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typical optimization problems
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Linear Programming
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Linear Programming:
a very brief history
 1826/1827 Jean Baptiste Joseph Fourier (1786-1830): 

rudimentory form of the simplex method in 3 dimensions.

 1939 L. V. Kantorovitch (1912-1986): Foundations of
linear programming (Nobel Prize 1975)

 1947 G. B. Dantzig (1914-2005): Invention of the
(primal) simplex algorithm

 1954 C.E. Lemke:
Dual simplex algorithm

 1953 G.B. Dantzig, 
1954 W. Orchard Hays, and 
1954 G. B. Dantzig & W. Orchard Hays:
Revised simplex algorithm
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Dantzig and Bixby
George Dantzig and 
Bob Bixby 
(founder of CPLEX and GUROBI)

at the International 
Symposium on Mathematical 
Programming,

Atlanta, August 2000

This lecture employs a lot of 
information I obtained from  
Bob and some of his slides.
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Linear Programming:
a very brief history
 1826/1827 Jean Baptiste Joseph Fourier (1786-1830): 

rudimentory form of the simplex method in 3 dimensions.

 1939 L. V. Kantorovitch (1912-1986): Foundations of 
linear programming (Nobel Prize 1975)

 1947 G. B. Dantzig (1914-2005): Invention of the simplex 
algorithm

 Today: In my opinion and from an economic point of view, 
linear programming is the most important development of 
mathematics in the 20th century.
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Optimal use of scarce ressources 
foundation and economic interpretation of LP

Leonid V. Kantorovich Tjalling C. Koopmans 
Nobel Prize for Economics 1975 
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Stiglers „Diet Problem“:
„The first linear program“

Min x1 +   x2

2x1 +   x2  3

x1 + 2x2  3

x1           0

x2  0

costs

protein

carbohydrates

potatoes

beans

minimizing the 
cost of food 

George J. Stigler
Nobel Prize in 
economics 1982
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Diet Problem

Sets n nutrients / calorie thousands , protein grams , calcium grams , iron milligrams vitamin-a thousand ius, vitamin-b1 milligrams, vitamin-b2 
milligrams, niacin milligrams , vitamin-c milligrams / 

f foods / wheat , cornmeal , cannedmilk, margarine , cheese , peanut-b , lard liver , porkroast, salmon , greenbeans, cabbage , onions , 
potatoes spinach, sweet-pot, peaches , prunes , limabeans, navybeans / 

Parameter b(n) required daily allowances of nutrients / calorie 3, protein 70 , calcium .8 , iron 12 vitamin-a 5, vitamin-b1 1.8, vitamin-b2 2.7, niacin 18, 
vitamin-c 75 / 

Table a(f,n) nutritive value of foods (per dollar spent) 

calorie  protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c 

(1000) (g) (g) (mg) (1000iu) (mg) (mg) (mg) (mg) 

wheat 44.7 1411 2.0 365 55.4 33.3 441 

cornmeal 36 897 1.7 99 30.9 17.4 7.9 106 

cannedmilk 8.4 422 15.1 9 26 3 23.5 11 60 

margarine 20.6 17 .6 6 55.8 .2 

cheese 7.4 448 16.4 19 28.1 .8 10.3 4 

peanut-b 15.7 661 1 48 9.6 8.1 471 

lard 41.7 .2 .5 5 

liver 2.2 333 .2 139 169.2 6.4 50.8 316 525 

porkroast 4.4 249 .3 37 18.2 3.6 79 

salmon 5.8 705 6.8 45 3.5 1 4.9 209 

greenbeans 2.4 138 3.7 80 69 4.3 5.8 37 862 

cabbage 2.6 125 4 36 7.2 9 4.5 26 5369 

onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184 

potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522 

spinach 1.1 106 138 918.4 5.7 13.8 33 2755 

sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912 

peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57 

prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257 

limabeans 17.4 1055 3.7 459 5.1 26.9 38.2 93 

navybeans 26.9 1691 11.4 792 38.4 24.6 217 

Positive Variable x(f) dollars of food f to be purchased daily (dollars) 

Free Variable cost total food bill (dollars) 

Equations nb(n) nutrient balance (units), cb cost balance (dollars) ; 

nb(n).. sum(f, a(f,n)*x(f)) =g= b(n); cb.. cost=e= sum(f, x(f)); 

Model diet stiglers diet problem / nb,cb /; 

http://www.gams.com/modlib/libhtml/diet.htm
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Goal: Find the cheapest combination of foods that will 
satisfy the daily requirements of a person!

The problem motivated by the army’s desire to meet 
nutritional requirements of the soldiers at minimum cost. 

Army’s problem had 77 unknowns and 9 constraints.
Stigler solved problem using a heuristic: $39.93/year (1939)
Laderman (1947) used simplex: $39.69/year (1939 prices)

first “large-scale computation”
took 120 man days on hand operated 
desk calculators (10 human “computers”)

http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

Solution of the Diet Problem
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Commercial software
William Orchard-Hayes (in the period 1953-1954)

The first commercial LP-Code was on the market in 1954 
(i.e., 57 years ago) and available on an IBM CPC 
(card programmable calculator):

Code: Simplex Algorithm with explicit basis inverse, that was 
recomputed in each step. 

Shortly after, Orchard-Hayes implemented a version with product form of 
the inverse (idea of A. Orden),
Record: 71 variables, 26 constraints, 8 h running time

About 1960: LP became commercially viable, used largely by oil 
companies.



The Decade of the 70’s: Theory
 V. Klee and G. J. Minty, „How good is the simplex 

algorithm?“, in O. Shisha (ed.), Inequalities III, Academic 
Press, New York, 1972, 159-172

 K. H. Borgwardt, „Untersuchungen zur Asymptotik der 
mittleren Schrittzahl von Simplexverfahren in der linearen 
Optimierung“, Dissertation, U Kaiserslautern, 1977

 L. G. Khachiyan, „A polynomial algorithm in linear 
programming“, (Russian), Doklady Akademii Nauk SSR 
244 (1979) 1093-1096



The Decade of the 70’s: Practice
 Interest in optimization flowered

 Large scale planning applications particularly popular

 Significant difficulties emerged
 Building applications was very expensive and very risky

 Technology just wasn’t ready: 

 LP was slow and 

 Mixed Integer Programming was impossible.

 OR could not really “deliver” – with some exceptions, of 
course

 The ellipsoid method of 1979 was no practical success.



The Decade of the 80’s and beyond
 Mid 80’s:  

 There was perception was that LP software had progressed about 
as far as it could.

 There were several key developments 

 IBM PC introduced in 1981
 Brought personal computing to business

 Relational databases developed.  ERP systems introduced.

 1984, major theoretical breakthrough in LP  
N. Karmarkar, “A new polynomial-time algorithm for linear 
programming”, Combinatorica 4 (1984) 373-395 
(Interior Point Methods, front page New York Times)

 The last ~25 years:  Remarkable progress
 We now have three competitive algorithms:  

Primal & Dual Simplex, Barrier (interior points)
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My opinion on Linear Programming

 From an commercial/economic point of view:

Linear programming is the most important 
development of mathematics in the 20th century.
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 Transportation-airlines
 Fleet assignment

 Crew scheduling

 Ground personnel scheduling

 Yield management 

 Fuel allocation

 Passenger mix

 Booking control

 Maintenance scheduling

 Load balancing/freight packing

 Airport traffic planning

 Gate scheduling/assignment

 Upset recover and management

 Transportation-other
 Vehicle routing

 Freight vehicle scheduling and 
assignment

 Depot/warehouse location

 Freight vehicle packing

 Public transportation system 
operation

 Rental car fleet management

 Process industries
 Plant production scheduling and 

logistics

 Capacity expansion planning

 Pipeline transportation planning

 Gasoline and chemical blending

Application of LP & MIP - I
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 Financial
 Portfolio selection and 

optimization
 Cash management
 Synthetic option development
 Lease analysis
 Capital budgeting and rationing
 Bank financial planning
 Accounting allocations
 Securities industry surveillance
 Audit staff planning
 Assets/liabilities management
 Unit costing
 Financial valuation
 Bank shift scheduling
 Consumer credit delinquency 

management
 Check clearing systems
 Municipal bond bidding
 Stock exchange operations
 Debt financing

 Manufacturing
 Product mix planning
 Blending
 Manufacturing scheduling 
 Inventory management
 Job scheduling
 Personnel scheduling
 Maintenance scheduling and planning
 Steel production scheduling

 Coal Industry
 Coal sourcing/transportation logistics
 Coal blending
 Mining operations management

 Forestry
 Forest land management
 Forest valuation models
 Planting and harvesting models

Application of LP & MIP - II
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 Agriculture
 Production planning
 Farm land management
 Agricultural pricing models
 Crop and product mix decision 

models
 Product distribution

 Public utilities and natural 
resources
 Electric power distribution
 Power generator scheduling
 Power tariff rate determination
 Natural gas distribution planning
 Natural gas pipeline 

transportation
 Water resource management
 Alternative water supply 

evaluation
 Water reservoir management
 Public water transportation 

models
 Mining excavation models

 Oil and gas exploration 
and production
 Oil and gas production 

scheduling
 Natural gas transportation 

scheduling
 Communications and 

computing
 Circuit board (VLSI) layout
 Logical circuit design
 Magnetic field design
 Complex computer graphics
 Curve fitting
 Virtual reality systems
 Computer system capacity 

planning
 Office automation
 Multiprocessor scheduling
 Telecommunications scheduling
 Telephone operator scheduling
 Telemarketing site selection

Application of LP & MIP - III
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 Food processing
 Food blending

 Recipe optimization 

 Food transportation logistics

 Food manufacturing logistics and 
scheduling

 Health care
 Hospital staff scheduling

 Hospital layout

 Health cost reimbursement

 Ambulance scheduling

 Radiation exposure models

 Pulp and paper industry
 Inventory planning

 Trim loss minimization

 Waste water recycling

 Transportation planning

 Textile industry
 Pattern layout and cutting 

optimization 

 Production scheduling

 Government and military
 Post office scheduling and planning

 Military logistics

 Target assignment

 Missile detection

 Manpower deployment

 Miscellaneous applications
 Advertising mix/media scheduling

 Pollution control models

 Sales region definition

 Sales force deployment

Application of LP & MIP - IV
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Examples: ZIB & MATHEON-projects
http://www.zib.de/Optimization/Projects/index.en.html
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Examples: ZIB & MATHEON-projects
http://www.zib.de/Optimization/Projects/index.en.html
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Linear Programming
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Optimizers‘ dream: Duality theorems
 Max-Flow Min-Cut  Theorem

The value of a maximal (s,t)-flow in a capacitated network is equal to 
the minimal capacity of an (s,t)-cut.

 The Farkas Lemma

 The Duality Theorem of Linear Programming

max

0
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Ax b
x
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Important theorems
 Complementary slackness theorems

 Redundancy characterizations

 Polyhedral theory
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LP Solvability
 complexity theory:

 Polynomial time solvability, solvability in strongly polynomial time

 Classes:  and , -completeness , -hardness , etc.

 Linear programs can be solved in polynomial time with

 the Ellipsoid Method (Khachiyan, 1979)

 Interior Points Methods (Karmarkar, 1984, and others)

 Open: Is there a strongly polynomial time algorithm for the solution 
of LPs?

 Certain variants of the Simplex Algorithm run – under certain 
conditions – in expected polynomial time  (Borgwardt, 1977…)

 Open: Is there a polynomial time variant of the 
Simplex Algorithm?
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Separation

K
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LP Solvability: Generalizations
Theorem (GLS 1981, 1988) (modulo technical details) : There exists 

a polynomial time algorithm to minimize convex functions (e.g., linear 
functions) over the elements of a class of convex bodies K (e. g. 
polyhedra)  if and only if, there exists a polynomial time algorithm that 
decides, for any given point x, whether x is in K, and that, when x is 
not in K, finds a hyperplane that separates x from K.

Short version: 
Optimization and Separation are polynomial-time equivalent.

Consequence: Theoretical Foundation of cutting plane algorithms.

Particular special case: Polynomial time separation algorithm for the 
set of positive semi-definite matrices.

Consequences:

 Polynomial time algorithm for stable sets in perfect graphs.

 The beginning of semi-definite programming
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You can download this book from the 
publications list on my Web page.

http://www.zib.de/groetschel/pu
bnew/paper/groetschellovaszsch
rijver1988.pdf
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 Iterative methods that solve the equation and inequality sytems 
representing the necessary local optimality conditions (e.g., KKT).

 Sufficient conditions are rarely checked.

Algorithms for nonlinear programming

1

~ "descent direction"
~"steplength"

i i i i

i

i

x x d
d





  

( )i id f x  Steepest descent

1( ( )) ( )i i id H x f x   Newton

(Quasi-Newton, conjugate-gradient-, SQP-, subgradient…methods)
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Fourier-Motzkin Elimination 
 Fourier, 1826/1827 

 Motzkin, 1938

 Method: successive projection of a polyhedron in 
n-dimensional space into a vector space of dimension n-1
by elimination of one variable.

Projection on y: (0,y)

Projection on x: (x,0)
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A Fourier-Motzkin step
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Fourier-Motzkin Elimination:
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(4)
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Fourier-Motzkin Elimination:
an example, call of PORTA (Polymake)

DIM = 3

INEQUALITIES_SECTION

(1)      - x2      <= 0
(2) - x1 - x2      <=-1
(3) - x1 +  x2      <= 3
(4) + x1            <= 3
(5) + x1 + 2x2      <= 9
(6) + x1 + 3x2 - x3 <= 0
(7) - x1 - 3x2 + x3 <= 0

ELIMINATION_ORDER
1 0 0 

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9
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Fourier-Motzkin Elimination:
an example

DIM = 3

INEQUALITIES_SECTION

(1)      - x2      <= 0
(2) - x1 - x2      <=-1
(3) - x1 +  x2      <= 3
(4) + x1            <= 3
(5) + x1 + 2x2      <= 9
(6) + x1 + 3x2 - x3 <= 0
(7) - x1 - 3x2 + x3 <= 0

ELIMINATION_ORDER
1 0 0 

DIM = 3

INEQUALITIES_SECTION

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  2
(2,5) (3) + x2      <=  8
(2,6) (4) +2x2 - x3 <= -1
(3,4) (5) + x2      <=  6
(3,5) (6) + x2      <=  4
(3,6) (7) +4x2 - x3 <=  3
(7,4) (8) -3x2 + x3 <=  3
(7,5) (9) - x2 + x3 <=  9
(7,6)
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Fourier-Motzkin Elimination:
an example

(1,4) (  1) -x3 <=  -1
(1,7) (  2) -x3 <=   3
(2,4) (  3) -x3 <=   3
(2,7) (  4) -x3 <=  11
(8,3) (  5) +x3 <=  27
(8,4) (  6) -x3 <=   3
(8,5) (  7) +x3 <=  21
(8,6) (  8) +x3 <=  15
(8,7) (  9) +x3 <=  21
(9,3) ( 10) +x3 <=  17
(9,4) ( 11) +x3 <=  17
(9,5) ( 12) +x3 <=  15
(9,6) ( 13) +x3 <=  13
(9,7) ( 14)+3x3 <=  39

min = 1 <= x3 <= 13 = max

x1 = 1           x1 = 1
x2 = 0           x2 = 4

DIM = 3

INEQUALITIES_SECTION

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  2
(2,5) (3) + x2      <=  8
(2,6) (4) +2x2 - x3 <= -1
(3,4) (5) + x2      <=  6
(3,5) (6) + x2      <=  4
(3,6) (7) +4x2 - x3 <=  3
(7,4) (8) -3x2 + x3 <=  3
(7,5) (9) - x2 + x3 <=  9
(7,6)

ELIMINATION_ORDER
0 1 0 
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Fourier-Motzkin Elimination:
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(4)

max

min



Fourier-Motzkin Elimination 
 FME is a wonderful constructive proof method.

 Elimination of all variables of a given inequality system 
directly yields the Farkas Lemma:

 FME is computationally lousy.
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 has a solution or 0, 0 has a solution
but not both.

T TAx b y A y b  
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The Simplex Method
 Dantzig, 1947: primal Simplex Method

 Dantzig, 1953: revised Simplex Method

 Lemke, 1954; Beale, 1954: dual Simplex Method

 ….

 Underlying Idea: Find a vertex of the set of feasible LP 
solutions (polyhedron) and move to a better neighbouring 
vertex, if possible (Fourier‘s idea 1826/27).
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The Simplex Method:
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(4)
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The Simplex Method:
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Hirsch Conjecture
If P is a polytope of dimension n with m facets then every 
vertex of P can be reached from any other vertex of P on a 
path of length at most m-n.
In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.

Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of an 
n-dimensional polyhedron with m  facets is at most m(log n+1).

Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).
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arXiv:1006.2814v1 [math.CO] 14 Jun 2010
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Computationally important idea of the 
Simplex Method

0

Tc x
Ax b
x



max 

Let a (m,n)-Matrix A with full row rank m, an m-vector b and 
an n-vector c with m<n be given. For every vertex y of the 
polyhedron of feasible solutions of the  LP,

there is a non-singular (m,m)-submatrix B (called basis) 
of A representing the vertex y (basic solution) as follows

1 , 0B Ny B b y 

Many computational consequences:
Update-formulas, reduced cost calculations, 
number of non-zeros of a vertex,… 

A = B N



Numerical trouble often 
has geometric reasons

Where are 
the points of intersection 

(vertices, basic solutions)?
What you can‘t see with your eyes,
causes also numerical difficulties.



Dual Simplex Method
 The Dual Simplex Method is the (Primal) Simplex Method 

applied to the dual of a given linear program.

Surprise in the mid-nineties:

 The Dual Simplex Method is faster than the Primal in 
practice.
One key: Goldfarb’s steepest edge pivoting rule!

 A wonderful observation for the cutting plane methods of 
integer programming!
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The Ellipsoid Method
 Shor, 1970 - 1979

 Yudin & Nemirovskii, 1976

 Khachiyan, 1979

 M. Grötschel, L. Lovász, A. Schrijver, 
Geometric Algorithms and Combinatorial Optimization

Algorithms and Combinatorics 2, Springer, 1988
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The Ellipsoid Method: an example



The
Ellipsoid 
Method

Initialization

Stopping criterion
Feasibility check
Cutting plane

choice

Update
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Ellipsoid Method

feasible
solution 
found

a(1)

a(0)

a(2)

a(7)
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May 1980
New York Times, Nov. 7, 1979
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Interior-Point Methods: an example

(1)

(4)

min

central path

interior Point

Often also called
Barrier Methods

Why?



The Karmarkar Algorithm
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Milestones for 
Interior Point Methods (IPMs)
 1984 Projective IPM: Karmarkar – efficient in practice!?

 1989 O(n3L) for IPMs: Renegar – best complexity

 1989 Primal–Dual IPMs: Kojima ... – dominant since then

 1989 Self-Concordant Barrier: Nesterov–Nemirovskii 
– extensions to smooth convex optimozation

 1992 Semi-Definite Optimization (SDO) and Second Order 
Conic Optimization (SOCO): Alizadeh, Nesterov–Nemirovskii 
–new applications, approximations, software

 1998 Robust LO: Ben Tal–Nemirovskii
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Some LP/MIP Solvers
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Solver Version URL
IBM CPLEX 12.2 www.cplex.com

Gurobi 3.0 www.gurobi.com

FICO XPress-MP 7 www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-
Optimization-Suite.aspx

…

Lindo 6.1 www.lindo.com

Minto 3.1 coral.ie.lehigh.edu/~minto

SCIP 2.0 scip.zib.de

CBC 2.5 projects.coin-or.org/Cbc

Symphony 5.2 projects.coin-or.org/SYMPHONY

glpk 4.43 www.gnu.org/software/glpk/glpk.html 

lp_solve 5.5 lpsolve.sourceforge.net

…
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Which LP solvers are 
used in practice?
Preview summary

 Fourier-Motzkin: hopeless

 Ellipsoid Method: total failure

 primal Simplex Method: good

 dual Simplex Method: better

 Barrier Method: for large LPs frequently better

 For LP relaxations of IPs: dual Simplex Method



MIPLIB 1992/2010
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Independent Testing

http://plato.asu.edu/bench.html
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LP survey
Robert E. Bixby, Solving Real-World Linear Programs: A 

Decade and More of Progress. 
Operations Research 50 (2002)3-15.

Bob on September 27, 2010
at his 65th birthday party



(Operations Research, Jan 2002, pp. 3—15, updated in 2004)

 Algorithms (machine independent):  

Primal versus best of Primal/Dual/Barrier 3,300x

 Machines (workstations PCs): 1,600x

 NET:  Algorithm × Machine 5,300,000x

(2 months/5300000 ~= 1 second)

Progress in LP: 1988—2004

Courtesy Bob Bixby



The latest computational study: 
Ed Rothberg (Gurobi)
 Rothberg slides

 LP state of the art - according to Gurobi:
as of September 28, 2010 (Bixby’s 65th birthday 
conference in Erlangen, Germany)

 All software producer do computational studies 
permanently but rarely make them publicly available.
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Summary
 We can solve today explicit LPs with 

 up to    500,000 of variables and 

 up to 5,000,000 of constraints routinely 

in relatively short running times.

 We can solve today structured implicit LPs (employing 
column generation and cutting plane techniques) in 
special cases with hundreds of million (and more) 
variables and almost infinitly many constraints in 
acceptable running times.
(Examples: TSP, bus circulation in Berlin)



ZIB Instances

Variables Constraints Non-zeros Description

1 12,471,400 5,887,041 49,877,768 Group Channel Routing on a 
3D Grid Graph
(Chip-Bus-Routing) 

2 37,709,944 9,049,868 146,280,582 Group Channel Routing on a 
3D Grid Graph
(different model, infeasible)

3 29,128,799 19,731,970 104,422,573 Steiner-Tree-Packing on a 3D 
Grid Graph

4 37,423 7,433,543 69,004,977 Integrated WLAN 
Transmitter Selection and 
Channel Assignment

5 9,253,265 9,808 349,424,637 Duty Scheduling with base 
constraints



Summary

You should be surprised
if a linear program could not be solved
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SoPlex Sequential object-oriented simplex 
SoPlex is an implementation of the revised simplex 
algorithm. It features primal and dual solving routines for 
linear programs and is implemented as a C++ class library 
that can be used with other programs. 

Roland Wunderling, 
Paralleler und Objektorientierter 
Simplex-Algorithmus, 
Dissertation, TU Berlin,1997 

now employed by IBM, developing 
CPLEX’s LP technology



Zimpl
 Zimpl is a little language to translate 

the mathematical model of a problem 
into a linear or (mixed-) integer 
mathematical program expressed in 
.lp or .mps file format which can be 
read and (hopefully) solved by a LP or 
MIP solver. 

 Thorsten Koch, Rapid Mathematical Programming, 
Dissertation, TU Berlin 2004 
(awarded with the Dissertation Prize 2005 of the 
Gesellschaft für Operations Research) 
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SCIP    http://scip.zib.de/
Tobias Achterberg, Tobias, Constraint Integer 
Programming, Dissertation, TU Berlin, 2007 

 Dissertation Prize 2008 of the Gesellschaft
für Operations Research (GOR) 

 George B. Dantzig Dissertation Award 2008 
of the Institute of Operations Research and 
the Management Sciences (INFORMS), 
2nd prize) 

 Beale-Orchard-Hays Prize 2009 of the 
Mathematical Optimization Society for the paper: 
Tobias Achterberg, “SCIP: Solving constraint 
integer programs”,
Mathematical Programming Computation, 1 (2009), pp. 1-41. 

 Started is “business career” at ILOG developing CPLEX’s MIP
Martin
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GCG  Generic Column Generation

Martin Grötschel 87

GCG extends the branch-cut-and-price 
framework SCIP to a generic branch-cut-
and-price solver.
 performs Dantzig-Wolfe decomposition 

for detected or provided structure
 Solves reformulation with branch-and-

price approach
 pricing problems solved as MIPs
 generic branching rules for branch-and-

price

Provides easy access to other
state-of-the-art MIP solving 
technologies.

Gerald Gamrath, 

Generic Branch-Cut-and-Price, 
Diploma Thesis, TU Berlin, 2010

Currently developed in cooperation with 
RWTH Aachen, also funded by SPP 1307



UG  Ubiquity Generator Framework
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UG is a generic framework to parallelize branch-
and-bound based solvers (e.g., MIP, MINLP, 
ExactIP) in a distributed or shared memory 
computing environment.
 Exploits powerful performance of state-of-the-art 

"base solvers", such as SCIP, CPLEX, etc.
 Without the need for base solver parallelization

Yuji Shinano, 
A Generalized Utility for 
Parallel Branch-and-Bound 
Algorithmus, 
Dissertation, Tokyo 
University of Science,1997 



Advertisement:
http://zibopt.zib.de/
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Improving the Simplex Numerics
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http://opus.kobv.de/zib/volltexte/2009/1188/



From the Abstract: 
The Findings in Brief
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A major question addressed in B17
 Most Simplex-based LP codes (such as ZIB´s SoPlex)

use Dynamic Markowitz pivoting (Markowitz, 1957) 
to find fill-in reducing permutations.

 There have been dozens of 
new LU codes, particularly in 
recent years (see Davis´ list).

 Is Markowitz still state of the art?

Economics Nobel Price Winner 1990
Harry M. Markowitz (*1928)
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Concluding remarks
 Sparse GE involves many areas, including graph theory, 

numerical linear algebra, numerical analysis, scientific 
computing, …

 Many possibilities for further research.

 B17: Markowitz, though from the 50s, still is the method
of choice in the LP context (fill-in close to optimal).

 Not addressed here: Numerical stability, efficient solution 
of B x=c, interplay of Simplex and linear solver, … 
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Exact Linear Programming
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Slide from Dan Steffy
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Slide from Dan Steffy
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Who is interested in 
exact solutions?
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Current issues: veryn large scale
 Very, very large scale LPs derived from IPs:

billions of variables (verification of systems on chip, 
transportation, telecommunication,..),
(column generation, cutting planes, Lagrange …)

 Modeling languages ZIMPL, OPL, AMPL

 “Effortless” solution of IPs using appropriate models via 
modeling languages



Future Hardware Speed-Up
It is widely believed that in the future

 the speed of a single processor core will not substantially 
increase anymore

 the number of cores per processor will continuously 
increase

 GPUs and CPUs will merge again.

 Conclusion: If we want to continue to benefit from the 
development in hardware, LP and MIP solvers have to 
take advantage of parallel processing.

State of 
the Art in 

Mixed 
Integer 
Program

ming     
Thorsten 

Koch     
Zuse 

Institute 
Berlin 
(ZIB)      
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Parallelization
 The simplex algorithm can’t be efficiently parallelized.

 There is much more hope for Barrier codes, and a lot of 
work is going on.
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Variables 

 Path und config usage (request i uses path p, track j uses config q)

Constraints

 Path and config choice

 Path-config-coupling (track capacity)

Objective Function

 Maximize proceedings and robustness

Bicriteria Optimization Model -
Profit versus Robustness
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Price of Robustness (LP case)

Maximize 
Profit

Scalarization method

(see Gandibleux & Ehrgott 
2002)

Maximize 
Robustness

Single-Objective 

Optimum



Multi-objective LP
 Commercial software vendors offer scalarization.

 Computing the Pareto set is (in general) beyond what we 
can do.

 However, for small numbers of objective functions, special 
purpose methods may work.
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“Nonlinear” LPs
 Quadratic (convex) objective functions can be handled 

with the simplex method.
Commercially available for the convex case.

 Additional quadratic (convex) constraints can be handled 
with interior point methods. 
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Combinatorial Optimization at 
Work (CO@W)
 A course at TU Berlin in cooperation with MATHEON, the Berlin Mathematical School 

and COST TD1207

 Everything you every wanted to know about LP/MIP 
and real-world industrial applications

(lectures and excercises)

 Dates of the course: September 28 – October 9, 2015

 Language: English

 Location: Zuse Institute Berlin

 Application deadline: June 1, 2015
Participation fee: none

 URL (info/application): http://co-at-work.zib.de

 Intended audience:     master/PhD students, Post-docs

 Contact: coaw@zib.de

 Lectures by: Prof. M. Grötschel, Prof. T. Koch, Prof. B. Bixby, 

 the SCIP Team, and many more
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