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typical optimization problems

max f (x) or min f(x)| |minc’x minc’ x
: Ax=a Ax=a
9 (x) =0, !_1’2""’k Bx<b Bx <b
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Linear Programming:
a very brief history

= 1826/1827 Jean Baptiste Joseph Fourier (1786-1830):
rudimentory form of the simplex method in 3 dimensions.

= 1939 L. V. Kantorovitch (1912-1986): Foundations of
linear programming (Nobel Prize 1975)

= 1947 G. B. Dantzig (1914-2005): Invention of the
(primal) simplex algorithm

max c¢' X
il = 1954 C.E. Lemke: Ax =b
b Dual simplex algorithm >0

= 1953 G.B. Dantzig,
1954 W. Orchard Hays, and
1954 G. B. Dantzig & W. Orchard Hays:
Revised simplex algorithm
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Dantzig and Bixby

George Dantzig and

Bob Bixby
(founder of CPLEX and GUROBI)

at the International
Symposium on Mathematical
Programming,

Atlanta, August 2000

This lecture employs a lot of
information I obtained from
Bob and some of his slides.
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Optimal use of scarce ressources
foundation and economic interpretation of LP

Leonid V. Kantorovich  Tjalling C. Koopmans
Nobel Prize for Economics 1975



13

Stiglers ,,Diet Problem®:
,1he first linear program*

Min x1 + X2 costs
2x1+ x2>3 protein
X1 +2x2 >3 carbohydrates
x1 >0 potatoes
x2 >0 beans
minimizing the George J. Stigler
cost of food Nobel Prize in

economics 1982




Sets n nutrients / calorie thousands , protein grams , calcium grams , iron milligrams vitamin-a thousand ius, vitamin-b1 milligrams, vitamin-b2
milligrams, niacin milligrams , vitamin-c milligrams /

f foods / wheat , cornmeal , cannedmilk, margarine , cheese , peanut-b , lard liver , porkroast, salmon , greenbeans, cabbage , onions ,
potatoes spinach, sweet-pot, peaches , prunes , limabeans, navybeans /

Parameter b(n) required daily allowances of nutrients / calorie 3, protein 70, calcium .8 , iron 12 vitamin-a 5, vitamin-b1 1.8, vitamin-b2 2.7, niacin 18,
vitamin-c 75 /

Table a(f,n) nutritive value of foods (per dollar spent)

calorie protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c

(1000) @ ) (mg) (1000iu) (mg) (mg) (mg) (mg)
wheat 44.7 1411 2.0 365 55.4 33.3 441
cornmeal 36 897 1.7 99 30.9 17.4 7.9 106
cannedmilk 8.4 422 15.1 9 26 3 23.5 11 60
margarine 20.6 17 .6 6 55.8 .2
cheese 7.4 448 16.4 19 28.1 .8 10.3 4
peanut-b 15.7 661 1 48 9.6 8.1 471
lard 41.7 .2 .5 5
liver 2.2 333 .2 139 169.2 6.4 50.8 316 525
porkroast 4.4 249 3 37 18.2 3.6 79
salmon 5.8 705 6.8 45 3.5 1 4.9 209
greenbeans 2.4 138 3.7 80 69 4.3 5.8 37 862
cabbage 2.6 125 4 36 7.2 9 4.5 26 5369
onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184
potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522
spinach 1.1 106 138 918.4 5.7 13.8 33 2755
sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912
peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57
prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257
limabeans 17.4 1055 3.7 459 5.1 26.9 38.2 93
navybeans 26.9 1691 11.4 792 38.4 24.6 217

Positive Variable x(f) dollars of food f to be purchased daily (dollars)

Free Variable cost total food bill (dollars)

Equations nb(n) nutrient balance (units), cb cost balance (dollars) ; http://WWW_gams_Com/mOdI|b/||bhtm|/d|et_ htm
nb(n).. sum(f, a(f,n)*x(f)) =g= b(n); cb.. cost=e= sum(f, x(f));

Model diet stiglers diet problem / nb,cb /;
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Solution of the Diet Problem

Goal: Find the cheapest combination of foods that will
satisfy the daily requirements of a person!

The problem motivated by the army’s desire to meet
nutritional requirements of the soldiers at minimum cost.

Army’s problem had 77 unknowns and 9 constraints.
= Stigler solved problem using a heuristic: $39.93/year (1939)
8N Laderman (1947) used simplex: $39.69/year (1939 prices)
P first “|large-scale computation”

took 120 man days on hand operated
desk calculators (10 human “computers”)

Srissrient
.....
...........

»
|||||

http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

Grotschel



16

Commercial software
William Orchard-Hayes (in the period 1953-1954)

The first commercial LP-Code was on the market in 1954
(i.e., 57 years ago) and available on an IBM CPC
(card programmable calculator):

Code: Simplex Algorithm with explicit basis inverse, that was
recomputed in each step.

Shortly after, Orchard-Hayes implemented a version with product form of
the inverse (idea of A. Orden),
Record: 71 variables, 26 constraints, 8 h running time

e
.

ZJ BB About 1960: LP became commercially viable, used largely by oil
walil COMpanies.

Grotschel




The Decade of the 70’s: Theory

= V. Klee and G. J. Minty, ,,How good is the simplex

algorithm?%, in O. Shisha (ed.), Inequalities III, Academic
Press, New York, 1972, 159-172

= K. H. Borgwardt, ,,Untersuchungen zur Asymptotik der
mittleren Schrittzahl von Simplexverfahren in der linearen
Optimierung”, Dissertation, U Kaiserslautern, 1977

= L. G. Khachiyan, ,A polynomial algorithm in linear
programming", (Russian), Doklady Akademii Nauk SSR
244 (1979) 1093-1096




The Decade of the 70’s: Practice

= Interest in optimization flowered

= Large scale planning applications particularly popular

= Significant difficulties emerged
= Building applications was very expensive and very risky
= Technology just wasn't ready:
= LP was slow and
= Mixed Integer Programming was impossible.
il = OR could not really “deliver” — with some exceptions, of
course

= The ellipsoid method of 1979 was no practical success.




The Decade of the 80’s and beyond
= Mid 80’s:

= There was perception was that LP software had progressed about
as far as it could.

= There were several key developments
= IBM PC introduced in 1981

= Brought personal computing to business
= Relational databases developed. ERP systems introduced.

= 1984, major theoretical breakthrough in LP
N. Karmarkar, “A new polynomial-time algorithm for linear
programming”, Combinatorica 4 (1984) 373-395
(Interior Point Methods, front page New York Times)

= The last ~20 years: Remarkable progress

= We now have three competitive algorithms:
Primal & Dual Simplex, Barrier (interior points)




My opinion on Linear Programming
= From an commercial/economic point of view.

Linear programming is the most important
development of mathematics in the 20t century.
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Application of LP & MIP - |

» Transportation-airlines

1B
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Fleet assignment

Crew scheduling

Ground personnel scheduling
Yield management

Fuel allocation

Passenger mix

Booking control

Maintenance scheduling
Load balancing/freight packing
Airport traffic planning

Gate scheduling/assignment

Upset recover and management

= Transportation-other

Vehicle routing

Freight vehicle scheduling and
assignment

Depot/warehouse location
Freight vehicle packing

Public transportation system
operation

Rental car fleet management

=  Process industries

Plant production scheduling and
logistics

Capacity expansion planning
Pipeline transportation planning
Gasoline and chemical blending
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Application of LP & MIP - 11

= Financial = Manufacturing
= Portfolio selection and = Product mix planning
optimization = Blending
= Cash management = Manufacturing scheduling
= Synthetic option development = Inventory management
= Lease analysis = Job scheduling
= (Capital budgeting and rationing = Personnel scheduling
= Bank ﬁngnmal pIar?nlng = Maintenance scheduling and planning
" Accounting allocations = Steel production scheduling

= Securities industry surveillance
= Audit staff planning

= Assets/liabilities management
= Unit costing

= Financial valuation

Coal Industry
= Coal sourcing/transportation logistics
= Coal blending
= Mining operations management

= Bank shift scheduling = Forestry
= Consumer credit delinquency = Forest land management
management = Forest valuation models
= Check clearing systems = Planting and harvesting models
= Municipal bond bidding
ZIB = Stock exchange operations

= Debt financing

Martin
Grotschel




24

Application of LP & MIP - 111

1B
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Agriculture

Production planning
Farm land management
Agricultural pricing models

Crop and product mix decision
models

Product distribution

Public utilities and natural
resources

Electric power distribution
Power generator scheduling
Power tariff rate determination
Natural gas distribution planning

Natural %as_ pipeline
transportation

Water resource management

Alternative water supply
evaluation

Water reservoir management

Public water transportation
models

Mining excavation models

Oil and gas exploration
and production

= Qil and gas production
scheduling

= Natural gas transportation
scheduling

Communications and
computing
= Circuit board (VLSI) layout
= Logical circuit design
= Magnetic field design
= Complex computer graphics
= Curve fitting
= Virtual reality systems

= Computer system capacity
planning

= Office automation

= Multiprocessor scheduling

=  Telecommunications scheduling
= Telephone operator scheduling
= Telemarketing site selection
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Application of LP & MIP - 1V

= Food processing = Textile industry

= Food blending = Pattern layout and cutting

= Recipe optimization optimization

= Food transportation logistics = Production scheduling

= Food manufacturing logistics and = Government and military

scheduling = Post office scheduling and planning

= Health care = Military logistics

= Hospital staff scheduling = Target assignment

= Hospital layout = Missile detection

= Health cost reimbursement = Manpower deployment

= Ambulance scheduling = Miscellaneous applications

= Radiation exposure models = Advertising mix/media scheduling
= Pulp and paper industry = Pollution control models

= Inventory planning = Sales region definition

= Trim loss minimization = Sales force deployment

=  Waste water recycling

Martin = Transportation planning
Grotschel
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Examples: ZIB & MATHEON-projects

http://www.zib.de/Optimization/Projects/index.en.html

Production and Logistics

In arder to be ahle to organize the complex production processes of modern goods in a cost efficient way
many logistic problems have to be solved. This refers both to the operational procedures inside a single
factory as well as to the organization of manufacturing processes distrbuted over different places. At ZIB
we have experience with several projects in the area of logistics. Due to their special requirements, some
of these projects are listed under 'Online Cptimization!

[more]

Current Projects: MaTHEON-B14: Comb-Log, MaTHEON-D17: Chip Design Verification, FobotVelding
Fast Projects:  InterVarehouse

Online Optimization

In contrast to classical optimization, Gnline Oefimization deals with situations where the input data of the
problem is not known in advance. Therefore, decisions have to be made on the basis of incomplete
knowledge. The decisions of the online algorithm are sometimes subject to further constraints. COne
important feature of practical online algorithms are real-lime requirernents: the algorithm has to present a
feasible solution in a specified time frame.

[more]

Current Projects:  KollmorgenElevator, ADAC-Dispatch, Online-Flanning
Zﬂ Fast Frojects: MATHEON-C3: Online-Modular, MATHEON-CH: Online-Feopt, HTE-Survey, Printsetup,
Martin Modelling, Shelf

Grotschel
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Examples: ZIB & MATHEON-projects

http://www.zib.de/Optimization/Projects/index.en.html

Telecommunication

Telecommunication technology is one of the key technologies in our society. Fapid progress in hardware
development constantly enables new applications and services. The best example for this is UMTS . The
tough competition in this sector forces netwaork service providers to thouroughly control their investments
and to implement potential savings. At the same time, the guality of service must be improved to get and
keep news customers,

[more]

Current Projects:  MaTHEON-BY: MultiLayer, MaTHEON-B4: LIMTS, X-Wik, atesio, MEuk., ProSched,
EipomE, MLTH

Fast Projects: FAP, G-\WiN, OPADCO, Cpthet, DynFoute, StatRoute, Momentum, ST,
FoundRobin, BOSCH-FMF, B-\WiN, FPeakedness, DISCHET

Traffic

The application of mathematical optimization in public transport has been subject of successful research
for many yvears, and more and more such methods are being put to practice. ZIE has been carrying out
projects in this area for more than ten wears by nowy, mainly in operative planning. e. g., vehicle or duty
scheduling in public transport. During the last years, the application areas have widened.

[more]

Current Frojects:  MaTHEON-B15: Service Design, Trassenbdrse, Airline Crew Scheduling, Visualization
Z[l in Public Transit

_ Fast Projects: MaTHEON-B1: Strategic Planning, Telebus, EMEF-DS: Duty Scheduling, BMER-VS:
Martin wehicle Scheduling, BEMEF-IS: Integrated Wehicle and Duty Scheduling

Grotschel
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Linear Programming

minc'x! Iminc' x| Iminc' x| [minc’x
AXx =a Ax=a | |Ax=a | |IBx<b

Bx<b Bx<h X>0
X>0 x>0

Linear program in various forms.
They are all equivalent!
ZIB There are more versions!

Martin

Grotschel
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Optimizers‘ dream: Duality theorems

1B

Martin
Grotschel

= Max-Flow Min-Cut Theorem
The value of a maximal (s,t)-flow in a capacitated network is equal to

the minimal capacity of an (s,t)-cut.
= The Farkas Lemma
= The Duality Theorem of Linear Programming

maxc'x = _ miny'b
Ax<b y'A>c'
x>0 y=>0
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Important theorems

= Complementary slackness theorems

= Redundancy characterizations

= Polyhedral theory

1B

Martin
Grotschel
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LP Solvability

= ] assume that the audience is somewhat familiar with complexity
theory:

= Polynomial time solvability, solvability in strongly polynomial time

= (lasses: 7 and NP, N'P-completeness , N’P-hardness , etc.

= Linear programs can be solved in polynomial time with
= the Ellipsoid Method (Khachiyan, 1979)
= Interior Points Methods (Karmarkar, 1984, and others)

. = Open: Is there a strongly polynomial time algorithm for the solution
of LPs?

= (Certain variants of the Simplex Algorithm run — under certain
conditions — in expected polynomial time (Borgwardt, 1977...)

= QOpen: Is there a polynomial time variant of the
Simplex Algorithm?

1B

Martin
Grotschel
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Separation

1B
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LP Solvability: Generalizations

Theorem (GLS 1981, 1988) (modulo technical details) : There exists
a polynomial time algorithm to minimize convex functions (e.g., linear
functions) over the elements of a class of convex bodies K (e. g.
polyhedra) if and only if, there exists a polynomial time algorithm that
decides, for any given point x, whether x is in K, and that, when x is
not in K, finds a hyperplane that separates x from K.

Short version:
Optimization and Separation are polynomial-time equivalent.
k| Consequence: Theoretical Foundation of cutting plane algorithms.

Particular special case: Polynomial time separation algorithm for the
set of positive semi-definite matrices.

Consequences:

el " Polynomial time algorithm for stable sets in perfect graphs.

Rkl = The beginning of semi-definite programming
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You can download this book from the
publications list on my Web page.

A Algorithms and Combinatorics 2

Martin Grotschel .
Laszl6 Lovasz http://www.zib.de/groetschel/pu

Alexander Schrijver

Geometric bnew/paper/groetschellovaszsch

Algorithms and rijveri988.pdf
Combinatorial
Optimization

Second Corrected Edition

Zﬂ- @ Springer-Verlag

Martin

Grotschel
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Algorithms for nonlinear programming

= [terative methods that solve the equation and inequality sytems
representing the necessary local optimality conditions (e.g., KKT).

Xiy1 = X +ﬂ"|di
d.

A

~ "descent direction™

"steplength™

di = —Vf (xi) Steepest descent

d =—(H (%)) ™“Vf(x)| Newton

@ (Quasi-Newton, conjugate-gradient-, SQP-, subgradient...methods)

= Sufficient conditions are rarely checked.

P tetet e
ORI
SCPEETIESL

Martin
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Fourier Elimination
= Fourier, 1826/1827
= Motzkin, 1938

= Method: successive projection of a polyhedron in
n-dimensional space into a vector space of dimension n-1
by elimination of one variable.

1B e

Martin Projection on x: (x,0)

Grotschel
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step

A Fourier

1 ay +

,

-1 aq +

4 .

0 b,

| | copy
0 b,

ZZ[133
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Fourier-Motzkin Elimination:
an example

min/max + x1 + 3x2 ~

N
(D - X2 <=0
(2) - x1 - x2 <=-1
(B3 - x1 + x2 <=3 ~
(4) + x1 <=3 & (s \6\
(5) + x1 + 2x2 <=9 h ) \\\\\\\\\\\
, ‘@
o
)

/

1B
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Fourier-Motzkin Elimination:
an example, call of PORTA (Polymake)

DIM = 3

min/max + x1 + 3x2 INEQUALITIES_SECTION
@) - X2 <=0 @) - X2 <=0
(2) - x1 - x2 <=-1 (2) - x1 - x2 <=-1
(3 - x1 + x2 <=3 (3 - x1 + x2 <= 3
(4) + x1 <=3 (4) + x1 <=3
(5) + x1 + 2x2 <= 9 (5) + x1 + 2x2 <=9

+ x1 + 3x2 - x3 <=0

> S

ELIMINATION_ORDER
100

X1 - 3x2 + X3 <=0

1B
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Fourier-Motzkin Elimination:
an example

DIM = 3 4‘||||| DIM = 3

INEQUALITIES_SECTION INEQUALITIES_SECTION

&9 (1) - x2 <= 0 (O - X2 <=0
(2,4 (2) - x2 <= 2 (2) - x1 - x2 <=-1
(2,5 (3) + x2 <= 8 (3) - x1 + x2 <= 3
(2,6) (4) +2x2 - x3 <= -1 (4) + x1 <=3
(3,4) (b)) + x2 <= 6 (b)) + x1 + 2x2 <=9
(3,5) (6) + x2 <= 4 (6) + x1 + 3x2 - x3 <=0

= (3,6) (7) +4x2 - x3 <= 3 (D)
e (7.,4) (8) -3x2
(7,5) (9) - x2 + x3 <= 9

(7,6) ELIMINATION_ORDER
100

X1 - 3x2 + X3 <=0

+
X
w
N
[
w

Martin
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Fourier-Motzkin Elimination:
an example

DIM = 3 (1,4 ( 1) -x3 <= -1

1,7 ( 2) -x3 <= 3

INEQUALITIES_SECTION (2,4 ( 3) -x3 <= 3

2,7 ( 4) -x3 <= 11

D @) - x2 <= 0 (8,3) ( 5) +x3 <= 27

(2,4) (2) - x2 <= 2 (8,4 ( 6) -x3 <= 3

(2,5) (3) + x2 <= 8 (8,5 ( 7) +x3 <= 21

(2,6) (4) +2x2 - x3 <= -1 (8,6) ( 8) +x3 <= 15

(3,4) (5) + x2 <= 6 (8,7) ( 9 +x3 <= 21

(3,5) (6) + x2 <= 4 (9,3) ( 10) +x3 <= 17

o (B,6) (7) +4x2 - x3 <= 3 (9,4) ( 11) +x3 <= 17

BN (7,4) (8) -3x2 + x3 <= 3 (9,5) ( 12) +x3 <= 15

BN (7,5) (9) - X2 + x3 <= 9 (9,6) ( 13) +x3 <= 13

JEQT_ (7,6) (9,7) ( 14)+3x3 <= 39
ELIMINATION_ORDER min = 1 <= x3 <= 13 = max

010
x1

1
4

x1
X2

o PR

X2

Martin
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Fourier-Motzkin Elimination:

an example

1B

Martin
Grotschel

min/max + x1 + 3x2

\\ max
(D - X2 <=0
(2) - x1 - x2 <=-1
(B3 - x1 + x2 <=3 ~
4 + x1 <=3 Q 5
(5) + x1 + 2x2 <= 9 h ) ::::::::é:?\\
@)
&
)
min

/
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Fourier-Motzkin Elimination

= FME is a wonderful constructive proof method.

= Elimination of all variables of a given inequality system
directly yields the Farkas Lemma:

Ax <b has a solution or y' A=0, y'b < 0 has a solution
but not both.

k) = FME is computationally lousy.
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The Simplex Method
= Dantzig, 1947: primal Simplex Method

= Dantzig, 1953: revised Simplex Method
= Lemke, 1954; Beale, 1954: dual Simplex Method

= Underlying Idea: Find a vertex of the set of feasible LP
solutions (polyhedron) and move to a better neighbouring
vertex, if possible (Fourier's idea 1826/27).
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he Simplex Method.:
an example

min/max + x1 + 3x2
N

(D - X2 <=0

(2) - x1 - x2 <=-1

(B3 - x1 + x2 <=3

(4) + x1 <= 3

(5) + x1 + 2x2 9

/
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he Simplex Method.:
an example

min/max + x1 + 3x2

(D - X2 <=
(2) - x1 - X2 <=-
(B - x1 + X2 <=
(4) + x1 <=
(5) + x1 + 2x2 <=

/

1B
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Hirsch Conjecture

If P is a polytope of dimension n with m facets then every
vertex of P can be reached from any other vertex of P on a
path of length at most m-n.

In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.

o Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of an
n-dimensional polyhedron with m facets is at most m(log n+1).

Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).

1B
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arxiv:1006.2814v1 [math.CO] 14 Jun 2010

A counterexample to the Hirsch conjecture

Francisco Santos*

To Victor L. Klee (1925-2007), in memoriam'

Abstract

The Hirsch [Conjecture (1957) stated that the graph of a d-dimensional
polytope with n facets cannot have (combinatonal) diameter greater than
n —d. That 1s, that any two vertices of the polytope can be connected to
each other by a path of at most n — d edges.

This paper presents the first counterexample to the conjecture. Our
polytope has dimension 43 and 86 facets. It 1z obtained from a 5-dimensional
polytope with 48 facets which violates a certain generalization of the d-
step conjecture of Klee and Walkup.
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To appear in STOC 2011
proceedings, June 2011

Subexponential lower bounds for
randomized pivoting rules for solving linear programs

Oliver Friedmann * Thomas Dueholm Hansen | Uri Zwick *

Abstract

The simpler algorithm is among the most widely used algorithms for solving linear programs in
practice. Most deterministic pivoting rules are known, however, to need an exponential number of
steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work,
for randomized pivoting rules. We provide the first subezponential (i.e., of the form 29Un%)  for some
a > () lower bounds for the two most natural, and most studied, randomized pivoting rules suggested
to date.

The first randomized pivoting rule we consider 153 RanpoM-EDGE, which among all improving
pivoting steps (or edges) from the current basic feasible solution (or verter) chooses one uniformly at
random. The second randomized pivoting rule we consider is RANDOM-FACET, a more complicated
randomized pivoting rule suggested by Matousek, Sharir and Welzl [MSW06]. Our lower bound for
the RanpDoM-FACET pivoting rule essentially matches the subexponential upper bound of Matousek
et al. [MSWO6]. Lower bounds for Ranpom-EpcE and RanpDoM-FACET were known hefore only in
abstract settings, and not for concrete linear programs.

Our lower bounds are obtained by utiizing connections between pivoting steps performed by
simplex-based algorithms and improving switches performed by policy iteration algorithms for 1-plaver
and 2-player games. We start by building 2-player parity games (PGs) on which suitable randomized

Z[l policy iteration algorithms perform a subexponential number of iterations. We then transform these
2-player games into 1-player Markov Decision Processes (MDPs) which correspond almost immediately
Martin to concrete linear programs.
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Computationally important idea of the
Simplex Method

Let a (m,n)-Matrix A with full row rank m, an m-vector b and
an n-vector ¢ with m<n be given. For every vertex y of the
polyhedron of feasible solutions of the LP,
max c' x

Ax=Db

x>0
- there is a non-singular (m,m)-submatrix B (called basis)
| Bl of A representing the vertex y (basic solution) as follows
Yg = B_1b1 Yn = 0

A=| B N

.......
e

21Ny Update-formulas, reduced cost calculations,

> 4 Many computational consequences:
el number of non-zeros of a vertex, ...



Numerical trouble often
has geometric reasons

SO

4 Where are
the points of intersection
(vertices, basic solutions)?

What you can't see with your eyes,
causes also numerical difficulties.
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Dual Simplex Method

= The Dual Simplex Method is the (Primal) Simplex Method
applied to the dual of a given linear program.

Surprise in the mid-nineties:

= The Dual Simplex Method is faster than the Primal in
practice.

One key: Goldfarb’s steepest edge pivoting rule!

= A wonderful observation for the cutting plane methods of
integer programming!
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The Ellipsoid Method
= Shor, 1970 - 1979

= Yudin & Nemirovskii, 1976

= Khachiyan, 1979

= M. Grotschel, L. Lovasz, A. Schrijver,
Geometric Algorithms and Combinatorial Optimization
Algorithms and Combinatorics 2, Springer, 1988
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The Ellipsoid Method: an example

N

=N

|
:
§< 1i><
1




k =0,
N =2n(@n+ 1(C)+nidy—n®)  IH"
={x|Cx<d
Ay := R?I with R := /n2(Cd-r x| j
Initialization

ay =0
Ifk = N, STOP! (Declare P empty.) Stopping criterion
If a; € P, STOP! (A feasible solution is found.) Feasibility check
Ifa, ¢ P, then choose an inequality, say ¢” x <y, Cutting plane

of the system Cx < d that is violated by ay. choice
1
b = AkC
‘/CTA"‘; The
A4 = A 1b Update Ellipsoid
" Method

n° 2 ..
Ak = nzw-l(Ak n+1bb )



Ellipsoid Method

a(0)

a(1)
a(2)

a(7)

feasible
solution
found



62

Hoxnangst Axagemuanm saysk CCCP
1979. Tom 244, Ne 5
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JL T'. XAUHAH

MOJJMHOMMAJIbBHBIA AJITOPATM B IHHEWHOM
IIPOrPAMMUPOBAHHNN

(Ipedcraeaenc aradenuron A. 4. Jopodnuysiiers 4 X 1978)

P&ﬁG}IﬂTpHM CHCTeMYy H3 m..?-?-2 JUHENHBIX HEepaBeHCTB OTHOCHTE/JILHO n=>2
BEMIECTBEHHBIX MEPEMEHHBIX Xy, . .. , Xj, ..., Ly
EHIq_+ S 'F“{Iini'ngbi, I::i, 2, eeey M (1?'

k}

‘¢ TMeJBIMHE KoadunuentraMmit aq, by, [lvern

L=[ y 1{1gz(|aﬁ¥+1)*’rZIﬂgg(ibii-ﬁ-i}‘{-iuginm]+1 @)
1==1 .

i =1

€CTh JUUIHA BXOAa CHCTEMBI, T. €. wHcao ciuMBoios O w 1, BeoOXoguMeIxX A7s
sanuen (1) B IBOUYHOIT cHeTEMe CUMHCTOHI,
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VIATHEMATICAL
PROGRAMMING
There was an Oberwolfach STUDY 14

meeting on Mathematical A PUBLICATION OF
Programming N 9/1979 THE MATHEMATICAL PROGRAMMING SOCIETY
where I learned about
Khachiyan’s work

Mathematical Programming
at Oberwolfach

Edited by H. KONIG, B. KORTE and K. RITTER

b 50
&
A TR i}
PE

Januwary (1981)
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Mathematical Programming Study 14 (1981) 61-68.
North-Holland Publishing Company

KHACHIYAN’S ALGORITHM FOR LINEAR PROGRAMMING*

Peter GACS and Laszlo LOVASZ
Computer Sclence Department, Stanford University, Stanford, CA 94305, U.5.A.

Received 10 October 1979

L.G. Khachiyan’s algorithm to check the solvability of a system of linear inequalities with integral
coefficients is described. The running time of the algorithm is polynomial in the number of digits
of the coefficients. It can be applied to solve linear programs in polynomial time.

Key Words: Linear Programming, Inequalities, Complexity, Polynomial Algorithms.

0. Introduction

L.G. Khachiyan [1, cf. also 2,3] published a polynomial-bounded algorithm to
solve linear programming. These are some notes on this paper. We have ignored
his considerations which concern the precision of real computations in order to
make the underlying idea clearer; on the other hand, proofs which are missing
from his paper are given in Section 2. Let

ax<b, (i=1,...ma€EZ bhEZ (1)

be a system of strict linear inequalities with integral coefficients. We present an
algorithm which decides whether or not (1) is solvable, and yields a solution if it
is. Define '

L= log(ja;|+ 1)+ 2 log(|b,|+ 1) +log nm + 1.
] .-

I is a lower bound on the space needed to state the problem.



MATHEMATIK

Schnelles Ul

Fiir Aufgaben mit schwer wiigbaren
GroBen fand ein junger Sowjet-
Forscher einen eleganien Losungs-
weyg. Kapitalistische Unternehmen
wie auch die sozialistische Planwirl-
schaft kénnten davon profitieren.

Seine Mutter ist Rentnerin. So crle-
digt der Junggeselle Leonid Genri-
chowitsch Kachijan, 27, der Bequem-
lichkeit halber das Tagewerk ofter mal
zu Hause.

An seinem Arbeitsplatz in einem al-
ten Moskauer Backsteinbau, dem Com-
puter-Zentrum der Sowjetischen Aka-
demie der Wissenschaften, erscheint
der dunkelhaarige Armenier im Pull-
over,

Sein einziges Hobby — Karate —
gab Kachijan des Studiums wegen auf.
Vor fiinf Jahren, mit 22, machte er Ex-
amen, letztes Jahr seinen Doktor; und
nun wurde der Mathematik-Theoreti-
ker, in Fachkreisen jedenfalls, auf
einen Schlag weltberiihmt.

Der Amerikaner George B. Dantzig
etwa, der sich mit dem gleichen Aufga-
bengebiet beschiftigt wie Kachijan,
wird geradezu ,von Anrufen iiber-
schwemmt®; ¢r soll die Bedeutung der
Entdeckung seines sowjetischen Kolle-
gen erklaren. ,Wirklich jedes Ministe-
riom* der US-Regierung, berichtet der
Stanford-Professor, habe sich schon
danach erkundigt.

Die Le:stung des jungen Mnﬁkauers

Tra La-4a -t

s m e T T W o

Tl R I LR ANk “W"’"wuil"ll RN

hem Rechcnaufwand von Computern.

Das verhiltnismiiBig junge Gebiet ist
iiberdies, wie der ,div-Atlas zur Ma-
thematik®™ erlautsrt, ,auBerordentiich
praxisnah®: Die sogenannte lineare Op-
timierung wird zunehmend wichtig fiir
weltweit operierende Unternehmen und
fiir die Wirtschafislenkung in den so-
zialistischen Staaten.

Im wesentlichen geht es darum, wie
mit einer Vielzahl verdnderlicher Gri-
Ben innerhalb fester Rahmenbedingun-
gen das glinstigste Ergebnis zu erzielen
ist. Wo aber friiher Spiirsinn des Mana-
gers oder Voraussicht des Planungs-

funktionidrs ausreichen muBten (oder
versagten), wird neverdings scharf kal-
kuliert.

Im einfachsten Fall — zwei verin-
derliche GréBen (Variable) — ginge es
beispielsweise um die Frage, wie viele
Farb- und wie viele Schwarzweifernse-
her e¢in Fabrikant bauen miibte, um
den groBten Gewinn zu erzielen. Seine
Rahmenbedingungen: Am Schwarz-
weibfernseher verdient er 150, am
Farbfernseher 450 Mark; er kann wo-
chentlich hochstens 120 Schwarzweill-
geriite, héchstens 70 Farbgeriite und
insgesamt nicht mehr als 140 Fernseher
herstellen lassen; auBBerdem sind in die
Schwarzweiflgerite je ein, in die Farb-
geriite je zwei Aggregate einzubauen,
von denen wdchentlich aur 180 Stiick
zur Yerfiigung stehen.

Die optimale Lisung (40 Schwarz-
weiB- und 70 Farbgeriite, 37 500 Mark
Gewinn) 1aBt sich noch durch graphi-
sche Darstellung finden. Bei drei Va-
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Wahrscheinlich wird sich durch Ka-
chijans Erkenntnis die dagegen doch
recht umstindliche Simplex-Methoda
weithin ersetzen lassen. Und womig-
lich erweist sie sich auch bei Problemen
pichtlinearer Optimierung als tauglich,
bei denen die Simplex-Methode ver-
sagt,

Seltsam mutet an, dafl Kachijans
Theorie, die nun alle Experten faszi-
niert, nur durch Flilsterpropaganda im
Westen bekannt wurde. Veroffentlicht
hatte er sie bereits vor einem Jahr.

Erst im Mai aber machten polnische
Kollegen den Kdlner Mathematik-Pro-
fessor Rainer Burkard wihkrend einer
Tagung auf eine Kurzfassung dieser
Arbeit im Sowjet-Journal ,Doklady™
(Vortrige) aufmerksam. Burkard wie-
derum gab die Information am ame-
rikanische Kollegen weiter, die freilich
erst einen mathematikverstindigen
Ubersetzer suchen muBten.

Dann allerdings machte der bis da-
hin unbekannte Name Kachijan die
Runde und Furore. Mit seinem L&-
sungsschema gelang es etwa dem Un-
garn LAszlé Lovasz, zu Gast an der
Stanford University, filr Aufgaben mit
sechs Ungleichungen und sechs Unbe-
kannten auf Anhieb mit cinem pro-
grammierbaren Taschenrechner das
optimale Ergebnis zu finden, &

DER BPIEGEL, Nr. S0/1579
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New York Times, Nov. 7, 1979
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By MALCOLM W. BROWNE

pz. Al

By MALCOLM W. BROWNE

A surprise discovery by an obscure
Soviet mathematician has rocked the
world of mathematics and computer
analysis, and experts have begun explor-
ing its practical applications,

Mathematicians describe the discov-
ery by L.G. Khachian as a method by
which computers can find guaranteed
solutions to a class of very difficult prob-
lems that have hitherto been tackled on a
kind of hit-or-miss basis.

Apart from its profound theoretical in-
terest, the discovery may be applicable

A Soviet Discovery Rocks World of Mathematics

in weather prediction, complicated indus-
trial processes, petroleum refining, the
scheduling of workers at large factories,
secret codes and many other things,

“I have been deluged with calls from
virtually every department of govern-
ment for an interpretation of the signifi-
cance of this,” a leading expert on com-
puter methods, Dr. George B. Dantzig of
Stanford University, said in an interview,

The solution of mathematical problems
by computer must be broken down into a
series of steps. One class of problem
sometimes involves so many steps that it

New York Times (1857-Current file); Nov 7, 1979; ProQuest Historical Newspapers The New York Times (1851 - 2003)

A Soviet Discovery Rocks World of Mathematics |

could take billions of years to compute.
The Russian discovery offers a way by

which the number of steps in a solution

can be dramatically reduced. It also of-

[fers the mathematician a way of learning
‘quickly whether a problem has a solution

or not, without having to complete the en-
tire immense computation that may be
required.

According to the American journal Sci-

Continued on Page A20, Column 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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May 1980
National Association of Science Writers

NEWSLETTER

NATIONAL ASSOCIATION OF SCIENCE WRITERS

Volume 28, Number 2 May 1980

Science Writers Rock World of Mathematics:
Tales of the Traveling Salesman Problem

by Jonathan Weiner

Echoes of Sputnik. An obscurc young Russian mathematician solves a key problem in linear programming, and
American defense experts wring their hands worrying about its applications to secret codes, weather forecasting,
and Kremlin-only-knows what else.

It was a pretty good story, as mathematics news goes, and it wound up on page one of The New York Times last
ZAR November 7. It was run by The Times news service, and it was picked up far and wide as a nifty science novelty
3 item. It had all the elements of a spy novel: the cold war, a valuable scientific formula, and sexual innuendo in

Martin the form of a traveling salesman. Who could ignore it?
Grotschel
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National Association of Science Writers

Trouble was, it was wrong. The Times story said the
Soviet mathematician had cracked the secret of the
Traveling Salesman Problem — one of the most im-
portant in computer science. In fact, he didn’t do it,
and he never claimed he did. He didn’t come close.

Bad enough. Mistakes happen. Everyone makes them,
and even The Times doesn't claim it’s immune. In this
case, however, The Times enraged American compu-
ter scientists — who had to convince congressmen
and others there wasno ‘salesman gap’ — by seemingly
refusing for months to admit it was wrong.

1B
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Interior-Point Methods: an example

central path

~

~~

)

Often also called
Barrier Methods

(5)\

@)

inté.rior Point
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The Karmarkar Algorithm

(13.25) Der Karmarkar-Algorithmus.

Input: A ¢ Q™" und o ¢ Q" Zusatzlich wird vorausgesetzt, dass —15_.:1: 0
und 71 = 0 gilt.

Output: Ein Vektor r mit Ar = 0, 1Tz = 1. = > 0 und <= < 0 oder die
Feststellung, dass kein derantiger Vektor existiert.

2 Abbruchkriterium.

(1) Inltialiskerung, Setze (24) Gilt k — N, dann hat Az = 0, 1Tx = 1, z > 0, Tz < 0 keine

Lasung, STOP!
(2.b) GilteTr¥® < 2-Wi-i8 dann ist eine Losung gefunden. Falls & =& =< 0,
danmn ist .rk eine I nsum:- andernfalls kamn wie bei d?rHImeJdeHm-

de (Satz (12.34)) aus =* ein Vektor T konstruien werden mit «"' T < 0
AT =0,1TT =1, T =0, STOP!

f=R ] P
[

N = 3n((4) + 2(c) — n)

Update.
(3) (3.a) D := diag(z*)

(3.b) ©:= (I-DA"(AD*ATY 'AD—- 111"\ De

I!_'B,CJ rH!:H—I .

(3.d) I.is:+1 — F‘%Frﬂyk—'_l

(3.e) k:=k+1

1B
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Gehe zu (2).




| Breakthrough in Problem Solving

A 28-year-old mathematician at A T.&T.
Bell Laboratories has made a starli
theoretical breakth in the solving
systems of equations that ofien grow too
vast and complex for the most powerful
computers.

The discovery, which is to be formally
published next month, is already cir-
culating rapidly through the mathematical
world. It also set off a deluge of
inquiries from houses, oil com-
of dollars at stake in problems known as
linear programming.

Faster Solutions Seen

These problems are fiendishly com-
plicated systems, ofien with thousands of
variables. They arise in a veriety of com-
mercial and government applications, rang-
ing from allocating time on & communica-
tions satellite w0 routing millions of
telephone calls over long distances, or
whenever & limited, expensive resource
must be spread most efficiently among
competing users. And investment com-
panies use them in ¢mu'"n§dponiolios with
the best mix of stocks bonds.

The Bell Labs mathematician, Dr.
Narendra Karmarkar, has devised a
radically new ure that may speed the

rootine handling of such ems
wso make it possible to mc:iiepmblms
that are now far out of reach.

“Thisis a ing result,” said Dr,
Ronald L. Graham, director of
mathematical sciences for Bell Labs in
Murray Hill, N.1.

THE NEW YORK TIMES, November 19, 1984

By JAMES GLEICK

“5cience has its moments of great pro-
gress, and this may well be one of them.”

Because problems in linear program-
ming can heve billions or more possible
answers, even high-speed computers can-
not check every one. So computers must
use a special procedure, an algorithm, 1o
examing as few answers as possible before
finding the best one — typically the one
that minimizes cost or maximizes
efficiency,

A procedure devised in 1947, the simplex
method, is now used for such problems,

Continued on Page A19, Column 1

Folding the Perfect Corner

A young Bell scientist makes a major math breakthrough

very day 1,200 American Airlines jets

crisscross the U.S,, Mexico, Canada and
the Caribbean, stopping In 1i0 cities and bear-
ing over BO.000 passengers. More than 4,000
pilots, copilots, flight personnel, mainenance
workers and baggage carriers are shuffled
among the flights; a total of 3.6 million gal.
of high-octane fuel is burned. Nuts, bols,
altimeters, landing gears and the like must be
checked at each destination. And while per-
forming these scheduling pymnastics, the
company must keep a close eye on costs, pro-
Jected revenue and profits.

Like American Airlines, thousands of com-
panies must routinely untangle the myriad
variables that complicate the efficient distribu-
tion of their resources. Solving such monstrous
problems requires the use of an abstruse
branch of mathematics knewn as linear pro-
gramming. It is the kind of math that has
frustrated theoreticians for vears, and even the
fastest and most powerful computers have had
great difficulty juggling the bits and pieces of
data. Now Narendra Karmarkar, a 28-year-old

Indian-born  mathematician  at  Bell
Laboratories in Murray Hill, N 1., after only
a years' work has cracked the puzzle of linear
programming by devising a new algorithm,
step-by-step mathematical formula. He has
translated the procedure into a program that
should allow computers w track a greater com-
bination of tasks than ever before and in a frac-
tion of the time,

- Unlike most advances in theoretical
mathematics, Karmarkar's work will have an
immediate and major impact on the real world.
“Breakthrough is one of the most abused
words in science,” says Ronald Graham, direc-
tor of mathematical sciences at Bell Labs,
**But this is one situation where it is truly ap-
propriate.”

Before the Karmarkar method, linear equa-
tions could be sclved only in a cumbersome
fashion, ironically kmown as the simplex
method, devised by Mathematician George
Dantzig in 1947, Problems are conceived of
as giant geodesic domes with thousands of
sides. Each comer of a facet on the dome

TIME MAGAZINE, December 3, 1984
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Milestones for

Interior Point Methods (I1PMs)

= 1984 Projective IPM: Karmarkar — efficient in practice!?

= 1989 O(n3L) for IPMs: Renegar — best complexity

= 1989 Primal-Dual IPMs: Kojima ... — dominant since then

= 1989 Self-Concordant Barrier: Nesterov—Nemirovskii
— extensions to smooth convex optimozation

1992 Semi-Definite Optimization (SDO) and Second Order
Conic Optimization (SOCO): Alizadeh, Nesterov—Nemirovskii
—new applications, approximations, software

= 1998 Robust LO: Ben Tal-Nemirovskii

1B
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Towards IPMs: The Primal-Dual
Linear Optimization Problems

The primal-dual LO problems is given as:

Iy max bT-y

& = b, &> U, ATy—I—.S = & 820,

min c

where c,z,5 € R™, by € R™, A € R™ ", rank(A) = m.

Optimality conditions and the central path are given as:

Ar = B, =m0, g = b, 20
J{Ty—l—S = & 8310 ATy—I—S = @; §=0
e = rs = e

where e = (1,..., 1:)T e R™.

We assume that the Interior Point Condition holds.

ZA1B : ,
Martin following Tamas Terlaky

Grotschel
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Towards IPMs: The Central Path

The central path and the Classical Newton direction:

Ar = b, x>0, AAxr = 0,
ATy—I—S = ¢, s>0, AT/_\*y—I—L\s = 0,
rs = [ie. sAr +xrAs = pe — xs,
Scaled Newton direction: Proximity Functions:
- o2 1
Apz = 0O, V() = ), ( 5 —log 'Uz')
ETAQ' +ps = O, 1'1:1
petps = viow W) = Sfu—vTH2

where A = lAv—lx., V = diag (v), X = diag («) with

U/_\r vAs
v i=/— L= : , Ps .= L

1B
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Self-Regular Functions

) (t) is Self-Regular (SR) if -

— -l gt
— il g

SR1: (t) is strongly convex,

global minimum: (1) = O,
d,v1.,v0 >0 and p,q > 1, s
such that for ¥t € (0, +o0) o

v (P - t179) < @(t) S wa(tPt 4 t179),
SR2: For ty,tp >0, r € [0, 1].
BT < rp(ta) + (1 — 1) (ta), |
SR2 : (exp(€)) is convex. & % : % 3
q . barrier degree; n

p : growth degree. V(v) = Z U (v;)
SR is a non-closed convex cone. i=1

1B
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Primal-Dual Interior Point Methods
with small and large updates

Input:
A proximity parameter 7 an accuracy parameter € > 0O;
an update parameter 0 < 0 < 1; a variable damping factor «;

(9,89, kP =1 s.t. W <71.
begin

r.=ux
while nu > e do

begin
pi=(1-0)u,

while W(v) > 7 do

begin
Do line search for W (v(a));

r . =x+ aAx;
s = s+ als;
end

end
end

0 5= 59 pi= Y

41 B
Martin
Grotschel
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Complexity of Self-Regular IPMs

Method Large update | Small update
7, 1—-1/100 1/\/n
[ter. bound O(nlog %) O(y/nlog %)
Performance Efficient Very poor
SR-Method SR-Large SR-Small SR-Large g = logn
0 1—-1/100 1/\/n constant
qF1

[ter. bound | O(gqn 2¢ log%) | O(y/nlog?) O(y/nlognlog™)

Performance Efficient Very poor Efficient

"Almost” constant (< 100) number of iterations in practice!

1B
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Lagrangean Relaxation &
Non-differentiable Optimization
= Approach for very large scale and structured LPs

= Methods:

= subgradient

= bundle
= bundle trust region

or any other nondifferentiable NLP method that looks
promissing
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Lagrangian Relaxation

= Turning an LP into a nonlinear nondifferentiable
optimization problem

minc' X
maxf (A1)
AX=b LT T
f(A)=minc'x+A4 (Ax—-Db)
Dx <d e x€Q
X=>0

(14.25) Satz. Sei Q nicht leer und endlich und f(\) := mingeq(ch o+ AT (Ax —
b)), so gilt folgendes: Setzen wir fiir \g € R™, Ly := {29 € R™ | f(\o)
oo+ AN (Axg — b)}. soist

ZiB Jf(Ao) = conv{(Axg —b) | 29 € Lo} .

Martin
Grotschel
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Algorithms for
nonlinear nondifferential programming

Xy = X + 8,0,
d. = subgradient (instead of gradient)

or element of ¢-subdifferential (bundle)
s, = steplength

1B

Martin
Grotschel
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Bundle Method

(Kiwiel [1990], Helmberg [2000])
= Max f(1):=minc'x+A"(b-Ax)

Xe X

X polyhedral (piecewise linear)

ra T T
f,(A)=c'x,+4 (b-Ax,)

f.(1):=minf (A
k(1) min (1)

f A Uy o
» A =argmaxf, (i)—?“ﬁ—ﬂk
A
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Quadratic Subproblem

(1) maxf, (1)- u?k"’I - A ”2

2

S (2) max v—u?ku/l—ik

st v<f, (1), forall pel,

2
a1
& (@) max Zaﬂfﬂ(ﬁ)—ﬁ D, a,(b-Ax,)
JZEND K || ued,
S.t. Z a, =1
HEI,

O<e, <1  forall xedy
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Primal Approximation

ﬂk+1:ik+% Z Olﬂ(b—AX/J) 4

Hed,

Xk-i—l z CZ,UX,U
ued,

f (1) =c"X, +A(b—AX,)

= " Theorem

}k+1 A

b - A% >0 (k - )

= (X )ken CONVerges to a point X € {x:Ax=b,x e X}
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Where Bundle WIins

RALF BORNDORFER ANDREAS LOBEL STEFFEN WEIDER

A Bundle Method for Integrated
Multi-Depot Vehicle and Duty
Scheduling in Public Transit
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Coputational Results for a (Duty Scheduling)
Set Partitioning Model

Duty Scheduling Problem Ivu41:

Coordinate Ascent: Fast, low quality

* 870 500 col Subgradient: (Theoretical) Convergence
e 3570 rows Volume: Primal approximation
 10.5 non-zeroes per col Bundle+AS: Conv. + primal approx.
Dual Simplex: Primal+dual optimal
Barrier: Primal+dual optimal
450 -
w [

|
e 7
'] /

250
0 20 40 60 80 100 [s]

— Coordinate Ascent — Subgradient Volume Bundle+AS —— Dual Simplex — Barrier
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Semi-algebraic Geometry
Real-algebraic Geometry

f(x),1=1,...,1 are polynomials in d real variables
S, ={xeR® :§(x)=0,...,§(x) >0}

is called a basic closed semi-algebraic set




91

Theorem of Brocker(1991) & Scheiderer(1989)
basic closed case

Every basic closed semi-algebraic set of the form

S={xeR" :(x)>0,...,f(x) >0},

where § e R[x,...,X;],1<1<1, are polynomials,
can be represented by atmost  d(d +1)/2

polynomials, i.e., there exist polynomials
Poyees Pacasnye € RIX, . Xg] such that

S={xeR" p,(X) 2 O""’pd(d+1)/2(x) > 0}

and d(d+1)/2 is best possible.

41 B
Martin
Grotschel
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Our first Theorem

Theorem Let P— R" be a n-dimensional

polytope given by an inequality representation. Then
k < n" polynomials p, € R[X,...,X,]
can be constructed such that

P=P(p,,...p)

Martin Grotschel, Martin Henk:
The Representation of Polyhedra by Polynomial Inequalities

Discrete & Computational Geometry, 29:4 (2003) 485-504

1B
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Our Main Theorem

Theorem Let P — R" be a n-dimensional

polytope given by an inequality representation. Then
2n polynomials  p. € R[X,..., X ]
can be constructed such that

P — P(pl""’pZH)'

Hartwig Bosse, Martin Grotschel, Martin Henk:
' Polynomial inequalities representing polyhedra
Mathematical Programming (2005)

http://www.springerlink.com/index/10.1007/s10107-004-0563-2

1B
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Homework: Try to describe an n-gon in
2-space by 2 polynomial inequalities

b -

ZIIB {x € RY: py(x) > Oandpg(x) > 0}

Martin

Grotschel
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Latest News

= Martin Henk, Gennadiy Averkov, ,Representing simple
d-dimensional polytopes by d polynomials*™
Mathematical Programming (A), 126(2), 2011, 203-230;
arxiv:0/09.2099v1

= Brocker, “Solution of the general case for polyhedra” ??,
handwritten manuscript

1B
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My dream

= Make this result computationally useful!

= E.qg., for every graph G with n nodes there are
n polynomials, such that

STAB(G) = P(p,, .-, p,)-
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Other Methods

There are many, see, e.q.,

= A. Schrijver (1986), 7Theory of Linear and Integer Programming, Wiley,
Chichester, 1986

= M. J. Todd (2002) The many facets of linear programming. Math
Program, Ser B 91:41/-436

= M., Grotschel, L. Lovasz, A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, Springer, 1988

| = A LP-Newton method, based  Optim Eng (2009) 10: 193-205
; DOT 10.1007/s11081-008-9067-x
on the zonotope formulation
and the minimum-norm-point
algorithm of Wolfe (1976)

Zonotopes and the LP-Newton method

Satoru Fujishige - Takumi Hayashi -
Zﬂ Kei Yamashita - Uwe Zimmermann

Martin
Grotschel
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Some LP/MIP Solvers

IBM CPLEX 12.2 www.cplex.com
Gurobi 3.0 www.gurobi.com
FICO XPress-MP 7 www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-

Optimization-Suite.aspx

Lindo 6.1 www.lindo.com

Minto 3.1 coral.ie.lehigh.edu/~minto

SCIP 2.0 scip.zib.de

CBC 2.5 projects.coin-or.org/Cbc

Symphony 5.2 projects.coin-or.org/SYMPHONY

glpk 4.43 www.gnu.org/software/glpk/glpk.htmi

|p_solve 5.5 Ipsolve.sourceforge.net

Berlin
(4 15))
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OR/MS Today Surveys

Martin
Grotschel

OR/MS Today, June 2009

Linear Programming Survey

Table 3
Platforms Supported
PC [ PC f Unix Other OS5 Microprocessor Support
Windows |Linux
32- |64~ |32-|64- |32- | 64- Specify flavor |32- 64~ Shared Distributed
Product bit |bit |bit |bit |bit bit |of Unix bit |bit |Specify Memory Memory
AIMMS, the ¥ ¥ L Parallel Solver
modeling Sessions
system [(Windows/Linux)
AMPL ¥ ¥ ¥ Iy ¥ ¥ Solaris, Mac OS5
¥, AL¥, HP-UX,
IRIX
BandX ¥ v Yoy |y ¥ Sun Solaris, HP-
Stochastic Ux, AIX (Unix
Solver platforms are
(C/C++/lava
only)
C-WHIZ ¥ ¥ ¥
CBC ¥ ¥ ¥y Iy |y ¥ AlX, Solaris Can be Linuz, Unix,
ported to  |Windows (neeads
most pthreads)
systems
CLP ¥ ¥ v v |v |v [|AIX, Solaris Can be
ported to
muost
systems
CoinMP ¥ ¥ ¥ ¥ Solaris, Mac O35
x
DATAFORM v oy
FICO ¥press ¥ ¥ ¥y Ir ¥ ¥ Solaris, AIX, All
HP-UX
flopc++ ¥y |y ¥ |y
Frontier Task splitting
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Which LP solvers are
used In practice?

Preview summary

= Fourier-Motzkin: hopeless

= Ellipsoid Method: total failure

= primal Simplex Method: good

= dual Simplex Method: better

. = Barrier Method: for large LPs frequently better
g - For LP relaxations of IPs: dual Simplex Method

1B
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Grotschel




103

http://www.netlib.org/Ip/index.html

Ip

Click here to see the number of accesses to this ibrary.

lib data

for a zet of test problem=s in MPS format.

lib generators

for programs that generate linear programming test problems
lib infeas

for infeasible linear programming test problems

Importance of test data!

1B
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MIPLIB 199272010

MIPLIB - Mixed |nteger Prnblem LlBrar:,t

MIPLIB 2010

After its introduction, MIPLIB has become a standard test set used to compare the performance of mixed integer optimizers.

Since the first release in 1992 the MIPLIB has been updated several times. Now again 7 years have past since the last update in 2003. And again improvements in state-
of-the-art optimizers, as well as improvements in computing machinery have made several instances too easy to be of further interest.

Last year a group of interested parties including participants from ASU, COIN, FICO, Gurobi, IBM, and MOSEK met at ZIB to discuss the guidelines for the 2010 release
of the MIPLIB.

Involved people:

Tobias Achterberg (IBM)

Erling D. Andersen (Mosek)

Oliver Bastert (FICO)

Timo Berthold (1B, Matheon)

Rabert Bixby (Gurobi)

Gerald Gamrath (ZIB)

Ambros Gleixner (ZIB)

Stefan Heinz (ZIB, Matheon)

Thorsten Koch (ZIB, Matheon)

Alexander Martin (TU Darmstadt)

Hans D. Mittelmann (Arizona State University)
Ted Ralphs (COIN-OR, Lehigh University)
Kati Wolter (ZIB)

We would be happy if you contribute to this library by sending us hard and/or real life instances. If you have any instances you would like to add to MIPLIB,
please use the form below to submit it. The current deadline for instances is 10/1/2010!

1B
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Independent Testing

Benchmarks for Optimization Software

by Hans Mittelmann (mittelmann at asu.edu)

The following are NEOS solvers we have installed.

BNBS, BPMPD, BPMPD-AMPL, Concorde, CONDOR, CSDP,
DDSIP, FEASPUMP, FEASPUMP-AMPL, ICOS, NSIPS,

PENBMI, PENSDP, QSOPT_EX, SCIP, SCIP-AMPL, SDPA,
SDPLR, SDPT3, SeDuMi

LINEAR PROGRAMMING

@ Benchmark of serial LP solvers (10-12-2010)

. @ Benchmark of parallel LP solvers (10-16-2010)
http://plato.asu.edu/bench.html ¢ o, .iel cpiex. GUROBL and MOSEK on LP problems (7-18-2010)

@ Large Network-LP Benchmark (commercial vs free) (10-16-2010)
MIXED INTEGER LINEAR PROGRAMMING

@ MILP Benchmark - serial codes (10-15-2010)
@ MILP Benchmark - parallel codes (10-14-2010)
@ MILP cases that are difficult for some codes (10-8-2010)

Z[l @ Feasibility Benchmark - Feaspump,CPLEX,SCIP,GUROBI (10-15-
2010)

@ Infeasibility Detection for MILP Problems (10-14-2010)

Martin
Grotschel
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LP survey

Robert E. Bixby, Solving Real-World Linear Programs: A
Decade and More of Progress.
Operations Research 50 (2002)3-15.

Bob on September 27, 2010
at his 65t birthday party

1B
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Progress in LP: 1988—2004

(Operations Research, Jan 2002, pp. 3—15, updated in 2004)

= Algorithms (machine independent):

Primal versus best of Primal/Dual/Barrier 3,300x
= Machines (workstations —PCs): 1,600x
= NET: Algorithm x Machine 5,300,000x

(2 months/5300000 ~= 1 second)

Courtesy Bob Bixby




Progress in LP: 1988—2004

= Where are we today?

= The good news
= “LP is a solved problem in practice”
= But, .... a word of warning
= 2% of MIP models are blocked by linear programming
= Little progress in LP computation since 2004
= LP could become a serious bottleneck in the future

Courtesy Bob Bixby
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The latest computational study:
Ed Rothberg (Gurobi)

= Rothberg slides

% = LP state of the art - according to Gurobi:

as of September 28, 2010 (Bixby’s 65t birthday
conference in Erlangen, Germany)

. J = All software producer do computational studies
permanently but rarely make them publicly available.
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What can we solve today?
“strange examples”

Example: Primal > Barrier > Dual

Problem name : patrickl
Optimal objective : 28609090
Variables : 2,666,441 [Boxed: 2,656,781, Nneg: 9,660]

Objective nonzeros : 684,145

Linear constraints 44,886 [Less: 8,173, Equal: 36,713]
Nonzeros : 7,991,889
RHS nonzeros ; 41,808
Dual Simplex : 488,900 iterations in 10,009 s (not finished)
Barrier+crossover 349 iterations in 3,111 s

ZIB Primal Simplex : 3,268,455 (895,004) iterations in 1,900 s

Martin
Grotschel
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What can we solve today?
“strange examples”

Example: Barrier > Primal > Dual

Problem name : aflow_2000_50
Optimal objective : 4720.3225806
Variables : 3,996,000 [Boxed: 1,998,000, Nneg: 1,998,000]

Objective nonzeros : 1,958,437
Linear constraints : 2,001,998 [Less: 1,998,000, Equal: 3,998]

Nonzeros : 9,988,972

RHS nonzeros : 3,998

Dual Simplex : 1,049,300 iterations in 10,054 sec (not finished)
Primal Simplex : 2,321,540 (28277) iterations in 6,752 sec

Barrier + crossover : 40 iterations in 1,704 sec (total 1,938 sec)
8 threads : 430.03 sec

41 B
Martin
Grotschel
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What can we solve today?
“strange examples”

Example: Primal > Dual > Barrier

Problem name : ts.log-bundle-060831-162253
Optimal objective : 5.69997.52369
Variables : 218,776 [Boxed: 218,776]

Objective nonzeros : 124,060
Linear constraints : 1,102,735 [Less: 970,339, Greater: 11,590, Equal: 120,806]
Nonzeros : 2,554,196
RHS nonzeros ;981,241

Presolve generated explicit dual
Dual Simplex : 132854 in 163 sec

Primal Simplex : 96397 (0) in 31 sec
Barrier : 53 iterations in 10069 sec (not finished)

41 B
Martin
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/1B Instances

SEHHY
SRR

Variables | Constraints Non-zeros | Description

1|12,471,400| 5,887,041| 49,877,768 | Group Channel Routing on a
3D Grid Graph
(Chip-Bus-Routing)

2 | 37,709,944 | 9,049,868 | 146,280,582 | Group Channel Routing on a
3D Grid Graph
(different model, infeasible)

3129,128,799 | 19,731,970 | 104,422,573 | Steiner-Tree-Packing on a 3D
Grid Graph

4 37,423 | 7,433,543 | 69,004,977 | Integrated WLAN
Transmitter Selection and
Channel Assignment

5| 9,253,265 9,808 | 349,424,637 | Duty Scheduling with base

constraints




LP can still be difficult

* We were not able to compute a feasible basis for zibO3 so far.

= After 10 h we still do not even have a primal feasible solution. Furthermore,
experiments with smaller instances suggest the model is very unfavorable for
the simplex method, especially regarding warm starts. Unfortunately, it is an IP.

Algorithm Time [h] Result Memory Resident
[GB] [GB]
Primal >300 Infeasibility 24 18
Simplex 2189
|| Dual Simplex >300 Lower bound 24 18
| 8335
Bundle 13 Lower bound 55 18
5951
Interior Point 103 Optimal 256 175
(32 threads) | 1.2228.148
Crossover >300 unfinished
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Summary

You should be surprised
if a linear program could not be solved

41 B
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Advertisement:
http://zibopt.zib.de/

ZIB Optimization Suite

Konrad-Zuse-Zentrum fur Informationstechnik Berlin
Division Scientific Computing
Department Optimization

The ZIB Optimization Suite is a tool for generating and solving mixed integer programs. It consists of the following parts

ZIMPL  a mixed integer programming modeling language
SoPlex  alinear programming solver
SCIP a mixed integer programming solver and constraint programming framework.

The user can easily generate linear programs and mixed integer programs with the modeling language ZIMPL. The
resulting model can directly be loaded into SCIP and solved. In the solution process SCIP may use SoPlex as
underlying LP solver.

Since all three tools are available in source code and free for academic use, they are an ideal tool for academic
Z[l research purposes and for teaching integer programming.

Martin See /1B licences for more information.
Grotschel
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SoPlex s o plex

SoPlex is an implementation of the revised simplex
algorithm. It features primal and dual solving routines for
linear programs and is implemented as a C++ class library
that can be used with other programs.

Roland Wunderling,

Paralleler und Objektorientierter
Simplex-Algorithmus,
Dissertation, TU Berlin,1997

1B
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Zimpl

= Zimpl is a little language to translate
the mathematical model of a problem
into a linear or (mixed-) integer
mathematical program expressed in
Ip or .mps file format which can be
read and (hopefully) solved by a LP or
MIP solver.

= Thorsten Koch, Rapid Mathematical Programming,
Dissertation, TU Berlin 2004
(awarded with the Dissertation Prize 2005 of the
Gesellschaft fur Operations Research)

1B

Martin
Grotschel




122

SCIP nhttp://scip.zib.de/

Tobias Achterberg, Tobias, Constraint Integer
Programming, Dissertation, TU Berlin, 2007

= Dissertation Prize 2008 of the Gesellschaft
fir Operations Research (GOR)

= George B. Dantzig Dissertation Award 2008
of the Institute of Operations Research and
the Management Sciences (INFORMS),
2nd prize)

= Beale-Orchard-Hays Prize 2009 of the
Mathematical Optimization Society for the paper:

Tobias Achterberg, “SCIP: Solving constraint integer programs”,
Mathematical Programming Computation, 1 (2009), pp. 1-41.

) »

1B
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Improving the Simplex Numerics

On the factorization of simplex basis matrices

R. LUCE, J. DUINTJER TEBBENS, J. LIESEN and R. NABBEN
Technical University of Berlin
M. GROTSCHEL and T. KOCH
Zuse Institute Berlin

and

O. SCHENK

University of Basel
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From the Abstract:
The Findings in Brief

1B

Martin
Grotschel

In the simplex algorithm, solving linear systems with the basis matrix and its transpose accounts

for a large part of the total computation time. The most widely used solution technique is sparse

LU factorization,

paired with an

updating scheme

that allows to use the factors over several

iterations. Clearly,

performance.

small number of fill-in elements

in the LU factors 1s eritical for the overall

Using a wide range of LPs we show numerically that after a simple permutation the non-

triangular part of the basis matrix 1s so small, that the whole matrix can be factorized with

(relative) fill-in close to the optimum. This permutation has been exploited by simplex practi-

tioners for many years. But to our knowledge no systematic numerical study has been published
that demonstrates the effective reduction to a surprisingly small non-triangular problem, even for

large scale LPs.

For the factorization of the non-triangular part most existing simplex codes use some variant of

|[dynamic Markowitz pivoting,

which originated in the late 1950s. We also show numerically that,

in terms of fill-in and in the simplex context, dynamic Markowitz 1s quite consistently superior to

other, more recently developed techniques.
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A major question addressed in B17

= Most Simplex-based LP codes (such as ZIB's SoPlex)
use Dynamic Markowitz pivoting (Markowitz, 1957)
to find fill-in reducing permutations.

= There have been dozens of
new LU codes, particularly in
recent years (see Davis " list).

s Markowitz still state of the art?

2 b

Harry M. Markowitz (*1928)
Economics Nobel Price Winner 1990

1B

Martin
Grotschel
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Results of B17:
Typical structure of LP basis matrix

= Using 200 different LPs (392.701 computed LU factorizations)
from various collections (MIPLIB, Mittelmann, Netlib, ZIB)
we demonstrated that ¢typically

U x x
PBQ = 0 L 0 with U, L triangular and N small.
0 x N
4000 F'::ffi- I;? | ik
J R H % '-slﬁli:n
Marti n a 2000 4000 . =qu?;§45 8000 10000 a 2000 4000 . =E:§I:+5 8000 10000

Grotschel
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Results of B17:
Typical structure of LP basis matrix

= Often Order(/N) remains small throughout the
Simplex run, particularly for large-scale LPs.

= This means B is almost reducible (decomposable)
(for graph theorists: irreducible means digraph is strongly connected).

100
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40F

relative size of nucleus
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£ q0° E L T
g .
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Results of B17: Why Markowitz globally
IS so close to optimal

= Markowitz yields permutations that identify N
(main task: identify column/row singletons).

= Shown above: Often Order(/N) << Order(B).

= Everything except N can be solved without fill-in,
hence Markowitz is almost optimal in the LP context.

o = In most examples:

Il The Markowitz of SoPlex
produces a relative fill-in

in B close to the optimal 1.0.

1B

Martin
Grotschel
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Results of B17:
Markowitz is even the best for N

1B

Martin
Grotschel

= A surprising result: Dynamic Markowitz even outperforms
top-notch LU codes (PARDISO, UMFPACK, WSMP)
in terms of fill-in when applied just to N.

= Apparent reason: Most modern LU codes assume some
type of structure (made for engineering applications).

= Typical NVin the LP context: SR SN
Extremely sparse with s, Lt
extremely low degree of N N
structural symmetry. L

ool e

a 200
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Concluding remarks

= Sparse GE involves many areas, including graph theory,
numerical linear algebra, numerical analysis, scientific
computing, ...

= Many possibilities for further research.

= B17: Markowitz, though from the 50s, still is the method
of choice in the LP context (fill-in close to optimal).

| = Not addressed here: Numerical stability, efficient solution
¥ of Bx=c, interplay of Simplex and linear solver, ...

1B

Martin
Grotschel
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Exact Linear Programming

Floating Point Computation for Linear Programming:

Advantages of Floating Point

@ Fast computation @ Solutions are not exact

@ Lower memory usage @ Algorithms can fail for

@ Sufficient for many applications numerical reasons

o Results are often very near @ Correct solutions are not
guaranteed

optimal )

41 B
Martin
Grotschel
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Slide from Dan Stefty

Example: sgpfby6 from Mittelmann LP test set

LP Solver Objective Value
Cplex 7.1 Primal 6308.71
Cplex 7.1 Dual 6484.44
Cplex 12.1 Primal 6425.87
Cplex 12.1 Dual 6484.47
Gurobi 2.0 Primal 6484 .47
Gurobi 2.0 Dual 6484 .47
XPress-20 Primal 6349.03
XPress-20 Dual 6408.02
QSopt Primal 6419.94
QSopt Dual 6480.33
CLP-1.12.0 6481.26
Soplex 1.2.2 6473.33
GLPK-4.44 6484 .47
L Exact Value 3500060000000
Sopt_ex ~ 6484.47
2 (QSopt_ex)

Martin
Grotschel (Some results reported by W. Cook, S. Dash, H. Mittelmann, D. Steffy)
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Slide from Dan Stefty

1B

Martin
Grotschel

GNU Multiple Precision
Arithmetic Library

GMP

gArithmetic without limitations»

http://gmplib.org

Applegate, Cook, Dash and Espinoza [2007]
tested pure rational simplex implementation.

It was hundreds or thousands of times
slower than floating-point code.

GNU Multiple Precision
Arithmetic Library

GMP

aArithmetic without limitationss

http://gmplib.org

Hybrid Symbolic-Numeric Computation

Use fast floating-point computation to
assist in computing exact solutions.
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Exact LP Solver

Simplex method terminates with basic solution
— structural description of solution

QSopt_ex: Exact Rational LP Solver!

@ Simplex method performed numerically

@ Final basic solution computed and
checked exactly

@ Precision is increased if necessary

@ Roughly two to five times slower
than floating-point LP solver

! Developed by Applegate, Cook, Dash and Espinoza [2007]
ZZ[I[33
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Overview of Aproaches:
Steffy & Cook

Exact LU Decomposition J—»

” et
| B i
F oatmg oint Iterative
Refinement
Decgmposﬂlﬂﬂ

|
.

i

Input l_ —_— = e ~\ Exact
System f d | Rational
Ax=h Wiedemann’s : Soluti
_L _ — Ratmnal' olution
Algorithm Reconstruction
I )| |
l p N | p-adic
| | Finite Field LU || g
inite Fie
| Decomposition
i '\ )
Finite Field Snlversl
Z[l ~— L — \. J \. ¥ .
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Who iIs Interested In
exact solutions?

When are exact LP results necessary?
@ Difficult feasibility problems
@ Computer assisted proofs
@ LP as a reliable subroutine

@ When users demand it

5 \-u.,_;-_‘- T :_;:_f-a 1

Thomas Hales' recent proof of the

Kepler Conjecture relies on solving
thousands of LPs

1B

Martin
Grotschel
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Current issues: very" large scale

= Very, very large scale LPs derived from IPs:
billions of variables (verification of systems on chip,
transportation, telecommunication,..),
(column generation, cutting planes, Lagrange ...)

= Modeling languages ZIMPL, OPL, AMPL

= “Effortless” solution of IPs using appropriate models via
modeling languages

Grotschel
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Future Hardware Speed-Up

It is widely believed that in the future

= the speed of a single processor core will not substantially
InCrease anymore

= the number of cores per processor will continuously
InCrease

= GPUs and CPUs will merge again.

= Conclusion: If we want to continue to benefit from the
development in hardware, LP and MIP solvers have to
take advantage of parallel processing.




142

Parallelization

= The simplex algorithm can’t be efficiently parallelized.

= There is much more hope for Barrier codes, and a lot of
work is going on.

1B
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Grotschel
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Bicriteria Optimization Model -
Profit versus Robustness

(BI — PCP) (i) max ) wpTp
peP
(i) max > 7qYq
qeqQ)
(iii) >, xp <1, Vel
pEP;
q€eQ);
v) X xp— X wyg <0, Va € ALR
acpeP acEqeQR)
(VI) wpayq 6{071} VpEP, qEQ

Variables

= Path und config usage (request i uses path p, track j uses config q)
Constraints

= Path and config choice

= Path-config-coupling (track capacity)

yZi1 B; Objective Function

Thomas
Schlechte

= Maximize proceedings and robustness
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Price of Robustness (LP case)

Single-Objective

Optimum Scalarization method
(see Gandibleux & Ehrgott
D 2002)
Maximize W

Profit

Maximize j
Robusthess
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Multi-objective LP

= Commercial software vendors offer scalarization.

= Computing the Pareto set is (in general) beyond what we
can do.

= However, for small numbers of objective functions, special
purpose methods may work.

1B
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“Nonlinear” LPs

= Quadratic (convex) objective functions can be handled
with the simplex method.
Commercially available for the convex case.

= Additional quadratic (convex) constraints can be handled
with interior point methods.

1B

Martin
Grotschel
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Current issues

= Very very large scale IPs:

billions of variables (verification of systems on chip,
transportation, telecommunication,..),
(column generation, cutting planes, Lagrange ...)

= Modeling languages ZIMPL, OPL, AMPL

= “Effortless” solution of IPs using appropriate models via
modeling languages

Grotschel
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