et al. (2005) with
the multi-label extension of Pons et al. (2007) allows to generate tetrahedra for multi-
material domains. However, an accurate representation of multi-material junctions and
sharp features is excluded from the theoretical foundation.
This chapter introduces an extension to the approach by Oudot et al. (2005) which aims
to fill this gap. In section 3.1 the Rule Set R (p. 20) is extended such that it pre-
serves given segments. Several assumptions are made on the segments’ configuration,
particularly that they shall not intersect. In the subsequent section these configurations
are examined more closely and a preparatory algorithm is developed that guarantees to
meet some of the requirements from section 3.1. Section 3.3 explains how to integrate
the preparatory algorithm into the rule set of the algorithm. It is discussed to what extent
the resulting method can handle the initial problem.

3.1 Preserving isolated segments

Let C be a simplicial complex. Then let E denote the set of its 1-dimensional sim-
plices and PE the set of proper subfaces of E, i.e. the endpoints of the segments. In
accordance with the design of the mesh generation algorithm and the mathematical con-
cept of a conforming Delaunay triangulation (definition 2.2.3.3), we add another criteria
layer to the algorithm with highest priority. This layer will assure that the resulting tri-
angulation conforms to the segments prescribed by E, which is why elements of E are
called constrained segments as from now. The penalization of constrained segments not

27

occuring in the Delaunay triangulation corresponds to the quality criteria for facets and
tetrahedra (see fig. 3.1).

Mesh criteria

• Constrained segments Ei

• Facet shape and size ai

• Tetra. shape and size bi

Mesh generation

• Point set
• Delaunay triangulation
• List of bad elements
• Refine until done

Oracle

• Abstract domain description

segments preserved?

element bad?

pt. queries pt. and line queries

Figure 3.1: Our algorithm extension (compare fig. 2.3). We additionally employ the
segments we want to preserve as a set of constrained segments. The mesh generation
algorithm shall not insert points such that the preservation of the constrained segments
is compromised.

For a segment to appear in a Delaunay triangulation, a necessary condition is that its
endpoints are part of the point set. Hence, we need to add all points PE to the initial point
set P0 of the algorithm. We will assume that all segments are present before starting
the refinement algorithm. This and more assumptions will be further investigated and
discussed in section 3.2 and section 3.3. During the course of the algorithm, a point
insertion shall not extinct a constrained segment. Hence by the use of the notion of
a point encroaching a segment, we assure that the relevant segments are maintained
throughout the algorithm.

A segment e with endpoints a, b and midpoint m is said to be encroached by a point p

if d(p,m) < d(m, a), i.e. the point is in the open diameter ball of the segment.

Remark 3.1.0.1. Note that this encroachment definition differs from the former en-
croachment notions for tetrahedra and Delaunay facets, because it is triggered also on
point insertions not necessarily extinguishing the segment from the Delaunay triangula-
tion. The converse is true though: If there is no point within the diametral sphere, the
corresponding segment is a simplex of the Delaunay triangulation.

28

3.1.1 Algorithm

The Algorithm preserving isolated segments (p. 29) departs slightly from the concept
of the generic algorithm. So far the elements to be refined have been determined by
evaluating the criteria functions a j, b j on Delaunay faces at the current state of P. We are
not applying analogous functions for constrained segments. At this point, we consider
a segment to be bad if it is supposed to be in the Delaunay triangulation of P, i.e. it is a
constrained segment, but does not occur. As we assume that all segments are present in
the mesh on initialization, none will be bad from the start.

Algorithm preserving isolated segments

1. Initialize P = P0.
2. Compute Del(P) and if necessary restricted versions.
3. If there is a bad segment s:

a) Choose p midpoint of s
b) Update P = P ∪ {p}
c) Return to item 2

4. If there is a bad surface triangle t:

a) Choose p ∈ {Vt ∩ Del(P)|∂O}

b) If p encroaches on some segment s to be preserved goto item 3a
c) Update P = P ∪ {p}
d) Return to item 2

5. If there is bad tetrahedron u:

a) Let q be the circumcenter of u.
b) If q encroaches on some segment s to be preserved goto item 3a
c) If q encroaches on some surface triangle t goto item 4a
d) Update P = P ∪ {q}
e) Return to item 2

6. Done.

Rule Set S (p. 30) denotes the set of refinement rules that corresponds to Rule Set R
(p. 20). We expect it to be obvious that it is equivalent to the Algorithm preserving
isolated segments (p. 29). Rule S1 is somewhat dummy, as it will never be triggered as
shown in proof of theorem 3.1.2.1. We integrate it here nevertheless for two reasons: (1)
Once we proved that it is not triggered, this implies that all segments are in the Delaunay
triangulation throughout the whole run of the algorithm. (2) It serves as a placeholder
for a refined strategy that follows in a succeeding step.

29

Rule Set S

S1 If a segment e is not in Del(P), refine e.
S2 If a facet f does not have its three vertices on ∂O or has a surface Delaunay

ball B(c, r) with ratio r
σ(c) > α, then:

S2.1 if c is included in a segment diameter ball B(c′, r′), insert c′

S2.2 else insert c

S3 If a tetrahedron t with circumcenter c has a circumradius r greater than σ(c)
or radius-edge ratio r

lmin
greater than B, then

S3.1 if c is included in a segment diameter ball B(c′′, r′′), insert its center
c′′

S3.2 else if c is included in a surface Delaunay ball B(c′, r′) and c′ is
included in a segment diameter ball B(c′′, r′′), insert c′′

S3.3 else if c is included in a surface Delaunay ball B(c′, r′) insert c′

S3.4 else insert c

Note that the set E has to be modified during the course of Algorithm preserving iso-
lated segments (p. 29). Point insertions due to item 3a split a constrained segment.
Precisely, for a segment s with endpoints a, b whose midpoint p is inserted, we will
not be able to recover s in the course of the algorithm anymore. Instead we will aim at
recovering its subsegments (a, p) and (p, b) resulting from the split. This splitting pro-
cess might be iteratively repeated. If we can prove termination, then the initial segment
s ∈ E will be represented in the resulting Delaunay triangulation by this very argument:
e is represented as the union of its subsegments and the same holds for each subsegment
recursively.
We will denote E0 the initial set and Ei the result of the i-th split of a segment. It holds
∀i :

⋃
e∈E0

e =
⋃

e′∈Ei
e′.

3.1.2 Output guarantees and termination

To prove the validity of Rule Set S (p. 30), we proceed as follows: We show that the
algorithm terminates. The quality that can be guaranteed for the resulting mesh follows
from the restrictions on α and B that will be derived during the proof.

30

We define d(e, p) := min{d(x, p) | x ∈ e} and

le := inf{d(ei, e j) | ei ∩ e j = ∅, ei, e j ∈ E}

the minimal distance between to segments. For E being a finite set, le = min{d(ei, e j) |
ei ∩ e j = ∅, ei, e j ∈ E} > 0. Note that unlike in R2 there might be no pair a, b ∈ PE

of endpoints of these segments with d(a, b) = le since the pair segments where the
minimum is acquired might be skew.

To keep it simple, we make some additional assumptions at this point:

Asmp1 Constrained segments are within the boundary only, i.e. E ⊂ ∂O.
Asmp2 No two segments of E are incident, i.e. ∀e, e′ ∈ E : e ∩ e′ = ∅.
Asmp3 For all e ∈ E : length(e) < le.

Asmp3 implies that ∀e ∈ E, the segment e is in Del(PE).
While the latter two assumptions will actually be relaxed in later versions of the algo-
rithm, dropping Asmp1 is only discussed theoretically.

We will prove an analogue to lemma 2.3.4.2, showing that the algorithm still termi-
nates. It is a theorem in this this thesis for three reasons: (1) it is the main theoretical
result proved in this thesis, (2) the set of rules is larger and exhibits more interrela-
tions, and (3) the assumptions are more general than in the original lemma (esp. see
remark 2.3.4.1).

Theorem 3.1.2.1. For each E ⊂ ∂O not exhibiting incident segments and suitable sizing

field σ, there exist α, B such that the algorithm terminates.

The proof will be split into three parts, corresponding to the rules S1, S2 and S3. The
first lemma states that S1 will never be triggered at all and the second lemma is a small
helping lemma for later proofs. The subsequent lemmas show that bounds necessary to
prove theorem 3.1.2.1 can be derived. The part of the algorithm when S3 has not yet
been triggered is called the surface mesher. From the first time at which S3 is triggered
on, the algorithm is called volume mesher. Both parts are based on the same Rule Set
S (p. 30). The proof of the theorem handles the whole rule set and concludes this
section.

Lemma 3.1.2.1 (Rule S1 is never triggered.).

31

Proof. We prove this by induction. On initialization, by Asmp3, all constrained seg-
ments are shorter than their minimal distance. Hence no constrained segment can be
encroached by another’s endpoints. A segment is in the Delaunay triangulation if it is
not encroached.

Suppose a point insertion due to Rule S2 or S3 inserts a point p that encroaches on a
constrained segment e, which is subsegment of some e0 ∈ E0. Then p was inserted on
a constrained segment. But p was certainly not inserted on a constrained segment e′

which is a subsegment of the same original segment e0. Instead e′ is a subsegment of
e1 ∈ E0. But then again the diametral ball of e has radius less than the distance d(e0, e1)
of these segments and hence p cannot encroach on e. �

Lemma 3.1.2.2 (Helping lemma). Let f , f ′ be two simplices of a Delaunay triangula-

tion and B(c, r), B(c′, r′) associated balls such that their boundaries pass through all the

vertices of the resp. simplex exactly. Let furthermore c ∈ B(c′, r′). Then 2r′ ≥ r.

Proof.

2r′ = r′ + r′

= r′ + d(c′, p) where p a vertex of f ′

≥ d(c, c′) + d(c′, p) by assumption c ∈ B(c′, r′)

≥ d(c, p) by triangle inequality

≥ r because f is a Delaunay simplex, no point p is within B(c, r) �

Lemma 3.1.2.3 (Insertion radius of surface mesher). The following condition is verified

if S3 has not yet been triggered

∀p ∈ P : r(p) ≥
σ′1(p)
2 + α

(E1)

where α < 1, δ(p) the Euclidean distance from p to ∂O and σ′1(p) := min{ασ(p), κ1}

with κ1 = min{d(p, q) | p, q ∈ P0} the shortest distance between two points in the finite

initial point set.

Proof. We prove this lemma by induction. Initially E1 is veryfied by the choice of κ1.

32

The rules of S2 cannot be applied for a facet having not having its vertices on the bound-
ary because the initial point set has all vertices on ∂O. S2 inserts vertices only in the
boundary also. S3, especially Rule S3.4 has not yet been triggered by assumption.

Suppose rule S2.1 is applied because r > ασ(c). Then E1 is satisfied because

2r′ ≥ r by lemma 3.1.2.2

≥ ασ(c) by assumption

≥ α
(
σ(c′) − d(c, c′)

)
σ is 1-Lipschitz

≥ α
(
σ(c′) − r′

)
c within B(c′, r′)

r′ ≥
ασ(c′)
2 + α

≥
σ′1(c′)
2 + α

ασ(p) ≥ σ′(p)(S2.1bSurf)

Suppose rule S2.2 is applied because r > ασ(c). Then E1 is satisfied.

r > ασ(c) by assumption

≥ σ′1(c) by defintion of σ′(S2.2bSurf)

�

Lemma 3.1.2.4 (Result of the surface mesher). The surface mesher terminates and the

output point set is finite.

Let P be the point set at any state of Rule Set S (p. 30) where neither Rule S1 nor

S2 are applied. If ∀x ∈ ∂O : σ(x) ≤ 0.09dM(x) then P is a loose 0.09-sample and

theorem 2.3.4.2 holds. And d(q, P|∂O) ≤ 0.09dM(q)

Sketch of proof. The first two statements are equivalent in our setting. The distance
of the points can be lower bounded because of lemma 3.1.2.3 where σ′1 is a positive
function on a compact set. As all points are inserted in a compact set and the algorithm
is greedy, there can be only finite points. Because one point is added at each iteration,
the surface mesher terminates.

We rely on the corresponding results of Boissonnat and Oudot (2005) and Oudot et al.
(2005). Our algorithm implies a sampling that is at least as dense as stated in these
papers. �

33

Lemma 3.1.2.5 (Insertion radius of volume mesher). ∃C > 2 + α, D > 1 such that the

following conditions are verified

∀p ∈ P : r(p) ≥
σ′2(p)

C
(F1)

∀p ∈ P \ P|∂O : δ(p) ≥
1

D(1 − γ)
σ′2(p)(F2)

where δ(p) is the Euclidean distance from p to ∂O and σ′2(p) := min{ασ(p), κ2 ·

0.09σ0(p)} with 0 < 0.09κ2 < α < κ2 < min{13 , κ1}.

Remark 3.1.2.1. The proof is an extension of the proof in Oudot et al. (2005). We try to
employ the correct sparseness of the initial point set though (see remark 2.3.4.1).

Proof. We prove this lemma by induction. Until S3 is triggered for the first time,
lemma 3.1.2.3 holds. Hence on initialization E1 holds and implies F1. Additionally
F2 holds because all points are in ∂O.
Rule S1 cannot be applied by lemma 3.1.2.1. We have to check for F2 in rule S3.4 only.

We will bound the insertion radius of the actually inserted point. This might be ei-
ther r, r′ or r′′ according to the rule applied, where certainly r := r(c), r′ := r(c′) and
r′′ := r(c′′). Moreover we might refer to virtual insertion radii, i.e. the insertion ra-
dius theoretically assigned to a point if it would have been inserted instead of causing
another insertion.

We will make use of the Lipschitz-continuity of σ′2, i.e. σ′2(x)−σ2(y) ≤ γ ·d(x, y) where
γ := max{α, κ2 · 0.09} = α (sic!).

Suppose rule S2.1 is applied because the facet does not have its three vertices on ∂O.

34

Then F1 is satisfied after the insertion of c′ because

2r′ ≥ r by lemma 3.1.2.2

= d(c, p) choose p ∈ P \ P|∂O vertex the facet
(3.1a)

≥ δ(p) because c ∈ ∂O

≥
1

D(1 − γ)
σ′2(p) by F2

≥
1

D(1 − γ)
(
σ′2(c′) − γd(p, c′)

)
σ′2 is γ-Lipschitz

≥
1

D(1 − γ)
(
σ′2(c′) − γ

(
d(p, c) + d(c, c′)

))
by triangle inequality

≥
1

D(1 − γ)
(
σ′2(c′) − 3γr′

)
using (3.1a) and c within B(c′, r′)

r′ ≥
σ′2(c)

2D(1 − γ) + 3γ

(S2.1a)

Suppose rule S2.1 is applied because r > ασ(c). Then F1 is satisfied because

r′ ≥
σ′2(c′)
2 + α

as in eq. (S2.1bSurf)(S2.1b)

Suppose rule S2.2 is applied because the facet does not have its three vertices on ∂O.
Then F1 is satisfied because

r = d(c, p) p ∈ P \ P|∂O

≥ δ(p) because c ∈ ∂O

≥
1

D(1 − γ)
σ′2(p) by F2

≥
1

D(1 − γ)
(
σ′2(c) − γd(c, p)

)
σ′2 is γ-Lipschitz

r ≥
σ′2(c)

D(1 − γ) + γ
(S2.2a)

as in Oudot et al. (2005), Lemma 6, proof for Rule S1.

35

Suppose rule S2.2 is applied because r > ασ(c). Then F1 is satisfied.

r > σ′2(c) as in eq. (S2.2bSurf)(S2.2b)

Suppose rule S3.1 is applied because r > σ(c). Then

2r′′ ≥ r by lemma 3.1.2.2

> σ(c) by assumption

> ασ(c) choose α < 1

≥ σ′2(c) by definition of σ′2
≥ σ′2(c′′) − γd(c, c′′) σ′2 is γ-Lipschitz

≥ σ′2(c′′) − γr′′ c within B(c′′, r′′)

r′′ ≥
σ′2(c′′)
2 + γ

(S3.1a)

Suppose rule S3.1 is applied because r
lmin

> B. Then

r > Blmin by assumption

≥ Br(p) p being an endpoint of the shortest edge

≥
B
C
σ′2(p) by induction of F1

≥
B
C

(
σ′2(c) − γd(p, c)

)
σ′2 is γ-Lipschitz

≥
B
C

(
σ′2(c) − γr

)
by choice of p as vertex of tetrahedron t

r ≥
B

C + γB
σ′2(c) an. to Oudot et al. (2005) up to C(3.1b)

2r′′ ≥ r by lemma 3.1.2.2

≥
B

C + γB
σ′2(c) using (3.1b)

≥
B

C + γB
(
σ′2(c′′) − γr′′

)
σ′2 is γ-Lipschitz

r′′ ≥
B

2C + 3γB
σ′2(c′′)(S3.1b)

36

Suppose rule S3.2 is applied because r > σ(c). Then

2r′ ≥ r by lemma 3.1.2.2

> σ(c) by assumption

> σ′2(c) by definition of σ′2
≥ σ′2(c′) − γd(c, c′) σ′2 is γ-Lipschitz

≥ σ′2(c′) − γr′ c within B(c′, r′)

r′ ≥
1

2 + γ
σ′2(c′)(3.1c)

2r′′ ≥ r′ by lemma 3.1.2.2

≥
1

2 + γ

(
σ′2(c′′) − γd(c′, c′′)

)
using (3.1c) and σ′2 being γ-Lipschitz

≥
1

2 + γ

(
σ′2(c′′) − γr′′

)
c′ within B(c′′, r′′)

r′′ ≥
1

4 + 3γ
σ′2(c′′)(S3.2a)

Suppose rule S3.2 is applied because r
lmin

> B. Then

2r′ ≥ r by lemma 3.1.2.2

≥
B

C + γB
σ′2(c) in analogy to (3.1b)

≥
B

C + γB
(
σ′2(c′) − γr′

)
σ′2 is γ-Lipschitz

r′ ≥
B

2C + 3γB
σ′2(c′) in analogy to(S3.1b)(3.1d)

2r′′ ≥ r′ by lemma 3.1.2.2

≥
B

2C + 3γB
σ′2(c′) using (3.1d)

≥
B

2C + 3γB
(
σ′2(c′′) − γr′′

)
σ′2 is γ-Lipschitz

r′′ ≥
B

4C + 7γB
σ′2(c′′)(S3.2b)

37

Suppose rule S3.3 is applied because r > σ(c). Then

2r′ ≥ r by lemma 3.1.2.2

≥ σ(c) by assumption

≥ σ′2(c) by definition of σ′2
≥ σ′2(c′) − γd(c, c′) σ′2 is γ-Lipschitz

≥ σ′2(c′) − γr′ c within B(c′, r′)

r′ ≥
σ2(c′)
2 + γ

in analogy to (3.1c)(S3.3a)

Suppose rule S3.3 is applied because r
lmin

> B. Then

r′ ≥
B

2C + 3γB
σ′2(c′) in perfect analogy with (S3.1b)(S3.3b)

Suppose rule S3.4 is applied. Analogously to Oudot et al. (2005), Lemma 6, proof of
Rule R3.1

r ≥ σ′2(c) for r > σ(c) using σ ≥ σ′2(S3.4a)

r ≥
B

C + γB
σ′2(c) for

r
lmin

> B using (3.1b)(S3.4b)

In analogy with Lemma 6, proof of Rule S3.1 in Oudot et al. (2005), we check F2. Note
that eq. (S3.4b)⇒ eq. (S3.4a) because of the choice of α: 1

α
≥ B

C+γB ⇒ σ(c) ≥ B
C+γBσ

′
2(c)

and hence

δ(c) = d(c, q) q ∈ ∂O closest to c

≥ d(c, P|∂O) − d(q, P|∂O) by triangle inequality

≥ r − d(q, P|∂O) no point within B(c, r)

≥
B

C + γB
σ′2(c) − d(q, P|∂O)

≥
B

C + γB
σ′2(c) −

1
κ2
σ′2(q)(3.1e)

≥
B

C + γB
σ′2(c) −

1
κ2

(
σ′2(c) + γd(c, q)

)
σ′2 is γ-Lipschitz

d(c, q) ≥
1

γ + κ2

(
Bκ2

C + γB
− 1

)
σ′2(c)(S3.4c)

38

Justifying eq. (3.1e). The goal is to bound d(q, P|∂O) ≤ 1
κ2
σ′2(q). When rule S3 is

triggered, S2 is fulfilled. This implies lemma 3.1.2.4, saying that theorem 2.3.4.2 holds.
Hence, there is a surface Delaunay ball B(c′, r′) containing q and through some p ∈ P

yielding d(q, P|∂O) ≤ d(q, p). Because p, q ∈ B(c′, r′), d(q, p) ≤ 2r′

r′ ≤ ασ(c′) Rule S2 not applied for this surface facet

≤ α
(
σ(q) + d(c′, q)

)
σ is 1-Lipschitz

≤ α
(
σ(q) + r′

)
q ∈ B(c′, r′)

r′ ≤
α

1 − α
σ(q)(3.1f)

Hence

d(q, P|∂O) ≤ d(q, p)

≤ 2r′

≤
2α

1 − α
σ(q) using eq. (3.1f)

≤
1
κ2
ασ(q) by choice of κ2

d(q, P|∂O) ≤ 0.09dM(q) lemma 3.1.2.4

=
1
κ2

(κ2 · 0.09σ0(q)) by def. σ0 and dM coincide on the boundary

Because of the definition ofσ′2(x) = min{ασ(x), κ2·0.09σ0(x)}, we conclude d(q, P|∂O) ≤
1
κ2
σ′2(q). End of justification of eq. (3.1e).

In order to fulfill (S3.4c) we proceed as in Oudot et al. (2005), Lemma 6, proof of Rule
R3.1 but with fundamentally different constants

1
γ + κ2

(
Bκ2

C + γB
− 1

)
≥

1
D(1 − γ)

⇔ D(1 − γ)(Bκ2 −C − γB) ≥ (γ + κ2)(C + γB)

⇔ D ≥
(γ + κ2)(C + γB)

(1 − γ)(Bκ2 −C − γB)
(S3.4d)

requiring B ≥ C
κ2−γ

.

Putting all the results together, we conclude that F1 is fulfilled if all of the above bounds
can be lower bounded by 1

Cσ
′
2(c) (or σ′2(c′), σ′2(c′′) respectively). Below we list the

39

upper bounds for 1
C imposed by this condition and try to reduce the set:

1 (S2.2b), (S3.4a)(3.2a)
1

2 + γ
(S2.1b), (S3.1a), (S3.3a)(3.2b)

1
4 + 3γ

(S3.2a)(3.2c)

1
D(1 − γ) + γ

(S2.2a)(3.2d)

1
2D(1 − γ) + 3γ

(S2.1a)(3.2e)

B
C + γB

(S3.4b)(3.2f)

B
2C + 3γB

(S3.1b), (S3.3b)(3.2g)

B
4C + 7γB

(S3.2b)(3.2h)

As a first simplification we can omit some conditional equations because

eq. (3.2c)⇒ eq. (3.2b)⇒ eq. (3.2a)

eq. (3.2e)⇒ eq. (3.2d)

eq. (3.2h)⇒ eq. (3.2g)⇒ eq. (3.2f)

Further simplifying the set by we can reduce more constraints because they are im-
plied by others. Finally we choose γ, B,C,D such that they satisfy the following set of
equations:

C ≥ 4 + 7γ(3.3a)

C ≥ 2D(1 − γ) + 3γ(3.3b)

B >
C

κ2 − γ
(3.3c)

D ≥
(γ + κ2)(C + γB)

(1 − γ)(Bκ2 −C − γB)
(3.3d)

where the choice of γ, κ2, B,C,D only depends on the domain O and the inital segments
E. �

40

We can interpret the last set of equations. We want to choose γ as large as possible in
order to have less point insertions due to rule S2. However such a choice increases the
lower bound on B and C significantly. Note that we did not show that the algorithm
does not terminate for values not respecting these bounds. The proof also applies if no
segments are constrained. Hence our bounds cannot be tight, as the bounds given in
lemma 2.3.4.2 are essentially smaller.

Proof of theorem 3.1.2.1. We compose lemma 3.1.2.4 and lemma 3.1.2.5. We follow
the results from Oudot et al. (2005):
We can lower bound the distance of two points in the resulting point set by the use of σ′2,
because it is γ-Lipschitz. Balls can be assigned to each point such they do not mutually
intersect. Further there is a lower bounded ratio of these balls contained in the domain
O. Since O is compact there can only be finite points. �

3.2 Preparing arbitrary segments

This section introduces the approach to handle arbitrary segment configurations. Several
assumptions were made in section 3.1 on the set of constrained segments E to show
termination of the algorithm corresponding to Rule Set S (p. 30). We provide a stand-
alone algorithm that has no restrictions on the input set while keeping in mind that it
should fit the rule set strategy later on.

Let E′ be a finite set of segments. For the segments to occur in a Delaunay triangulation,
they must respect the properties of a simplicial complex (see definition 2.2.1.3). We
resolve the inconsistencies by deriving a minimal complex C such that ∀e ∈ E′ ∃D ⊂

C : e =
⋃

d∈D d. Its construction is straightforward: Compute all intersections in E′

and split the segments accordingly. Let the result be the set E of 1-dimensional faces
of C. Then add all endpoints of the segments of E, PE, which is the minimal set of
0-dimensional faces we need to add in order to have a valid complex structure.

We will propose a greedy algorithm that subsequently splits encroached segments into
subsegments in order to recover them all in the Delaunay triangulation. Our goal is to
derive a point set Pn ⊃ PE such that ∀e ∈ E ∃Q ⊂ Del(Pn) :

⋃
q∈Q q = e, i.e. all

segments of E occur in the Delaunay triangulation of Pn in the conforming sense. It is

41

sufficient to show that no segment is encroached in En. We call E0 := E, P0 := PE the
initial set of segments resp. points and Ei, Pi the sets after the i-th point insertion.

In section 3.1, we introduced the notion of encroachment for a constrained segment
in order not to inadvertently insert points in its diametral ball that extinct the segment
from the Delaunay triangulation. Now we are in a different setting, because it cannot
be assumed that the segments are in the initial Delaunay triangulation for arbitrary E

and corresponding point set PE. We generalize our definition as a tribute to this fact:
A segment e ∈ E is said to be encroached if it is not present in Del(PE) or if there is a
point in PE that lies in its diametral sphere.

Segments that share a point may introduce difficulties. If we handle them with a primi-
tive strategy, infinite recurrences might occur. Figure 3.2 shows such an example.

O ACE

B

D
F

Figure 3.2: A small angle might
cause infinite refinements in a split-
at-half-if-encroached strategy. Points
C,D, E, F, . . . are inserted. Because
each split of one a subsegment en-
croaches on the segment incident at
O, this process might never terminate,
depending on the angle and the length
ratio.

A

B

C

D

Figure 3.3: The type of star vertices in
P and Pi. Small points are in Pi \ P.
A, B,C,D are star vertices because they
all have at least two adjacent points in
P. The other points are non-star ver-
tices. D is free because it is neither ad-
jacent to any other star vertex nor do the
incident segments differ in length. A is
non-free, B,C are free in Pi.

As a tribute to the observation in fig. 3.2, we slightly modify the strategy at vertices
where segments join. The vertices p ∈ PE that are endpoints of at least two constrained
segments on initialization, are called star vertices. A star vertex p is said to be free in

42

Ei if all its adjacent vertices are non-star vertices and all its incident segments have the
same length (see fig. 3.3)

3.2.1 Algorithm

As an initialization step, our algorithm has to recover the constrained segments. Al-
though it fitting the Delaunay refinement scheme of the overall meshing approach, we
will describe and analyse it separately first and then put the parts together for conve-
nience. Again our algorithm will subsequently add points and recompute the Delaunay
triangulation. We initialize P0 = PE and call Pi, Ei the set of vertices resp. constrained
segments after the i-th point insertion.

For each star vertex pi ∈ P let lmin,i be the length of its shortest incident constrained
segment in E.

The strategy to conform to E is to loop over this set of rules:

Rule Set Q

Q1 If there is a non-free star vertex pi, insert points on all segments incident
to p at distance lmin,i

3 from p.
Q2 If some encroached e is incident to a star-vertex pi, insert the midpoints of

all segments incident to pi.
Q3 If e is encroached, insert the midpoint of e.

Remember le to be defined as the minimal distance of two non-incident segments in
E. We refine this definition using ek to access the respective value after the k-th point
insertion. We additionally need the minimal angle of all incident segments and define

ek := min{d(ei, e j) | ei ∩ e j = ∅, ei, e j ∈ Ek}

lmin := min{lmin,i}

αk := min{](ei, e j) | ei ∩ e j , ∅, ei, e j ∈ Ek}

Again all these can be expressed in minima as long as Ek and Pk are finite. If αk >
π
3 or

undefined, set αk := π
3 .

43

3.2.2 Termination

We will prove termination by deriving a lower bound on the distance of two points in the
resulting point set Pn. We will exploit the strategy to handle star vertices separately.

Lemma 3.2.2.1 (Encroachment at star vertices). Suppose all star vertices are free. Let

e be a segment incident to a star vertex q and encroached by p. Then p is not on a

segment incident to q.

Proof. Suppose p was on an segment e′ incident to q. By assumption q is free, i.e.
|e| = |e′| they have equal length l. Let r the midpoint of e and](e, e′) = γ, see fig. 3.4.
Then

d(p, r)2 = d(q, r)2 + d(q, p)2 − 2 d(q, r) d(q, p) cos γ

=
l2

4
+ l2 − l2 cos γ

=
l2

4
(5 − 4 cos γ)

and hence p encroaches on e iff l2
4 > d(p, r)2 = l2

4 (5 − 4 cos γ) ≥ l2
4 which is a contra-

diction. �

q

p

r

e′

e
γ

Figure 3.4: An endpoint p of a segment e′ cannot
encroach on an equally long incident segment e if
they meet at a free star vertex q.

Lemma 3.2.2.2 (Lower bound the distance in Pn). Looping over Q1, Q2, Q3 in this very

order does not split the segments to arbitrarily small length:

∃r > 0∀p ∈ Pn : d (p, P \ {p}) ≥ r

Proof. Let Pk be the set of points when rule Q1 cannot be applied any more for the first
time. It will never be applied again during the course of the algorithm because there
are only finitely many star vertices in P0 and each provocation of Q1 frees a star vertex.

44

r
q0

p0

q

p

q1

p1

Figure 3.5: Points p, q lie on segments ep, eq that are subsegments of two incident seg-
ments. p and q are not incident to the star vertex r. Hence there are points p0, q0 inserted
due to rule Q1 or Q2 lower bounding their distance d(p, q) > d(p0, q0).

Rules Q2, Q3 do never unfree a star vertex again. Their adjacency has been resolved by
Q1 and further refinement of a segment incident to a star vertex can only be imposed by
Q2 which preserves the length equality of the incident segments.

Thus Q1 is provoked only finite times. Because the maximal degree of a star vertex is
bounded (and does not change when splitting segments), only finitely many points are
in Pk. And in Ek all star vertices are free whenever Q2 or Q3 is triggered.

Q2. Let q be a point inserted due to Q2. Let Pi the set before the provocation of Q2, P j

the set after all points around the concerned star vertex are inserted, and Pd = P j \Pi the
set of points inserted due to Q2 in this step. Then d(q, P j\{q}) = min {d(q, Pi), d(q, Pd \ {q})}
which we will bound separately.
All star vertices are free. By lemma 3.2.2.1 the point p ∈ Pi encroaching on the segment
where q is inserted cannot be adjacent to the relevant star vertex r. Hence d(q, Pi) ≥
min{ek, d(q, r)}. All segments at the star vertex had the same length lold = 2d(q, r) and
because one of it has been encroached by p it holds that lold

2 ≥ ek. Finally d(q, Pi) ≥ ek.
Let p, q ∈ Pd with respective segments ep, eq of length l joining at star vertex r. Then
d(q, p)2 = d(p, r)2 + d(r, q)2 − 2 · d(p, r) · d(r, q) cos](ep, eq) = 2l2(1 − cos](ep, eq)).
Furthermore p, q adjacent to a star vertex where one of its incident segments of length
lold = 2l has been encroached by a point of Pi. Hence lold

2 ≥ ek and cos](ep, eq) ≤ cosαk.

In summary d(q, p)2 ≥
e2

k
2 (1 − cosαk) and thus d(q, Pd \ {q}) ≥ ek

√
1
2 (1 − cosαk).

Q3. Let q be a point inserted to Pi due to Q3. Then d(q, Pi) ≥ ek
2 as long as we can

assure that the point p encroaching on q is not on a segment ep ∈ Ek that was incident
to a segment eq ∈ Ek containing q in Pk. Suppose this was the case now, see fig. 3.5.
Because we are in rule Q3, not in rule Q2, p, q themselves cannot be incident to the
imagined star vertex. Hence their distance is lower bounded by the results of Q2, i.e.
d(p, q) ≥ ek

√
1
2 (1 − cosαk).

45

Certainly αk = α0. To lower bound ek we have to consider the distance between seg-
ments that are no more incident due to the application of Q1. Their distance can be lower
bounded by the points introduced in Q1 because they are not skew. Let Pd = Pk \ P0 the
set of points introduced due to Q1. Then

ek = min
q∈Pd
{e0, d(q, P0), d(q, Pd \ {q})} where

d(q, P0) ≥ min{e0, lmin}

d(q, Pd \ {q}) ≥
√

2lmin(1 − cosα0) and hence

ek ≥ min{e0, lmin,
√

2lmin(1 − cosα0)}.

Choose

r = min

ek

2
, ek

√
1
2

(1 − cosαk)


= ek

√
1
2

(1 − cosαk) by definition of αk.

�

Lemma 3.2.2.3 (Termination of the conformation).

Proof. E is compact and the algorithm is greedy and inserts in E only. The balls(
B(p, r

2)
)

p∈Pn
are pairwise disjoint. Hence Pn is finite. �

As a result, no segment e ∈ En can be encroached because of Q3. As denoted earlier,
this implies that (but is not equivalent to) all constrained segments in En occur in the
Delaunay triangulation Del(Pn).

3.3 Extended mesh generation algorithm

In this section we will merge the preparatory algorithm of section 3.2 and the volumetric
mesh generation approach of section 3.1. The properties of the result from the prepara-
tory algorithm and the input requirements of the mesh generation method are gradually
adopted in order to cascade them. The separate algorithms’ borders are dissolved, yield-
ing our final algorithm.

46

3.3.1 Relaxing previous assumptions

Dropping Asmp3. In section 3.1 we assumed that all segments are smaller than their
minimal distance. We used this assumption for two implications: (1) The constrained
segments are Delaunay elements on initialization and (2) splitting a constrained segment
does not encroach on another.

If we prepend the application of Rule Set Q (p. 43) to Rule Set S (p. 30), then property
(1) is satisfied. We design extended rule sets of Rule Set S (p. 30) that maintain the
properties that were essential for the proofs in section 3.1 but do not assume (2).

Rule Set S+

S1 If a constrained segment e is not shorter than le, insert its midpoint
S2 as before
S3 as before

Rule Set S+ (p. 47) is no different from Rule Set S (p. 30) apart from a finite re-
finements due to rule S1 before the requirements of Asmp3 are met and the proofs of
section section 3.1 apply. The number of points added by the application of S1 is upper
bounded by k · 2n+1 where k = |E| and n = dlog2

l
le

, l upper bounding the length of the
segments of E. Figure 3.6 shows that the strategy inserts unnecessarily many points and
we propose the more adaptive Rule Set S++ (p. 48).

a

b

c

d
e

f

Figure 3.6: Superfluous refinements in the conformation step. Planar cases (left, center):
Segments a, b, c, d are not encroached, hence would be in the Delaunay triangulation of
the large points. The algorithm inserts the small points nevertheless to have all seg-
ments smaller than the minimal distance. Skew case (right): Skew segments e, f are no
more encroached after midpoints have been inserted, algorithm inserts the small points
nevertheless.

47

Rule Set S++

S1 If a constrained segment e is encroached, insert its midpoint
S2 as before
S3 as before

For Rule Set S++ (p. 48) it looks as if it generates only a subset of points of the
result of Rule Set S (p. 30). However we cannot guarantee that because the Delaunay
triangulations differ and the point insertions depend thereon. However the property we
have to maintain is the bounded insertion radius. We did not exploit Asmp3 in the proofs
concerning S2 and S3. We replace RuleS1 (p. 31).

Lemma 3.3.1.1 (Termination with S++). Theorem 3.1.2.1 applies for Rule Set S++ (p.

48) also, replacing the definition of κ1 in lemma 3.1.2.3 with κ1 = minp,q∈P0{le, d(p, q)}.

Proof. If no constrained segment is encroached after point is inserted due to rule S2 or
S3, nothing has to be shown.
If a constrained segment e is encroached by a point p inserted due to rules S2 or S3,
then p itself is on a constrained segment e′. e′ is not subsegment of the same segment
as e. Further the point q to be inserted in e has insertion radius d(p, q), because no other
point is within the diameter ball of e. We can bound d(p, q) ≤ le.
If a constrained segments is encroached by a point inserted due to rule S1, the same
holds.

In lemma 3.1.2.3 the induction hypothesis holds and hence the theorem follows. �

Relaxing Asmp2. We relax the incidence assumption. In Rule Set S+ (p. 47) inci-
dent constrained segments might induce point insertions due to rule S1. We briefly re-
view why and emphasise that the results of these observations have already been consid-
ered in when designing the preparatory algorithm (Rule Set Q (p. 43)) in section 3.2:

Let e1, e2 be two constrained segments incident at v and](e1, e2) = α. If α ≥ π
2 . Then

no point on e1 can ever encroach e2 and conversely because e1 is entirely outside of the
diametral sphere of e2.
If π

2 > α ≥ π
3 , then this is no longer true. With the preparatory step done we can as-

sume that e1, e2 have the same length. If a facet (S2) or tetrahedron rule (S3) triggers

48

the refinement of, say e1, then a refinement of e2 will reassure this property. In theo-
rem 3.1.2.1 showing termination of Rule Set S (p. 30) we assumed that rule S1 is not
triggered after the preparatory step. This property has been relaxed Rule Set S++ (p.
48) for isolated constrained segment configurations. Now rule S1 might be provoked
also for constrained segments incident to e1. For the point p1 inserted in e1 we proved
that it satisfies condition D1 and D2 of theorem 3.1.2.1, i.e. its insertion radius is lower
bounded. Because e2 was not encroached before e1 was refined, there can be no point
in its diametral sphere apart from p1. In addition r(p1) = d(p1, v) = d(p2, v) and by
the angle assumption d(p1, p2) ≥ r(p1). Hence r(p2) has the very same insertion radius.
The same is true for all other points inserted around v due to the insertion of p1 (as long
as all angles that link the insertions are not smaller than π

3). We proceed with a short
note on the possible amount of insertions triggered in this configuration. Note that there
might be (finite) interrelations with non-incident segments also.
For a ball with radius r the volume of a spherical sector is 2

3πr3(1 − cos γ

2) where γ the
maximal angle of the cone, The small computation

n
2
3
πr3(1 −

√
3

2
) ≤

4
3
πr3

n ≤
4

2 −
√

3
≈ 14.9

shows that there can be at most 14 non-intersecting spherical sectors of angle ≥ π
3 which

is hence a bound for the number of points inserted around v due to p1.
As a matter of fact, splitting one of the incident segments of equal length does not
encroach the other segment. Further refinements of the part being incident to the star
vertex will eventually encroach on the other segment - a property that will be exploited
later. We state it here as a

Lemma 3.3.1.2 (Angle depending mutual encroachment of equally long incident seg-
ments). Let a, b two incident segments of length l with midpoints ma,mb and 0 <](a, b) =

α < π
2 . Then

α ≥
π

3
⇐⇒ ma does not encroach on b.

Proof. ma encroaches on b iff d(ma,mb) < l
2 . By the law of cosine d(ma,mb)2 = l2

2 (1 −

49

cosα), yielding

d(ma,mb) <
l
2
⇔

l2

2
(1 − cosα) <

l2

4
⇔ α <

π

3

Furthermore the line containing a is a secant to the diametral sphere of b. �

Difficulties arise for α < π
3 . Not only is it true that a refinement of e1 ultimately en-

croaches e2 by lemma 3.3.1.2, but also the insertion radius of points inserted after p1 is
upper bounded by their mutual distance, which depends on the length of the original seg-
ments and α. This necessarily crashes the termination proof given for theorem 3.1.2.1.
We will discuss this later.

We propose Rule Set T (p. 50) as the composition of Rule Set Q (p. 43) and Rule Set
S++ (p. 48). A constrained segment is called bad, if (1) it is incident to a star vertex pi

and has length larger than lmin,i

3 , (2) it is incident to a star vertex and is longer than some
other segment incident to the same star vertex, or (3) if it is encroached.

Rule Set T

T1 If a constrained segment e is bad

T1.1 if e is incident to a star vertex pi and has length >
lmin,i

3 , insert the
point at distance lmin,i

3 from pi on e
T1.2 else insert the midpoint of e

T2 If a facet f does not have its three vertices on ∂O or has a surface Delaunay
ball B(c, r) with ratio r

σ(c) > α, then:

T2.1 if c is included in a segment diameter ball B(c′, r′), insert c′

T2.2 else insert c

T3 If a tetrahedron t with circumcenter c has a circumradius r greater than σ(c)
or radius-edge ratio r

lmin
greater than B, then

T3.1 if c is included in a segment diameter ball B(c′′, r′′), insert its center
c′′

T3.2 else if c is included in a surface Delaunay ball B(c′, r′) and c′ is
included in a segment diameter ball B(c′′, r′′), insert c′′

T3.3 else if c is included in a surface Delaunay ball B(c′, r′) insert c′

T3.4 else insert c

50

We briefly argue that this indeed is nothing but a composition:

• For all non-free star vertices, Q1 inserts points on all segments incident to pi at
distance lmin

3 from p. T1.1 mimics this because all non-free star vertices have
at least one bad incident segment. The order of point insertions is extraneous
because it does not depend on the Delaunay triangulation but only on the initial
point set and E. If Q1 is fulfilled (T1.1 has been applied finite times), T1.1 will
never be applied again.

• For Q2 and Q3 we cannot explicitly state that the order of point insertions is
equivalent to those performed by T1.2 but we claim that the results are. Both
rules of Rule Set Q (p. 43) insert midpoints of segments, so does T1.2. By the
adapted notion of a bad segment the same cases are considered. The resulting
point sets are the same basically because the fact that a point encroaches on a
segment cannot be abolished by another point insertion than the segment splitting.
As a consequence, the point sets at the time, when T1 is satisfied for the first time
and when the preparatory algorithm is done, coincide.

3.3.2 Termination and Output guarantees

In terms of input to the algorithm, we want to clearly distinguish the three cases for
Rule Set T (p. 50): The algorithm terminates provably; the algorithm does provably not
terminate; and we did not show any termination statement. We discuss the guaranteed
quality of result and investigate whether we were able to provide an upgrade to the
original method by Oudot et al. (2005).

If E ⊂ ∂O and ∂O smooth. Furthermore σ ≤ 0.09dM and the minimal angle in E

not smaller than π
3 . If α and B are chosen adequately (theorem 3.1.2.1) then the the

application of Rule Set T (p. 50) terminates and the result is a good approximation
of the domain O because of theorem 2.3.4.2. All elements have size at most σ. The
resulting mesh is not necessarily a high quality mesh w.r.t. minimal dihedral angle but
post-processing methods can be applied, e.g. Edelsbrunner et al. (2000) or Cheng et al.
(2000).

If the minimal angle α0 in E is smaller than π
3 and B < 1

2 sinα0
then the algorithm will not

terminate.

51

Discussing Asmp1. In section 3.1 we assumed that the set of constrained segments
is entirely contained in the domain boundary. This assumption is a strong limitation
because only few boundaries exhibit regions where segments can be embedded, e.g.
surfaces with planar regions or ruled surfaces.

Segments could also be prescribed in the interior of the domain O. We claim that as
long as there is no intersection with the domain boundary ∂O, the Rule Set T (p. 50)
can be applied as-is. Termination follows from a lower bound on the insertion radius,
which can be derived for all segment configurations not exhibiting an angle smaller than
π
3 .

Segments, whose endpoints are in ∂O but that are not entirely contained in the domain
boundary, are problematic w.r.t. the termination proofs shown, because the points in-
serted when splitting into subsegments are not part of the boundary. Hence they will
eventually be vertices of a facet not having its three vertices on the boundary (compare
rule R1, S2, T2) and cause point insertions that are likely to encroach on the subseg-
ments again. To overcome this problem all points inserted on constrained segments
are declared points of the boundary themselves, although this might not conform with
the oracle. We claim that no fatal difficulties are introduced by this ambiguity as long
as the constrained segment is close enough to the actual boundary in terms of desired
discretisation fineness.

3.3.3 Discussion

Our goal was to provide an extension of Oudot et al. (2005) that enables the preservation
of piecewise linear features. We came up with a strategy that integrates into the original
method and proved that none of the constrained segments will be violated during the
mesh generation process. Our strategy is guaranteed to terminate if no small angle is
prescribed by the set of constrained segments. Our algorithm transfers the approxima-
tion results of Oudot et al. (2005) and obtains a good geometric accuracy for smooth
surfaces.
We are lacking some technical result, especially if the domain boundary is not smooth:
In the resulting mesh, no subsegment of the constrained segments will be encroached
indeed but we did not prove that the subsegments are in the boundary of Del|Oi , because
the sizing field cannot be assumed to imply the ε-sampling of the domain boundary in
that region (there is no lemma similar to lemma 2.3.5.1). As a consquence our algorithm

52

assures to maintain the prescribed features, provided the sizing criterion implies a suffi-
ciently dense sampling, although we have no theoretical indicator for what sufficiently
dense means.

We motivated the extension of the method of Oudot et al. (2005) by the use of the oracle,
because it is particularly advantageous when meshes for objects that are not originally
combined have to be generated. We highlighted that the oracle avoids computing the
intersections explicitly in order to obtain a single consistent domain representation. Still
we cannot preserve features not know explicitly with our extension.
It does apply for cases though, where objects have to be merged and features of the
separate domains have to be preserved. In other words, if geometric features do not
result from the fusion of the separate domains or if they can be estimated a-priori with
less computational effort than an explicit boundary fusion, then our extension offers a
method to generate adequate meshes of the overall domain.

53

4 Implementation and Applications

4.1 Implementation

An algorithm corresponding to Oudot et al. (2005) along with the multi-material adap-
tation proposed by Pons et al. (2007) is available in CGAL since at least version 3.5.
Our current implementation is based on CGAL 3.7 (see Alliez et al. (2010)). Some
implementation details differ from the assumptions of the main approximation theo-
rems (see theorem 2.3.4.1, theorem 2.3.4.2): The input domain boundary might not be
smooth, e.g. if triangular surfaces or voxel data describe the domain. Further the initial
point set is not necessarily guaranteed to meet the presets defined in Boissonnat and
Oudot (2005). Lastly the sizing field is not checked to be Lipschitz continuous neither
necessarily satisfying the medial axis distance property.

The CGAL library has been integrated into the framework of ZIBAmira (see Stalling
et al. (2005)), currently version 2012.03. ZIBAmira offers data structures to handle
various different types of data and provides tools to visualize them adequatly.

A hierarchical oracle. An oracle has been implemented that defines the domain to
be meshed. It allows to implicitly perform Boolean operations, because the mesh gener-
ation algorithm itself does only require two kinds of query operations: (1) determination
of the material (domain index) which a given point belongs to and (2) computation of
a point where a given segment, ray or line intersects a domain boundary. Being able to
perform computations for (1), (2) can always be implemented by iterative bisection as
a fallback technique. The hierarchical oracle essentially is the maintenance of a priori-
tized list of input domains, such that point queries are passed to lower priority domains
if they are outside all higher prioritized inputs. That way the oracle is a blackbox that
performs the Boolean operations on the input domains without explicitly computing
the intersections and not caring for inconsistencies in data type and shape. The data

55

Figure 4.1: Using the mesh generation algorithm in ZIBAmira. ZIBAmira object pool -
upper part: The separate subdomains are connected sequentially to the mesh generation
object in the ZIBAmira object pool. Additionally a constraint surface with associated
surface path set containing the set of constrained segments is connected to the mesh
generation module; Mesh generation module ports - lower part: Instead of a sizing field
covering the whole domain space, the quality criteria can be bounded by constants.
They can be defined separately for each material. Also it is possible to treat a material
of a domain as cut, i.e. it will be treated such that all points falling within this material
are handled as points outside of any domain with same or lower priority.

types that can currently be handled are (1) watertight triangular surface meshes with ex-
actly two triangles joining at an edge, (2) labeled uniform voxel grids, and (3) implicit
spheres, i.e. given by midpoint and radius.
The hierarchical oracle is what users of the software consider the most useful feature.

The features to be preserved are defined by attaching a vertex path set, i.e. a set of
linearly connected nodes, to the mesh generator. In ZIBAmira suitable path sets can be
defined on triangulations using the Dijkstra connector or, if beginning with an arbitrary

56

surface path set, by retriangulating the surface according to the paths.

If specific points of the domain boundary are known a-priori these can be added to the
initial point set in order to speed up the mesh generation process or simply to preserve
the point set. The module offers a port to connect a geometry containing these points.

An additional option allows to change the way the materials are assigned to the tetra-
hedra. While the approach by Pons et al. (2007) assigns the materials according to
the location of the circumcenters, in our implementation it is also possible to use the
barycenter. This is an option in cases where the sizing field cannot guarantee that cir-
cumcenters of tetrahedra are mapped to the right domain by a sufficiently dense surface
sampling.

We started to implemented a strategy to additionally handle planar input polygons (also
non convex) and the according software layer has been added between the segment
preservation and the facet layer. For each polygon G, let H by the hyperplane which
contains the polygon and let P|G be the set of points in P that are contained in G. Then
by assumption all bounding segments of the polygon are present in the conforming sense
due to the higher priority preservation of the segments. Hence the 2-dimensional affine
Delaunay triangulation Del|H,2(P|G) of P|G within H yields a triangular subdivision of G.
Comparing the connectivity in Del|H,2(P|G) to the connectivity in Del(P) and determining
the missing triangles, provides a good guess where to insert further points (namely at
their circumcenters) in order to recover the faces in 3d space. The implementation of
this strategy has not been completed. Proofs on achievable quality or termination of the
corresponding algorithm have not been investigated.

4.2 Application example

We applied our implementation to an example from orthopedic surgery. In Galloway
et al. (2010) finite element meshes of implanted tibiae were generated to compute strains
at the bone-implant interface. The setup is described in fig. 4.2. The meshes in this
previous study were generated using an advancing-front approach. A method dedicated
to generate a single consistent surface representation of the bone-implant compound has
been developed in order to have a valid input for the mesh generation process.

We randomly selected one hundred virtual total knee replacement settings from that
study, including geometric representations of the tibia and the tibial component. For

57

Figure 4.2: Mesh setup for tibial im-
plant integration. Cross section of
aligned bone and implant geometry.
The enclosed volumes are inconsistent
because the boundaries mutually pene-
trate. Additionally the orange rectan-
gle specificies where protruding bone
should be removed. The implant is
prior to the hierarchical oracle. The
cutting region was set before the bone
in order to remove the superfluous
parts.

Figure 4.3: Resulting mesh. High geo-
metric accuracy is obtained at the im-
plant boundary, notably at the sharp
features. Mesh size grades down where
elements are far from the implant-bone
material interace. Snapshots created
using ZIBAmira 2012.03.

each implant the region where protruding bone is removed was given and its sharp
edges were marked as line segments to be preserved. The one hundred datasets were
then meshed with our implementation corresponding to Rule Set T (p. 50) and with
the mesh generation method available in CGAL 3.7, corresponding to the method of
Pons et al. (2007) and referred to as the featureless approach. In both setups the desired
quality criteria were chosen as follows: (1) a maximal radius-edge ratio of 1.1 for all
materials, (2) a maximal circumradius of 1 mm for the implant and 3 mm for the bone
and (3) a maximal facet distance of 0.1 mm to approximate the surfaces for the implant
and 2 mm for the bone material. The results of both approaches were post-processed by
the sliver removal methods available in CGAL 3.7.

The tetrahedral meshes generated with our implementation met the quality criteria with
437,000 tetrahedra on average (range 295,000 to 707,992). The number of tetrahedra
generated with the featureless approach was significantly larger with an average number
of 900,898 tetrahedra per mesh (range 614,234 to 1,533,011). For the meshes generated
by our method, the average minimal dihedral angle was 8.72◦(±1.31◦). The models that

58

where generated using an advancing front approach obtained an average minimal dihe-
dral angle of 4.09◦(±3.18◦).
We attribute both results to the geometric configuration of bone and implant, see fig. 4.4.

Figure 4.4: (a) The advancing-front approach preserves the surface triangulation, which
enclose the volumes to fill with tetrahedra. It generates distorted elements in regions
where implant and bone surface leave small gaps. (b) The featureless approach inserts
many elements in the vicinity of these gaps to accurately recover the geometry of the
implant. With the radius-edge ratio specified, that even leads to smaller elements on the
bone surface. (c) These problems do not occur with the guided point insertion in our
method.

4.3 Conclusion

We have extended the 3d mesh generation algorithm that is present in CGAL 3.7 to
preserve prescribed segments. The implementation has been performed within the envi-
ronment of ZIBAmira in order to benefit from its existing tools. A hierarchical oracle,
which allows to implicitly perform some Boolean operations on the input data, has been
implemented to allow for easy definition of the desired domain without time-consuming
preprocessing. Where the set of constrained segments was benign w.r.t. angle of inci-
dent segments, practical experiments performed way better than the results of our ter-
mination proofs were able to guarantee.

59

5 Discussion and Conclusion

5.1 Conclusion

We investigated tetrahedral mesh generation in the context of generating discretisations
of three-dimensional domains to perform finite element computations. Such a setting
poses conflicting demands on a mesh, whose handling is addressed by several mesh
generation methods. Among them, Delaunay refinement strategies promise provable re-
sults while simultaneously being applicable to various setups. In settings where a mesh
has to be derived for objects that are not originally combined, the creation of an initial
consistent boundary representation is an essential step in the mesh generation process.
Such a boundary representation can be deficient or impose geometric constraints that
affect the mesh generation process although they are not relevant for the finite element
computation. The approach employing the oracle abstracts the domain and avoids these
problems. However, geometric features cannot be preserved explicitly and a good ap-
proximation tends to introduce numerous superfluous elements in their vicinity.

We proposed a method to extend the oracle-based approach by Oudot et al. (2005) and
proved that our algorithm terminates while preserving any set of segments not exhibit-
ing small angles. Our implementation provides a hierarchical oracle that allows for an
intuitive setup if simple Boolean operations describe the mutual relations of separate
input domains. An example, based on a recent study where finite element meshes were
required, highlights that our method simplifies mesh generation for specific setups while
being able to provide good quality results.

61

5.2 Discussion

The concept of keeping the domain abstract to the mesh generation method offers great
advantages in practice because time consuming and error-prone precomputations can be
avoided. It is inherent to the oracle approach that the domain is not known explicitly
by the mesh generation method. But if point insertion has to be guided by geometric
features of the domain further knowledge has to be incorporated.

Boltcheva et al. (2009) observed this problem when generating tetrahedral grids for
multi-labeled image data. They propose a method that extracts multi-material junctions
from the input data, samples them according to a user-given parameter and preserves
the edges connecting the sampled points throughout the mesh generation process. The
mesh generator terminates but fails to obtain provable (or w.r.t. the constrained junctions
optimal) quality.

Our approach assumes that feature segments are given as an input to the algorithm but
we are not restricting to a specific input data representation. The constrained segments
will ultimately be preserved in the Delaunay triangulation of the underlying mesh gen-
erator. But the method does not guarantee to terminate for all possible configurations.
Further no proof is given that the segments actually represent the feature in the resulting
mesh if the input is not smoothly bounded. The quality bounds that have been provided
are not useful in practical application.

Preservation of segments is currently achieved by not allowing vertices inside their di-
ametral balls. This criterion is not one-to-one. Diametral lenses provide a smaller region
of encroachment. A one-to-one criterion would actually evaluate the encroachment of
all tetrahedra that are incident to the respective edge. Also there is no stringency to split
segments at their midpoint. A sophisticated splitting strategy, e.g. splitting at virtually
or actually intersecting Voronoi facets could be a subject of further investigation (note
that such points are not generally available).
W.r.t. feature preservation the restriction to segments is inconsequent because it lacks
the generality of the oracle approach. The problem of generating Delaunay triangula-
tions for PSCs incorporates the preservation of smooth curve segments and a strategy
has been proposed in Cheng et al. (2010). To our knowledge this strategy has not been
explicitly applied to the oracle approach by Oudot et al. (2005).

62

Future work. Further investigation in our method should refine the proof of termi-
nation and improve the bounds in order to provide useful shape quality guarantees too.
This equally concernces the results of Oudot et al. (2005) as their radius-edge ratio
bound is never below 4. A sizing field implying the approximation guarantees through
the dense sampling of the domain boundary is currently required in the oracle approach.
If possible at all, a reliable strategy to obtain a suffiently dense sampling without explic-
itly computing a sizing criterion would be of great use in practice.

We plan to implement a strategy like the Terminator proposed in Shewchuk (1998)
in order to provide termination guarantee for all configurations of constrained seg-
ments. Furthermore heuristic approaches to remove slivers can be easily integrated
in the criteria-driven refinement method and are desirable in pratical application (see
Shewchuk (1997)) - certainly a termination criterion for such a strategy should be pro-
vided. It is planned to implement the possibility to incorporate a lower bounding sizing
field.

63

Bibliography

Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. (2005). Variational tetrahe-
dral meshing. ACM Transactions on Graphics (TOG), 24(3):617–625.

Alliez, P., Rineau, L., Tayeb, S., Tournois, J., and Yvinec, M. (2010). 3D mesh gen-
eration. In CGAL User and Reference Manual. CGAL Editorial Board, 3.7 edition.
http //www.cgal.org/Manual/3.7/doc html/cgal manual/packages.html#Pkg Mesh 3.

Boissonnat, J. and Oudot, S. (2005). Provably good sampling and meshing of surfaces.
Graphical Models, 67(5):405–451.

Boltcheva, D., Yvinec, M., and Boissonnat, J. (2009). Mesh generation from 3d multi-
material images. Medical Image Computing and Computer-Assisted Intervention–

MICCAI 2009, pages 283–290.

Bowyer, A. (1981). Computing dirichlet tessellations. The Computer Journal,
24(2):162–166.

Cheng, S., Dey, T., Edelsbrunner, H., Facello, M., and Teng, S. (2000). Silver exudation.
Journal of the ACM (JACM), 47(5):883–904.

Cheng, S., Dey, T., and Ramos, E. (2010). Delaunay refinement for piecewise smooth
complexes. Discrete & Computational Geometry, 43(1):121–166.

Cheng, S., Dey, T., Ramos, E., and Ray, T. (2004). Quality meshing for polyhedra with
small angles. In Proceedings of the twentieth annual symposium on Computational

geometry, pages 290–299. ACM.

Chew, L. (1989). Guaranteed-quality triangular meshes. Technical report, DTIC Docu-
ment.

Dey, T. (2007). Curve and surface reconstruction: algorithms with mathematical anal-

ysis, volume 23. Cambridge Univ Pr.

65

Dey, T. and Levine, J. (2009). Delaunay meshing of piecewise smooth complexes with-
out expensive predicates. Algorithms, 2(4):1327–1349.

Edelsbrunner, H. and Harer, J. (2010). Computational topology: an introduction. Amer
Mathematical Society.

Edelsbrunner, H., Li, X., Miller, G., Stathopoulos, A., Talmor, D., Teng, S., Üngör, A.,
and Walkington, N. (2000). Smoothing and cleaning up slivers. In Proceedings of

the thirty-second annual ACM symposium on Theory of computing, pages 273–277.
ACM.

Galloway, F., Seim, H., Kahnt, M., Nair, P., Worsley, P., and Taylor, M. (2010). A large
scale finite element study of an osseointegrated cementless tibial tray.

Hege, H., Stalling, D., Seebass, M., and Zockler, M. (1997). A generalized marching
cubes algorithm based on non-binary classifications.

Löhner, R. and Parikh, P. (1988). Generation of three-dimensional unstructured grids by
the advancing-front method. International Journal for Numerical Methods in Fluids,
8(10):1135–1149.

Miller, G., Talmor, D., Teng, S., Walkington, N., and Wang, H. (1996). Control vol-
ume meshes using sphere packing: Generation, refinement and coarsening. In Fifth

International Meshing Roundtable, pages 47–61.

Oudot, S., Rineau, L., and Yvinec, M. (2005). Meshing volumes bounded by smooth
surfaces. In Proceedings of the 14th International Meshing Roundtable, pages 203–
219. Springer.

Owen, S. (1998). A survey of unstructured mesh generation technology. In 7th Interna-

tional Meshing Roundtable, volume 3. Citeseer.

Pons, J., Ségonne, F., Boissonnat, J., Rineau, L., Yvinec, M., and Keriven, R. (2007).
High-quality consistent meshing of multi-label datasets. In Information Processing

in Medical Imaging, pages 198–210. Springer.

Radovitzky, R. and Ortiz, M. (2000). Tetrahedral mesh generation based on node in-
sertion in crystal lattice arrangements and advancing-front-delaunay triangulation.
Computer Methods in Applied Mechanics and Engineering, 187(3):543–569.

66

Rineau, L. and Yvinec, M. (2007). A generic software design for delaunay refinement
meshing. Computational Geometry, 38(1-2):100–110.

Rineau, L. and Yvinec, M. (2008). Meshing 3d domains bounded by piecewise smooth
surfaces. In Proceedings of the 16th International Meshing Roundtable, pages 443–
460. Springer.

Ruppert, J. (1995). A delaunay refinement algorithm for quality 2-dimensional mesh
generation. J. Algorithms, 18(3):548–585.

Schöberl, J. (1997). Netgen an advancing front 2d/3d-mesh generator based on abstract
rules. Computing and visualization in science, 1(1):41–52.

Shewchuk, J. (1997). Delaunay refinement mesh generation. Technical report, DTIC
Document.

Shewchuk, J. (1998). Tetrahedral mesh generation by delaunay refinement. In Proceed-

ings of the fourteenth annual symposium on Computational geometry, pages 86–95.
ACM.

Shewchuk, J. (2002). What is a good linear finite element? interpolation, conditioning,
anisotropy, and quality measures (preprint). University of California at Berkeley.

Si, H. (2006). A quality tetrahedral mesh generator and three-dimensional delaunay
triangulator. Weierstrass Institute for Applied Analysis and Stochastic, Berlin, Ger-

many.

Si, H. and Gärtner, K. (2005). Meshing piecewise linear complexes by constrained
delaunay tetrahedralizations. In Proceedings of the 14th international meshing

roundtable, pages 147–163. Springer.

Stalling, D., Westerhoff, M., and Hege, H.-C. (2005). Amira: A highly interactive
system for visual data analysis. In Hansen, C. D. and Johnson, C. R., editors, The

Visualization Handbook, pages 749 – 767. Elsevier.

Watson, D. (1981). Computing the n-dimensional delaunay tessellation with application
to voronoi polytopes. The computer journal, 24(2):167–172.

Yang, Y., Yong, J., and Sun, J. (2005). An algorithm for tetrahedral mesh generation
based on conforming constrained delaunay tetrahedralization. Computers & Graph-

ics, 29(4):606–615.

67

	Motivation
	Introduction
	Challenges in tetrahedral mesh generation
	Structure of the thesis

	Related work
	Tetrahedral mesh generation
	General definitions
	Decomposition of space
	Voronoi diagrams
	Delaunay triangulations
	Delaunay triangulation properties

	Oracle-based volume meshing
	Domain description and approximation
	Generic Delaunay refinement scheme
	Oracle-based algorithm
	Output guarantees and termination
	Limitations of the original oracle-based approach

	Preserving segments in a Delaunay triangulation
	Preserving isolated segments
	Algorithm
	Output guarantees and termination

	Preparing arbitrary segments
	Algorithm
	Termination

	Extended mesh generation algorithm
	Relaxing previous assumptions
	Termination and Output guarantees
	Discussion

	Implementation and Applications
	Implementation
	Application example
	Conclusion

	Discussion and Conclusion
	Conclusion
	Discussion

