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typical optimization problems

max f(x) or min f(x)] |minc'x minc’x
, Ax=a Ax=a
g(x)=0, i=L2,..,k Be<h Be<h
hj(X)SO, j=1,2,...,m x>0 x>0
xeR"(and x € 5) (xeR") somex; € Z
(xek") (xe{O,l}n)
~general® (linear)
(nonlinear) linear 0/1-
program program mixed-
NLP LP integer

o program
program = optimization problem 1p vp
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Linear Programming

max ¢,x, +¢,x, +...+¢ x,
subject to

a, X, +a,x, +..+a, x =b

In""n

a,x, +a,x, +..+a, x =b,

a x +a ,x,+..+a x =b

m

X5 X5y X, 20

1B

Martin
Grotschel

max ¢’ x
Ax=5b
x>0

linear program
in standard form
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Linear Programming:
a very brief history

= 1826/1827 Jean Baptiste Joseph Fourier (1786-1830):
rudimentory form of the simplex method in 3 dimensions.

= 1939 L. V. Kantorovitch (1912-1986): Foundations of
linear programming (Nobel Prize 1975)

= 1947 G. B. Dantzig (1914-2005): Invention of the
(primal) simplex algorithm

max ¢’ x
il = 1954 C.E. Lemke: Ax=b
i Dual simplex algorithm >0

= 1953 G.B. Dantzig,
1954 W. Orchard Hays, and
1954 G. B. Dantzig & W. Orchard Hays:

B . : -
vl  Revised simplex algorithm

Grotschel
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Dantzig and Bixby

George Dantzig and

Bob Bixby
(founder of CPLEX and GUROBI)

at the International
Symposium on Mathematical
Programming,

Atlanta, August 2000

This lecture employs a lot of
information I obtained from
Bob and some of his slides.
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Linear Programming:
a very brief history

= 1826/1827 Jean Baptiste Joseph Fourier (1786-1830):
rudimentory form of the simplex method in 3 dimensions.

= 1939 L. V. Kantorovitch (1912-1986): Foundations of
linear programming (Nobel Prize 1975)

= 1947 G. B. Dantzig (1914-2005): Invention of the simplex
algorithm

max ¢’ x
Ax=>
x>0
. Today: In my opinion and from an economic point of view,
linear programming is the most important development of
Zigl mathematics in the 20th century.

Martin

Grotschel
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Optimal use of scarce ressources
foundation and economic interpretation of LP

Leonid V. Kantorovich  Tjalling C. Koopmans
Nobel Prize for Economics 1975
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Stiglers ,,Diet Problem™:
~The first linear program"

Min x1 + X2 costs
2x1+ x2>3 protein
X1 +2x2 >3 carbohydrates
x1 >0 potatoes
x2 >0 beans
minimizing the George J. Stigler
cost of food Nobel Prize in

economics 1982




Sets n nutrients / calorie thousands , protein grams , calcium grams , iron milligrams vitamin-a thousand ius, vitamin-b1 milligrams, vitamin-b2
milligrams, niacin milligrams , vitamin-c milligrams /

f foods / wheat , cornmeal , cannedmilk, margarine , cheese , peanut-b , lard liver , porkroast, salmon , greenbeans, cabbage , onions ,
potatoes spinach, sweet-pot, peaches , prunes , limabeans, navybeans /

Parameter b(n) required daily allowances of nutrients / calorie 3, protein 70, calcium .8 , iron 12 vitamin-a 5, vitamin-b1 1.8, vitamin-b2 2.7, niacin 18,
vitamin-c 75 /

Table a(f,n) nutritive value of foods (per dollar spent)

calorie protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c

(1000) @ ) (mg) (1000iu) (mg) (mg) (mg) (mg)
wheat 44.7 1411 2.0 365 55.4 33.3 441
cornmeal 36 897 1.7 99 30.9 17.4 7.9 106
cannedmilk 8.4 422 15.1 9 26 3 23.5 11 60
margarine 20.6 17 .6 6 55.8 .2
cheese 7.4 448 16.4 19 28.1 .8 10.3 4
peanut-b 15.7 661 1 48 9.6 8.1 471
lard 41.7 .2 .5 5
liver 2.2 333 .2 139 169.2 6.4 50.8 316 525
porkroast 4.4 249 3 37 18.2 3.6 79
salmon 5.8 705 6.8 45 3.5 1 4.9 209
greenbeans 2.4 138 3.7 80 69 4.3 5.8 37 862
cabbage 2.6 125 4 36 7.2 9 4.5 26 5369
onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184
potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522
spinach 1.1 106 138 918.4 5.7 13.8 33 2755
sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912
peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57
prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257
limabeans 17.4 1055 3.7 459 5.1 26.9 38.2 93
navybeans 26.9 1691 11.4 792 38.4 24.6 217

Positive Variable x(f) dollars of food f to be purchased daily (dollars)

Free Variable cost total food bill (dollars)

Equations nb(n) nutrient balance (units), cb cost balance (dollars) ; http://WWW_gams_Com/mOdI|b/||bhtm|/d|et_ htm
nb(n).. sum(f, a(f,n)*x(f)) =g= b(n); cb.. cost=e= sum(f, x(f));

Model diet stiglers diet problem / nb,cb /;
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Solution of the Diet Problem

Goal: Find the cheapest combination of foods that will
satisfy the daily requirements of a person!

The problem motivated by the army’s desire to meet
nutritional requirements of the soldiers at minimum cost.

Army’s problem had 77 unknowns and 9 constraints.
= Stigler solved problem using a heuristic: $39.93/year (1939)
8N Laderman (1947) used simplex: $39.69/year (1939 prices)
P first “|large-scale computation”

took 120 man days on hand operated
desk calculators (10 human “computers”)

Srissrient
.....
...........

-----
|||||

ZIB http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

Martin

Grotschel
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Commercial software
William Orchard-Hayes (in the period 1953-1954)

The first commercial LP-Code was on the market in 1954
(i.e., 57 years ago) and available on an IBM CPC
(card programmable calculator):

Code: Simplex Algorithm with explicit basis inverse, that was
recomputed in each step.

Shortly after, Orchard-Hayes implemented a version with product form of
the inverse (idea of A. Orden),
Record: 71 variables, 26 constraints, 8 h running time

e
.

ZJ BB About 1960: LP became commercially viable, used largely by oil
wabegll COMpanies.

Grotschel




The Decade of the 70’s: Theory

= V. Klee and G. J. Minty, ,,How good is the simplex

algorithm?%, in O. Shisha (ed.), Inequalities III, Academic
Press, New York, 1972, 159-172

= K. H. Borgwardt, ,,Untersuchungen zur Asymptotik der
mittleren Schrittzahl von Simplexverfahren in der linearen
Optimierung”, Dissertation, U Kaiserslautern, 1977

= L. G. Khachiyan, ,A polynomial algorithm in linear
programming", (Russian), Doklady Akademii Nauk SSR
244 (1979) 1093-1096




The Decade of the 70’s: Practice

= Interest in optimization flowered

= Large scale planning applications particularly popular

= Significant difficulties emerged
= Building applications was very expensive and very risky
= Technology just wasn't ready:
= LP was slow and
= Mixed Integer Programming was impossible.
il = OR could not really “deliver” — with some exceptions, of
course

= The ellipsoid method of 1979 was no practical success.




The Decade of the 80's and beyond
= Mid 80’s:

= There was perception was that LP software had progressed about
as far as it could.

= There were several key developments
= IBM PC introduced in 1981

= Brought personal computing to business
= Relational databases developed. ERP systems introduced.

= 1984, major theoretical breakthrough in LP
N. Karmarkar, “A new polynomial-time algorithm for linear
programming”, Combinatorica 4 (1984) 373-395
(Interior Point Methods, front page New York Times)

= The last ~25 years: Remarkable progress

= We now have three competitive algorithms:
Primal & Dual Simplex, Barrier (interior points)
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My opinion on Linear Programming

= From an commercial/economic point of view.

Linear programming is the most important
development of mathematics in the 20t century.
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Application of LP & MIP -1

= Transportation-airlines

1B

Martin
Grotschel

Fleet assignment

Crew scheduling

Ground personnel scheduling
Yield management

Fuel allocation

Passenger mix

Booking control

Maintenance scheduling
Load balancing/freight packing
Airport traffic planning

Gate scheduling/assignment

Upset recover and management

= Transportation-other

Vehicle routing

Freight vehicle scheduling and
assignment

Depot/warehouse location
Freight vehicle packing

Public transportation system
operation

Rental car fleet management

= Process industries

Plant production scheduling and
logistics

Capacity expansion planning
Pipeline transportation planning
Gasoline and chemical blending
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Application of LP & MIP - II

= Financial = Manufacturing
= Portfolio selection and = Product mix planning
optimization = Blending
= Cash management = Manufacturing scheduling
= Synthetic option development = Inventory management
= Lease analysis = Job scheduling
= Capital budgeting and rationing = Personnel scheduling
= Bank ﬁngnmal pIar?nlng = Maintenance scheduling and planning
" Accounting allocations = Steel production scheduling

= Securities industry surveillance
= Audit staff planning

= Assets/liabilities management
= Unit costing

= Financial valuation

Coal Industry
= Coal sourcing/transportation logistics
= Coal blending
= Mining operations management

= Bank shift scheduling " Forestry
= Consumer credit delinquency = Forest land management
management = Forest valuation models
= Check clearing systems = Planting and harvesting models
= Municipal bond bidding
ZIB = Stock exchange operations

= Debt financing

Martin
Grotschel
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Application of LP & MIP - III

1B

Martin
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Agriculture

Production planning
Farm land management
Agricultural pricing models

Crop and product mix decision
models

Product distribution

Public utilities and natural
resources

Electric power distribution
Power generator scheduling
Power tariff rate determination
Natural gas distribution planning

Natural %as_ pipeline
transportation

Water resource management

Alternative water supply
evaluation

Water reservoir management

Public water transportation
models

Mining excavation models

Oil and gas exploration
and production

= Qil and gas production
scheduling

= Natural gas transportation
scheduling

Communications and
computing
= Circuit board (VLSI) layout
= Logical circuit design
= Magnetic field design
= Complex computer graphics
= Curve fitting
= Virtual reality systems

= Computer system capacity
planning

= Office automation

= Multiprocessor scheduling

=  Telecommunications scheduling
= Telephone operator scheduling
= Telemarketing site selection
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Application of LP & MIP - IV

= Food processing
= Food blending
= Recipe optimization

= Food transportation logistics
= Food manufacturing logistics and

scheduling

= Health care
= Hospital staff scheduling
= Hospital layout
= Health cost reimbursement
= Ambulance scheduling
= Radiation exposure models
= Pulp and paper industry
= Inventory planning
= Trim loss minimization
=  Waste water recycling

Martin = Transportation planning
Grotschel

= Textile industry

= Pattern layout and cutting
optimization

* Production scheduling
= Government and military
= Post office scheduling and planning
= Military logistics
= Target assignment
= Missile detection
= Manpower deployment

= Miscellaneous applications
= Advertising mix/media scheduling
= Pollution control models
= Sales region definition
= Sales force deployment
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Examples: ZIB & MATHEON-projects

http://www.zib.de/Optimization/Projects/index.en.html

Production and Logistics

In arder to be ahle to organize the complex production processes of modern goods in a cost efficient way
many logistic problems have to be solved. This refers both to the operational procedures inside a single
factory as well as to the organization of manufacturing processes distrbuted over different places. At ZIB
we have experience with several projects in the area of logistics. Due to their special requirements, some
of these projects are listed under 'Online Cptimization!

[more]

Current Projects: MaTHEON-B14: Comb-Log, MaTHEON-D17: Chip Design Verification, FobotVelding
Fast Projects:  InterVarehouse

Online Optimization

In contrast to classical optimization, Gnline Oefimization deals with situations where the input data of the
problem is not known in advance. Therefore, decisions have to be made on the basis of incomplete
knowledge. The decisions of the online algorithm are sometimes subject to further constraints. COne
important feature of practical online algorithms are real-lime requirernents: the algorithm has to present a
feasible solution in a specified time frame.

[more]

Current Projects:  KollmorgenElevator, ADAC-Dispatch, Online-Flanning
Zﬂ Fast Frojects: MATHEON-C3: Online-Modular, MATHEON-CH: Online-Feopt, HTE-Survey, Printsetup,
Martin Modelling, Shelf

Grotschel
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Examples: ZIB & MATHEON-projects

http://www.zib.de/Optimization/Projects/index.en.html

Telecommunication

Telecommunication technology is one of the key technologies in our society. Fapid progress in hardware
development constantly enables new applications and services. The best example for this is UMTS . The
tough competition in this sector forces netwaork service providers to thouroughly control their investments
and to implement potential savings. At the same time, the guality of service must be improved to get and
keep news customers,

[more]

Current Projects:  MaTHEON-BY: MultiLayer, MaTHEON-B4: LIMTS, X-Wik, atesio, MEuk., ProSched,
EipomE, MLTH

Fast Projects: FAP, G-\WiN, OPADCO, Cpthet, DynFoute, StatRoute, Momentum, ST,
FoundRobin, BOSCH-FMF, B-\WiN, FPeakedness, DISCHET

Traffic

The application of mathematical optimization in public transport has been subject of successful research
for many yvears, and more and more such methods are being put to practice. ZIE has been carrying out
projects in this area for more than ten wears by nowy, mainly in operative planning. e. g., vehicle or duty
scheduling in public transport. During the last years, the application areas have widened.

[more]

Current Frojects:  MaTHEON-B15: Service Design, Trassenbdrse, Airline Crew Scheduling, Visualization
Z[l in Public Transit

- Fast Projects: MaTHEON-B1: Strategic Planning, Telebus, EMEF-DS: Duty Scheduling, BMER-VS:
Martin Wehicle Scheduling, BMBEF-IS: Integrated Wehicle and Duty Scheduling

Grotschel
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Linear Programming

. . T . T .
minc’ x| mine’ x| lmine’ x| lmine’ x
Ax=a Ax=a ||Ax=a | | Bx<b

Bx<b Bx<b x>0
> x>0

Linear program in various forms.
They are all equivalent!
ZIE There are more versions!

Martin

Grotschel
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Optimizers' dream: Duality theorems

1B

Martin
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= Max-Flow Min-Cut Theorem
The value of a maximal (s,t)-flow in a capacitated network is equal to

the minimal capacity of an (s,t)-cut.
= The Farkas Lemma
= The Duality Theorem of Linear Programming

maxc x = _ min y' b
Ax<b y'A>c"
x>0 y=0
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Important theorems

= Complementary slackness theorems

= Redundancy characterizations

= Polyhedral theory

1B

Martin
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LP Solvability

= complexity theory:

= Polynomial time solvability, solvability in strongly polynomial time

= (lasses: 7 and NP, N'P-completeness , N’P-hardness , etc.
= Linear programs can be solved in polynomial time with
= the Ellipsoid Method (Khachiyan, 1979)

= Interior Points Methods (Karmarkar, 1984, and others)

= QOpen: Is there a strongly polynomial time algorithm for the solution
of LPs?

= (Certain variants of the Simplex Algorithm run — under certain
conditions — in expected polynomial time (Borgwardt, 1977...)

= QOpen: Is there a polynomial time variant of the
Simplex Algorithm?

1B

Martin
Grotschel
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Separation

1B
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LP Solvability: Generalizations

Theorem (GLS 1981, 1988) (modulo technical details) : There exists
a polynomial time algorithm to minimize convex functions (e.g., linear
functions) over the elements of a class of convex bodies K (e. g.
polyhedra) if and only if, there exists a polynomial time algorithm that
decides, for any given point x, whether x is in K, and that, when X is
not in K, finds a hyperplane that separates x from K.

Short version:
Optimization and Separation are polynomial-time equivalent.
k| Consequence: Theoretical Foundation of cutting plane algorithms.

= Particular special case: Polynomial time separation algorithm for the
set of positive semi-definite matrices.

Consequences:

el " Polynomial time algorithm for stable sets in perfect graphs.

Rl = The beginning of semi-definite programming
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You can download this book from the
publications list on my Web page.

A Algorithms and Combinatorics 2

Martin Grotschel .
Laszl6 Lovasz http://www.zib.de/groetschel/pu

Alexander Schrijver

Geometric bnew/paper/groetschellovaszsch

Algorithms and rijveri988.pdf
Combinatorial
Optimization

Second Corrected Edition

Zﬂ- @7 Springer-Verlag

Martin
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Algorithms for nonlinear programming

= [terative methods that solve the equation and inequality sytems
representing the necessary local optimality conditions (e.g., KKT).

Xivn =X +/1idi

d. ~ "descent direction"

1

A, ~"steplength"

d, = -Vf ( X,) Steepest descent

d, =—(H(x,)) " Vf(x;)| Newton
% (Quasi-Newton, conjugate-gradient-, SQP-, subgradient...methods)

o e
.":':-Z-.-‘.
.....
...........

7 " Sufficient conditions are rarely checked.

1B
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Fourier Elimination
= Fourier, 1826/1827
= Motzkin, 1938

= Method: successive projection of a polyhedron in
n-dimensional space into a vector space of dimension n-1
by elimination of one variable.

1B e

Martin Projection on x: (x,0)
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A Fourier

step

1 ay +
1

-1 aq +

-1 anm
0 b,
. .|__copy
0 b,
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Fourier-Motzkin Elimination:

an example
min/max + x1 + 3x2 ~

N
(1) - x2 <=

(2) - x1 - x2 <=-

0
1

(3) - x1 + x2 <=3

(4) + x1 <= 3 \?\ (5) \6\
9 \

(5) + x1 + 2x2 <=

/
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Fourier-Motzkin Elimination:
an example, call of PORTA (Polymake)

DIM = 3
min/max + x1 + 3x2 INEQUALITIES_SECTION
(1) - x2 <=0 (1) - x2 <=0
(2) - x1 - x2 <=-1 (2) - x1 - x2 <=-1
(3) - x1 + x2 <=3 (3) - x1 + x2 <= 3
(4) + x1 <= 3 (4) + x1 <= 3
(5) + x1 + 2x2 <= 9 (5) + x1 + 2x2 <= 9
(6) + x1 + 3x2 - x3 <=0
BE) (1) - x1 - 3x2 + x3 <= 0

ELIMINATION ORDER
100

1B
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Fourier-Motzkin Elimination:

an example

DIM = 3 - DIM = 3

INEQUALITIES SECTION INEQUALITIES SECTION
(1) (1) - x2 <= 0 (1) - x2 <=
(2,4) (2) - x2 <= 2 (2) - x1 - x2 <=
(2,5) (3) + x2 <= 8 (3) - x1 + x2 <=
(2,6) (4) +2x2 - x3 <= -1 (4) + x1 <=
(3,4) (5) + x2 <= 6 (5) + x1 + 2x2 <=
(3,5) (6) + x2 <= 4 (6) + x1 + 3x2 - x3 <=
(3,6) (7) +4x2 - x3 <= 3 (7) - x1 - 3x2 + x3 <=
(7,4) (8) -3x2 + x3 <= 3

(7,5) (9) - x2 + x3 <= 9

(7,6) ELIMINATION_ORDER

100

1B
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Fourier-Motzkin Elimination:

an example
DIM = 3 ‘ (1,4) ( 1) -x3 <= -1

(1,7) ( 2) -x3 <= 3
INEQUALITIES SECTION (2,4) ( 3) -x3 <= 3

(2,7) ( 4) -x3 <= 11
(1) (1) - x2 <= 0 (8,3) ( 5) +x3 <= 27
(2,4) (2) - x2 <= 2 (8,4) ( 6) -x3 <= 3
(2,5) (3) + x2 <= 8 (8,5) ( 7) +x3 <= 21
(2,6) (4) +2x2 - x3 <= -1 (8,6) ( 8) +x3 <= 15
(3,4) (5) + x2 <= 6 (8,7) ( 9) +x3 <= 21
(3,5) (6) + x2 <= 4 (9,3) ( 10) +x3 <= 17
(3,6) (7) +4x%x2 - x3 <= 3 (9,4) ( 11) +x3 <= 17
(7,4) (8) -3x%x2 + x3 <= 3 (9,5) ( 12) +x3 <= 15
(7,5) (9) - x2 + x3 <= 9 (9,6) ( 13) +x3 <= 13
(7,6) (9,7) ( 14)+3x3 <= 39
ELIMINATION ORDER min = 1 <= x3 <= 13 = max
010

x1 =1 x1 =1

Z18 x2 =0 x2 = 4

Martin

Grotschel
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Fourier-Motzkin Elimination:
an example

min/max + x1 + 3x2

\\ max
(1) - x2 <=0
(2) - x1 - x2 <=-1
(3) - x1 + x2 <=3
(4) + x1 <= 3
(5) + x1 + 2x2 <= 9

@)

)

NS %

Rt //// min
ZiB T~

Martin
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Fourier-Motzkin Elimination

= FME is a wonderful constructive proof method.

= Elimination of all variables of a given inequality system
directly yields the Farkas Lemma:

Ax < b has a solution or y' 4 =0, y"b <0 has a solution
but not both.

k) = FME is computationally lousy.
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The Simplex Method
= Dantzig, 1947: primal Simplex Method

= Dantzig, 1953: revised Simplex Method
= Lemke, 1954; Beale, 1954: dual Simplex Method

= Underlying Idea: Find a vertex of the set of feasible LP
solutions (polyhedron) and move to a better neighbouring
vertex, if possible (Fourier's idea 1826/27).

1B
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The Simplex Method:
an example

min/max + x1 + 3x2

(1) - x2 <=0
(2) - x1 - x2 <=-1
(3) - x1 + x2 <=3
(4) + x1 <= 3
(5) + x1 + 2x2 9

/

1B
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The Simplex Method:
an example

min/max + x1 + 3x2

(1) - X2 <=
(2) - x1 - x2 <=-
(3) - x1 + x2 <=
(4) + x1 <=
(5) + x1 + 2x2 <=

/
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Hirsch Conjecture

If P is a polytope of dimension n with m facets then every
vertex of P can be reached from any other vertex of P on a
path of length at most m-n.

In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.

o Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of an
n-dimensional polyhedron with m facets is at most m(log n+1).

Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).

1B

Martin
Grotschel




54

arXiv:1006.2814v1 [math.CO] 14 Jun 2010

A counterexample to the Hirsch conjecture

Francisco Santos*

To Victor L. Klee (1925-2007), in memoriam'

Abstract

The Hirsch [Conjecture (1957) stated that the graph of a d-dimensional
polytope with n facets cannot have (combinatonal) diameter greater than
n —d. That 1s, that any two vertices of the polytope can be connected to
each other by a path of at most n — d edges.

This paper presents the first counterexample to the conjecture. Our
polytope has dimension 43 and 86 facets. It 1z obtained from a 5-dimensional
polytope with 48 facets which violates a certain generalization of the d-
step conjecture of Klee and Walkup.
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Computationally important idea of the
Simplex Method

Let a (m,n)-Matrix A with full row rank m, an m-vector b and
an n-vector ¢ with m<n be given. For every vertex y of the
polyhedron of feasible solutions of the LP,
max ¢’ x
Ax=>b
x>0
- there is a non-singular (m,m)-submatrix B (called basis)
| Bl of A representing the vertex y (basic solution) as follows

A=| B N

yB:B_1b9 yN:O

.......
e

21Ny Update-formulas, reduced cost calculations,

> 4 Many computational consequences:
L number of non-zeros of a vertex, ...



Numerical trouble often
has geometric reasons

SO

Where are
the points of intersection
(vertices, basic solutions)?

What you can't see with your eyes,
causes also numerical difficulties.
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Dual Simplex Method

= The Dual Simplex Method is the (Primal) Simplex Method
applied to the dual of a given linear program.

Surprise in the mid-nineties:

= The Dual Simplex Method is faster than the Primal in
practice.

One key: Goldfarb’s steepest edge pivoting rule!

= A wonderful observation for the cutting plane methods of
integer programming!

1B
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The Ellipsoid Method
= Shor, 1970 - 1979

= Yudin & Nemirovskii, 1976

= Khachiyan, 1979

= M. Grotschel, L. Lovasz, A. Schrijver,
Geometric Algorithms and Combinatorial Optimization
Algorithms and Combinatorics 2, Springer, 1988
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The Ellipsoid Method: an example

=2

%‘-’
><
—/




k =0,
N =2n(@n+ 1(C)+nidy—n®)  IH"
={x|Cx<d
Ay := R?I with R := /n2(Cd-r x| j
Initialization

ay =0
Ifk = N, STOP! (Declare P empty.) Stopping criterion
If a; € P, STOP! (A feasible solution is found.) Feasibility check
Ifa, ¢ P, then choose an inequality, say ¢” x <y, Cutting plane

of the system Cx < d that is violated by ay. choice
1
b = AkC
Vel die The
o = ay— — b Update Ellipsoid
"t Method

n° 2 ..
Ak = nzw-l(Ak n+1bb )



Ellipsoid Method

a(0)

a(1)
a(2)

feasible
solution
found
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Hoxnangst Axagemuanm saysk CCCP
1979. Tom 244, Ne 5

= VIK 519.95 MATEMATHEA
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JL T'. XAUHAH

MOJJMHOMMAJIbBHBIA AJITOPATM B IHHEWHOM
IIPOrPAMMUPOBAHHNN

(Ipedcraeaenc aradenuron A. 4. Jopodnuysiiers 4 X 1978)

P&ﬁG}IﬂTpHM CHCTeMYy H3 m..?-?-2 JUHENHBIX HEepaBeHCTB OTHOCHTE/JILHO n=>2
BEMIECTBEHHBIX MEPEMEHHBIX Xy, . .. , Xj, ..., Ly
EHIq_+ S 'F“{Iini'ngbi, I::i, 2, eeey M (1?'

k}

‘¢ TMeJBIMHE KoadunuentraMmit aq, by, [lvern

L=[ y 1{1gz(|aﬁ¥+1)*’rZIﬂgg(ibii-ﬁ-i}‘{-iuginm]+1 @)
1==1 .

i =1

€CTh JUUIHA BXOAa CHCTEMBI, T. €. wHcao ciuMBoios O w 1, BeoOXoguMeIxX A7s
sanuen (1) B IBOUYHOIT cHeTEMe CUMHCTOHI,
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May 1980

New York Times, Nov. 7, 1979
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By MALCOLM W. BROWNE

pz. Al

By MALCOLM W. BROWNE

A surprise discovery by an obscure
Soviet mathematician has rocked the
world of mathematics and computer
analysis, and experts have begun explor-
ing its practical applications,

Mathematicians describe the discov-
ery by L.G. Khachian as a method by
which computers can find guaranteed
solutions to a class of very difficult prob-
lems that have hitherto been tackled on a
kind of hit-or-miss basis.

Apart from its profound theoretical in-
terest, the discovery may be applicable

A Soviet Discovery Rocks World of Mathematics

in weather prediction, complicated indus-
trial processes, petroleum refining, the
scheduling of workers at large factories,
secret codes and many other things,

“I have been deluged with calls from
virtually every department of govern-
ment for an interpretation of the signifi-
cance of this,” a leading expert on com-
puter methods, Dr. George B. Dantzig of
Stanford University, said in an interview,

The solution of mathematical problems
by computer must be broken down into a
series of steps. One class of problem
sometimes involves so many steps that it

New York Times (1857-Current file); Nov 7, 1979; ProQuest Historical Newspapers The New York Times (1851 - 2003)

A Soviet Discovery Rocks World of Mathematics |

could take billions of years to compute.
The Russian discovery offers a way by

which the number of steps in a solution

can be dramatically reduced. It also of-

[fers the mathematician a way of learning
‘quickly whether a problem has a solution

or not, without having to complete the en-
tire immense computation that may be
required.

According to the American journal Sci-

Continued on Page A20, Column 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Interior-Point Methods: an example

central path

~

~~

)

Often also called
Barrier Methods

(5)\

@)

intérior Point
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The Karmarkar Algorithm

(13.25) Der Karmarkar-Algorithmus.

Input: A ¢ Q™" und o ¢ Q" Zusatzlich wird vorausgesetzt, dass 71131: 0
und 71 = 0 gilt.

Output: Ein Vektor r mit Ar = 0, 1Tz = 1. = > 0 und <= < 0 oder die
Feststellung, dass kein derantiger Vektor existiert.

21 Abbruchkriterium.

(1) Inltialiskerung, Setze (24) Gilt k — N, dann hat Az = 0, 1Tx = 1, z > 0, Tz < 0 keine

Lasung, STOP!
(2.b) GiltcTr* < 2-1i-8 dann ist eine Losung gefunden. Falls & =% < 0,
dann ist =* eine Losung, andernfalls kamn wie bei der Ellipsoidme tho-

de (Satz (12.34)) aus +* gin Vektor T konstruien werden mit «"'T < 0
AT=0,1TFT =1, T = 0, STOP!

.
f=R ] P
[

N :=3n({4) + 2{c} —n)

Update.
(3) (3.a) D := diag(z*)
(3.b) T:= [I—DAT{ADQAT]"IAD—%’_’_T}E%:

(Go)ytl=lg 1L 137

2 /an—1y €l
(3.d) 2 = e DY

(3.e) k:=k+1

il

1B
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Gehe zu (2).




| Breakthrough in Problem Solving

A 28-year-old mathematician at A T.&T.
Bell Laboratories has made a starli
theoretical breakth in the solving
systems of equations that ofien grow too
vast and complex for the most powerful
computers.

The discovery, which is to be formally
published next month, is already cir-
culating rapidly through the mathematical
world. It also set off a deluge of
inquiries from houses, oil com-
of dollars at stake in problems known as
linear programming.

Faster Solutions Seen

These problems are fiendishly com-
plicated systems, ofien with thousands of
variables. They arise in a veriety of com-
mercial and government applications, rang-
ing from allocating time on & communica-
tions satellite w0 routing millions of
telephone calls over long distances, or
whenever & limited, expensive resource
must be spread most efficiently among
competing users. And investment com-
panies use them in ¢mu'"n§dponiolios with
the best mix of stocks bonds.

The Bell Labs mathematician, Dr.
Narendra Karmarkar, has devised a
radically new ure that may speed the

rootine handling of such ems
wso make it possible to mc:iiepmblms
that are now far out of reach.

“Thisis a ing result,” said Dr,
Ronald L. Graham, director of
mathematical sciences for Bell Labs in
Murray Hill, N.1.

THE NEW YORK TIMES, November 19, 1984

By JAMES GLEICK

“5cience has its moments of great pro-
gress, and this may well be one of them.”

Because problems in linear program-
ming can heve billions or more possible
answers, even high-speed computers can-
not check every one. So computers must
use a special procedure, an algorithm, 1o
examing as few answers as possible before
finding the best one — typically the one
that minimizes cost or maximizes
efficiency,

A procedure devised in 1947, the simplex
method, is now used for such problems,

Continued on Page A19, Column 1

Folding the Perfect Corner

A young Bell scientist makes a major math breakthrough

very day 1,200 American Airlines jets

crisscross the U.S,, Mexico, Canada and
the Caribbean, stopping In 1i0 cities and bear-
ing over BO.000 passengers. More than 4,000
pilots, copilots, flight personnel, mainenance
workers and baggage carriers are shuffled
among the flights; a total of 3.6 million gal.
of high-octane fuel is burned. Nuts, bols,
altimeters, landing gears and the like must be
checked at each destination. And while per-
forming these scheduling pymnastics, the
company must keep a close eye on costs, pro-
Jected revenue and profits.

Like American Airlines, thousands of com-
panies must routinely untangle the myriad
variables that complicate the efficient distribu-
tion of their resources. Solving such monstrous
problems requires the use of an abstruse
branch of mathematics knewn as linear pro-
gramming. It is the kind of math that has
frustrated theoreticians for vears, and even the
fastest and most powerful computers have had
great difficulty juggling the bits and pieces of
data. Now Narendra Karmarkar, a 28-year-old

Indian-born  mathematician  at  Bell
Laboratories in Murray Hill, N 1., after only
a years' work has cracked the puzzle of linear
programming by devising a new algorithm,
step-by-step mathematical formula. He has
translated the procedure into a program that
should allow computers w track a greater com-
bination of tasks than ever before and in a frac-
tion of the time,

- Unlike most advances in theoretical
mathematics, Karmarkar's work will have an
immediate and major impact on the real world.
“Breakthrough is one of the most abused
words in science,” says Ronald Graham, direc-
tor of mathematical sciences at Bell Labs,
**But this is one situation where it is truly ap-
propriate.”

Before the Karmarkar method, linear equa-
tions could be sclved only in a cumbersome
fashion, ironically kmown as the simplex
method, devised by Mathematician George
Dantzig in 1947, Problems are conceived of
as giant geodesic domes with thousands of
sides. Each comer of a facet on the dome

TIME MAGAZINE, December 3, 1984
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Milestones for

Interior Point Methods (IPMs)

= 1984 Projective IPM: Karmarkar — efficient in practice!?

= 1989 O(n3L) for IPMs: Renegar — best complexity

= 1989 Primal-Dual IPMs: Kojima ... — dominant since then

= 1989 Self-Concordant Barrier: Nesterov—Nemirovskii
— extensions to smooth convex optimozation

1992 Semi-Definite Optimization (SDO) and Second Order
Conic Optimization (SOCO): Alizadeh, Nesterov—Nemirovskii
—new applications, approximations, software

= 1998 Robust LO: Ben Tal-Nemirovskii
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Some LP/MIP Solvers

IBM CPLEX 12.2 www.cplex.com
Gurobi 3.0 www.gurobi.com
FICO XPress-MP 7 www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-

Optimization-Suite.aspx

Lindo 6.1 www.lindo.com

Minto 3.1 coral.ie.lehigh.edu/~minto

SCIP 2.0 scip.zib.de

CBC 2.5 projects.coin-or.org/Cbc

Symphony 5.2 projects.coin-or.org/SYMPHONY

glpk 4.43 www.gnu.org/software/glpk/glpk.htmi

|p_solve 5.5 Ipsolve.sourceforge.net

rIin
(Z1IB)
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Which LP solvers are
used in practice?

Preview summary

= Fourier-Motzkin: hopeless

= Ellipsoid Method: total failure

= primal Simplex Method: good

= dual Simplex Method: better

. = Barrier Method: for large LPs frequently better
. For LP relaxations of IPs: dual Simplex Method
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MIPLIB 1992/2010

MIPLIB - Mixed |nteger Prnblem LlBrar:,t

MIPLIE 2010
After its introduction, MIPLIB has become a standard test set used to compare the performance of mixed integer optimizers.

Since the first release in 1992 the MIPLIB has been updated several times. Now again 7 years have past since the last update in 2003. And again improvements in state-
of-the-art optimizers, as well as improvements in computing machinery have made several instances too easy to be of further interest.

Last year a group of interested parties including participants from ASU, COIN, FICO, Gurobi, IBM, and MOSEK met at ZIB to discuss the guidelines for the 2010 release
of the MIPLIB.

Involved people:

Tobias Achterberg (IBM)

Erling D. Andersen (Mosek)

Oliver Bastert (FICO)

Timo Berthold (1B, Matheon)

Rabert Bixby (Gurobi)

Gerald Gamrath (ZIB)

Ambros Gleixner (ZIB)

Stefan Heinz (ZIB, Matheon)

Thorsten Koch (ZIB, Matheon)

Alexander Martin (TU Darmstadt)

Hans D. Mittelmann (Arizona State University)
Ted Ralphs (COIN-OR, Lehigh University)
Kati Wolter (ZIB)

We would be happy if you contribute to this library by sending us hard and/or real life instances. If you have any instances you would like to add to MIPLIB,
please use the form below to submit it. The current deadline for instances is 10/1/2010!
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Independent Testing

Benchmarks for Optimization Software

by Hans Mittelmann (mittelmann at asu.edu)

The following are NEOS solvers we have installed.

BNBS, BPMPD, BPMPD-AMPL, Concorde, CONDOR, CSDP,
DDSIP, FEASPUMP, FEASPUMP-AMPL, ICOS, NSIPS,

PENBMI, PENSDP, QSOPT_EX, SCIP, SCIP-AMPL, SDPA,
SDPLR, SDPT3, SeDuMi

LINEAR PROGRAMMING

@ Benchmark of serial LP solvers (10-12-2010)

. @ Benchmark of parallel LP solvers (10-16-2010)
http://plato.asu.edu/bench.html ¢ o, .iel cpiex. GUROBL and MOSEK on LP problems (7-18-2010)

@ Large Network-LP Benchmark (commercial vs free) (10-16-2010)
MIXED INTEGER LINEAR PROGRAMMING

@ MILP Benchmark - serial codes (10-15-2010)
@ MILP Benchmark - parallel codes (10-14-2010)
@ MILP cases that are difficult for some codes (10-8-2010)

Z[l @ Feasibility Benchmark - Feaspump,CPLEX,SCIP,GUROBI (10-15-
2010)

@ Infeasibility Detection for MILP Problems (10-14-2010)

Martin
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LP survey

Robert E. Bixby, Solving Real-World Linear Programs: A
Decade and More of Progress.
Operations Research 50 (2002)3-15.

Bob on September 27, 2010
at his 65t birthday party
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Progress in LP: 1988—2004

(Operations Research, Jan 2002, pp. 3—15, updated in 2004)

= Algorithms (machine independent):

Primal versus best of Primal/Dual/Barrier 3,300x
= Machines (workstations —PCs): 1,600x
= NET: Algorithm x Machine 5,300,000x

(2 months/5300000 ~= 1 second)

Courtesy Bob Bixby




" The latest computational study:
Ed Rothberg (Gurobi)

= Rothberg slides

._":-I.1I oo
A 4
"-:.‘-“". i

8 = LP state of the art - according to Gurobi:
as of September 28, 2010 (Bixby’s 65t birthday
conference in Erlangen, Germany)

- ¢ = All software producer do computational studies

|||||

ZIBY  permanently but rarely make them publicly available.
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Summary

= We can solve today explicit LPs with
= upto 500,000 of variables and
= up to 5,000,000 of constraints routinely

in relatively short running times.

= We can solve today structured implicit LPs (employing
column generation and cutting plane techniques) in
special cases with hundreds of million (and more)
variables and almost infinitly many constraints in
acceptable running times.
(Examples: TSP, bus circulation in Berlin)

1B
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/1B Instances

rastaes:
SorpER

Variables | Constraints Non-zeros | Description

1|12,471,400| 5,887,041 49,877,768 | Group Channel Routing on a
3D Grid Graph
(Chip-Bus-Routing)

2 | 37,709,944 | 9,049,868 | 146,280,582 | Group Channel Routing on a
3D Grid Graph
(different model, infeasible)

3129,128,799| 19,731,970 | 104,422,573 | Steiner-Tree-Packing on a 3D
Grid Graph

4 37,423 | 7,433,543 | 69,004,977 | Integrated WLAN
Transmitter Selection and
Channel Assignment

5| 9,253,265 9,808 | 349,424,637 | Duty Scheduling with base

constraints
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Summary

You should be surprised
if a linear program could not be solved

ZZ[133
Martin
Grotschel
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SCIP: a ZIB optimization suite

The SCIP Optimization Suite is a toolbox for generating and solving mixed integer programs. It consists of the following parts:

SCIP a mixed integer programming solver and constraint programming framework

SoPlex  a linear programming solver
ZIMPL  a mixed integer programming modeling language

GCG a generic branch-cut-and-price solver
uG a parallel framework for solving mixed integer (linear and nonlinear) programs

integer programming and branch-cut-and-price. It allows total control of the solution process and the access of detailed information
down to the guts of the solver.

3000 |-

time in seconds

0
solved

(of 87 instances)

2000 |-

1000 |-

3

3.04x

B GLPK 4.47

B !psolve 5.5.2

B CRC 2.78

B SCIP 3.0.1 - CLP 1.14.8
[]scIp 3.0.1 - SoPlex 1.7.1
[l SCIP 3.0.1 - Cplex 12.4.0
Xpress 7.3.1

Bl Cplex 12.5.0

] Gurobi 5.1.0

MIP solver benchmark (1 thread): Geometric mean of results taken from the homepage of Hans Mittelmann
(10/Jan/2013). Unsolved or failed instances are accounted for with the time limit of 1 hour.
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SoPlex s o plex

SoPlex is an implementation of the revised simplex
algorithm. It features primal and dual solving routines for
linear programs and is implemented as a C++ class library
that can be used with other programs.

Roland Wunderling,

Paralleler und Objektorientierter
Simplex-Algorithmus,
Dissertation, TU Berlin,1997

now employed by IBM, developing
CPLEX's LP technology

1B
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Zimpl

= Zimpl is a little language to translate
the mathematical model of a problem
into a linear or (mixed-) integer
mathematical program expressed in
Ip or .mps file format which can be
read and (hopefully) solved by a LP or
MIP solver.

= Thorsten Koch, Rapid Mathematical Programming,
Dissertation, TU Berlin 2004
(awarded with the Dissertation Prize 2005 of the
Gesellschaft fur Operations Research)

1B
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SCIP http://scip.zib.de/

Tobias Achterberg, Tobias, Constraint Integer
Programming, Dissertation, TU Berlin, 2007

= Dissertation Prize 2008 of the Gesellschaft
fir Operations Research (GOR)

= George B. Dantzig Dissertation Award 2008
of the Institute of Operations Research and
the Management Sciences (INFORMS),
2nd prize)

= Beale-Orchard-Hays Prize 2009 of the
Mathematical Optimization Society for the paper:
Tobias Achterberg, “SCIP: Solving constraint
integer programs”,
Mathematical Programming Computation, 1 (2009), pp. 1-41.

|||||

Geiall = Started is “husiness career” at TLOG develobina CPLEX's MIP



GCG G C G

GCG extends the branch-cut-and-price

framework SCIP to a generic branch-cut- ;:"_f g

and-price solver.

= performs Dantzig-Wolfe decomposition

for detected or provided structure

= Solves reformulation with branch-and-

price approach
= pricing problems solved as MIPs

= generic branching rules for branch-and-

price

Provides easy access to other
state-of-the-art MIP solving
technologies.

Grotschel

Gerald Gamrath,

Generic Branch-Cut-and-Price,
Diploma Thesis, TU Berlin, 2010

Currently developed in cooperation with
RWTH Aachen, also funded by SPR71307
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UG U G

UG is a generic framework to parallelize branch-
and-bound based solvers (e.g., MIP, MINLP,
ExactIP) in a distributed or shared memory
computing environment.

= Exploits powerful performance of state-of-the-art

"base solvers", such as SCIP, CPLEX, etc.
= Without the need for base solver parallelization

UG framework

Loads are coordinated by a special process or thread Base solver
1/0, presolve
Base solver oo Base solver ose Base solver .. .
Using API to control Using API to control Using API to control Yu_] I Sh I na no[
solving algorithms solving algorithms solving algorithms . ays
A Generalized Utility for

Using MPI or pthreads Using MPI or pthreads 1 |Using MPI or pthreads
for communications <:’\;/ for communications j,—v for communications Para//e/ Branch_and_Bound

Map over a target computing environment /4/g0/’/l'/7mUS,

= : v Dissertation, Tokyo

University of Science, 1997

1B
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Advertisement:
http://zibopt.zib.de/

/1B Optimization Suite

Konrad-Zuse-Zentrum fir Informationstechnik Berlin
Division Scientific Computing
Department Optimization

The ZIB Optimization Suite is a tool for generating and solving mixed integer programs. It consists of the following parts

/IMFL  a mixed integer programming maodeling language
SoPlex  alinear programming solver

SCIP a mixed integer programming solver and constraint programming framework.

The user can easily generate linear programs and mixed integer programs with the modeling language ZIMPL. The
resulting model can directly be loaded into SCIP and solved. In the solution process SCIP may use SoPlex as
underlying LP solver.

Since all three tools are available in source code and free for academic use, they are an ideal tool for academic
research purposes and for teaching integer programming.

1B

Martin See /1B licences for more information.
Grotschel
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Improving the Simplex Numerics

On the factorization of simplex basis matrices

R. LUCE, J. DUINTJER TEBBENS, J. LIESEN and R. NABBEN
Technical University of Berlin
M. GROTSCHEL and T. KOCH
Zuse Institute Berlin

and

O. SCHENK

University of Basel

-Emmy---g---
B Moether-
B Programm .

" RobertLuce
Researf::h assistaht with :
.- industry b.ackgr.aun.d. o\

Changing the rules of business

Thorsten I(och

Jurjen Dumt_]er-Tebbens 4@7

" Project researcher,
from Czech Academy of S<:|ences

ZIB-Report 09-24 (July 2009) B E SO N SR 5 4\4\

Z4R]  http://opus.kobv.de/zib/volltexte/2009/1188 Olaf Schenk Anshul Gupta
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From the Abstract:
The Findings in Brief

1B

Martin
Grotschel

In the simplex algorithm, solving linear systems with the basis matrix and its transpose accounts

for a large part of the total computation time. The most widely used solution technique is sparse

LU factorization,

paired with an

updating scheme

that allows to use the factors over several

iterations. Clearly,

performance.

small number of fill-in elements

in the LU factors 1s eritical for the overall

Using a wide range of LPs we show numerically that after a simple permutation the non-

triangular part of the basis matrix 1s so small, that the whole matrix can be factorized with

(relative) fill-in close to the optimum. This permutation has been exploited by simplex practi-

tioners for many years. But to our knowledge no systematic numerical study has been published
that demonstrates the effective reduction to a surprisingly small non-triangular problem, even for

large scale LPs.

For the factorization of the non-triangular part most existing simplex codes use some variant of

|[dynamic Markowitz pivoting,

which originated in the late 1950s. We also show numerically that,

in terms of fill-in and in the simplex context, dynamic Markowitz 1s quite consistently superior to

other, more recently developed techniques.
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A major question addressed in B17

= Most Simplex-based LP codes (such as ZIB's SoPlex)
use Dynamic Markowitz pivoting (Markowitz, 1957)
to find fill-in reducing permutations.

= There have been dozens of
new LU codes, particularly in
recent years (see Davis " list).

s Markowitz still state of the art?

2 b

Harry M. Markowitz (*1928)
Economics Nobel Price Winner 1990

1B
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Concluding remarks

= Sparse GE involves many areas, including graph theory,
numerical linear algebra, numerical analysis, scientific
computing, ...

= Many possibilities for further research.

= B17: Markowitz, though from the 50s, still is the method
of choice in the LP context (fill-in close to optimal).

| = Not addressed here: Numerical stability, efficient solution
¥ of Bx=c, interplay of Simplex and linear solver, ...

1B
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Exact Linear Programming

Floating Point Computation for Linear Programming:

Advantages of Floating Point

@ Fast computation @ Solutions are not exact

@ Lower memory usage @ Algorithms can fail for

@ Sufficient for many applications numerical reasons

@ Results are often very near o Correct solutions are not
guaranteed

optimal )

ZZ[133
Martin
Grotschel
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Slide from Dan Steffy

Example: sgpfby6 from Mittelmann LP test set

LP Solver Objective Value
Cplex 7.1 Primal 6308.71
Cplex 7.1 Dual 6484.44
Cplex 12.1 Primal 6425.87
Cplex 12.1 Dual 6484.47
Gurobi 2.0 Primal 6484 .47
Gurobi 2.0 Dual 6484 .47
XPress-20 Primal 6349.03
XPress-20 Dual 6408.02
QSopt Primal 6419.94
QSopt Dual 6480.33
CLP-1.12.0 6481.26
Soplex 1.2.2 6473.33
GLPK-4.44 6484 .47
L Exact Value 3500060000000
Sopt_ex ~ 6484.47
2 (QSopt_ex)

Martin
Grotschel (Some results reported by W. Cook, S. Dash, H. Mittelmann, D. Steffy)
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Slide from Dan Steffy

1B

Martin
Grotschel

GNU Multiple Precision
Arithmetic Library

GMP

gArithmetic without limitations»

http://gmplib.org

Applegate, Cook, Dash and Espinoza [2007]
tested pure rational simplex implementation.

It was hundreds or thousands of times
slower than floating-point code.

GNU Multiple Precision
Arithmetic Library

GMP

aArithmetic without limitationss

http://gmplib.org

Hybrid Symbolic-Numeric Computation

Use fast floating-point computation to
assist in computing exact solutions.
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Who is interested In
exact solutions?

When are exact LP results necessary?
@ Difficult feasibility problems
@ Computer assisted proofs
@ LP as a reliable subroutine

@ When users demand it

, SN
Thomas Hales' recent proof of the
Kepler Conjecture relies on solving

thousands of LPs

1B
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Current issues: very" large scale

= Very, very large scale LPs derived from IPs:
billions of variables (verification of systems on chip,
transportation, telecommunication,..),
(column generation, cutting planes, Lagrange ...)

= Modeling languages ZIMPL, OPL, AMPL

= “Effortless” solution of IPs using appropriate models via
modeling languages

1B

Martin
Grotschel
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Future Hardware Speed-Up

It is widely believed that in the future

= the speed of a single processor core will not substantially
InCrease anymore

= the number of cores per processor will continuously
InCrease

= GPUs and CPUs will merge again.

= Conclusion: If we want to continue to benefit from the
development in hardware, LP and MIP solvers have to
take advantage of parallel processing.
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Parallelization

= The simplex algorithm can’t be efficiently parallelized.

= There is much more hope for Barrier codes, and a lot of
work is going on.

1B
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Bicriteria Optimization Model -
Profit versus Robustness

(BI — PCP) (i) max > wpxp
peP
(i) max > 7qYq
qeqQ)
(iii) >oxp <1, Vel
pEFR;
q€eQ);
v) X xp— ¥ wyg <0, Va € AR
acpeP acEqeQR)
(vi) Tp,yq € 10,1} Vpe P, ge @

Variables

= Path und config usage (request i uses path p, track j uses config q)
Constraints

= Path and config choice

= Path-config-coupling (track capacity)

yZi1 B; Objective Function

Thomas
Schlechte

= Maximize proceedings and robustness
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Price of Robustness (LP case)

Single-Objective

Optimum Scalarization method
(see Gandibleux & Ehrgott
D 2002)
Maximize W

Profit

Maximize j
Robusthess
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Multi-objective LP

= Commercial software vendors offer scalarization.

= Computing the Pareto set is (in general) beyond what we
can do.

= However, for small numbers of objective functions, special
purpose methods may work.

1B
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“Nonlinear” LPs

= Quadratic (convex) objective functions can be handled
with the simplex method.
Commercially available for the convex case.

= Additional quadratic (convex) constraints can be handled
with interior point methods.

1B
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Combinatorial Optimization at
Work (CO@W)

= A course at TU Berlin in cooperation with MATHEON, the Berlin Mathematical School
and COST TD1207

= Everything you every wanted to know about LP/MIP
and real-world industrial applications
(lectures and excercises)

= Dates of the course: September 28 — October 9, 2015

= Language: English
= Location: Zuse Institute Berlin
= Application deadline: June 1, 2015
Participation fee: none
= URL (info/application): http://co-at-work.zib.de
» Intended audience: master/PhD students, Post-docs
= Contact: coaw@zib.de
= Lectures by: Prof. M. Grétschel, Prof. T. Koch, Prof. B. Bixby,

z the SCIP Team, and many more
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