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Linear Programming:
a very brief history
 1826/1827 Jean Baptiste Joseph Fourier (1786-1830): 

rudimentory form of the simplex method in 3 dimensions.

 1939 L. V. Kantorovitch (1912-1986): Foundations of
linear programming (Nobel Prize 1975)

 1947 G. B. Dantzig (1914-2005): Invention of the
(primal) simplex algorithm

 1954 C.E. Lemke:
Dual simplex algorithm

 1953 G.B. Dantzig, 
1954 W. Orchard Hays, and 
1954 G. B. Dantzig & W. Orchard Hays:
Revised simplex algorithm

0

Tc x
Ax b
x



max 
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Dantzig and Bixby
George Dantzig and 
Bob Bixby 
(founder of CPLEX and GUROBI)

at the International 
Symposium on Mathematical 
Programming,

Atlanta, August 2000

This lecture employs a lot of 
information I obtained from  
Bob and some of his slides.
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Optimal use of scarce ressources 
foundation and economic interpretation of LP

Leonid V. Kantorovich Tjalling C. Koopmans 
Nobel Prize for Economics 1975 
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Stiglers „Diet Problem“:
„The first linear program“

Min x1 +   x2

2x1 +   x2  3

x1 + 2x2  3

x1           0

x2  0

costs

protein

carbohydrates

potatoes

beans

minimizing the 
cost of food 

George J. Stigler
Nobel Prize in 
economics 1982



Martin
Grötschel

14

Diet Problem

Sets n nutrients / calorie thousands , protein grams , calcium grams , iron milligrams vitamin-a thousand ius, vitamin-b1 milligrams, vitamin-b2 
milligrams, niacin milligrams , vitamin-c milligrams / 

f foods / wheat , cornmeal , cannedmilk, margarine , cheese , peanut-b , lard liver , porkroast, salmon , greenbeans, cabbage , onions , 
potatoes spinach, sweet-pot, peaches , prunes , limabeans, navybeans / 

Parameter b(n) required daily allowances of nutrients / calorie 3, protein 70 , calcium .8 , iron 12 vitamin-a 5, vitamin-b1 1.8, vitamin-b2 2.7, niacin 18, 
vitamin-c 75 / 

Table a(f,n) nutritive value of foods (per dollar spent) 

calorie  protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c 

(1000) (g) (g) (mg) (1000iu) (mg) (mg) (mg) (mg) 

wheat 44.7 1411 2.0 365 55.4 33.3 441 

cornmeal 36 897 1.7 99 30.9 17.4 7.9 106 

cannedmilk 8.4 422 15.1 9 26 3 23.5 11 60 

margarine 20.6 17 .6 6 55.8 .2 

cheese 7.4 448 16.4 19 28.1 .8 10.3 4 

peanut-b 15.7 661 1 48 9.6 8.1 471 

lard 41.7 .2 .5 5 

liver 2.2 333 .2 139 169.2 6.4 50.8 316 525 

porkroast 4.4 249 .3 37 18.2 3.6 79 

salmon 5.8 705 6.8 45 3.5 1 4.9 209 

greenbeans 2.4 138 3.7 80 69 4.3 5.8 37 862 

cabbage 2.6 125 4 36 7.2 9 4.5 26 5369 

onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184 

potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522 

spinach 1.1 106 138 918.4 5.7 13.8 33 2755 

sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912 

peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57 

prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257 

limabeans 17.4 1055 3.7 459 5.1 26.9 38.2 93 

navybeans 26.9 1691 11.4 792 38.4 24.6 217 

Positive Variable x(f) dollars of food f to be purchased daily (dollars) 

Free Variable cost total food bill (dollars) 

Equations nb(n) nutrient balance (units), cb cost balance (dollars) ; 

nb(n).. sum(f, a(f,n)*x(f)) =g= b(n); cb.. cost=e= sum(f, x(f)); 

Model diet stiglers diet problem / nb,cb /; 

http://www.gams.com/modlib/libhtml/diet.htm



Martin
Grötschel

15

Goal: Find the cheapest combination of foods that will 
satisfy the daily requirements of a person!

The problem motivated by the army’s desire to meet 
nutritional requirements of the soldiers at minimum cost. 

Army’s problem had 77 unknowns and 9 constraints.
Stigler solved problem using a heuristic: $39.93/year (1939)
Laderman (1947) used simplex: $39.69/year (1939 prices)

first “large-scale computation”
took 120 man days on hand operated 
desk calculators (10 human “computers”)

http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

Solution of the Diet Problem
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Commercial software
William Orchard-Hayes (in the period 1953-1954)

The first commercial LP-Code was on the market in 1954 
(i.e., 57 years ago) and available on an IBM CPC 
(card programmable calculator):

Code: Simplex Algorithm with explicit basis inverse, that was 
recomputed in each step. 

Shortly after, Orchard-Hayes implemented a version with product form of 
the inverse (idea of A. Orden),
Record: 71 variables, 26 constraints, 8 h running time

About 1960: LP became commercially viable, used largely by oil 
companies.



The Decade of the 70’s: Theory
 V. Klee and G. J. Minty, „How good is the simplex 

algorithm?“, in O. Shisha (ed.), Inequalities III, Academic 
Press, New York, 1972, 159-172

 K. H. Borgwardt, „Untersuchungen zur Asymptotik der 
mittleren Schrittzahl von Simplexverfahren in der linearen 
Optimierung“, Dissertation, U Kaiserslautern, 1977

 L. G. Khachiyan, „A polynomial algorithm in linear 
programming“, (Russian), Doklady Akademii Nauk SSR 
244 (1979) 1093-1096



The Decade of the 70’s: Practice
 Interest in optimization flowered

 Large scale planning applications particularly popular

 Significant difficulties emerged
 Building applications was very expensive and very risky

 Technology just wasn’t ready: 

 LP was slow and 

 Mixed Integer Programming was impossible.

 OR could not really “deliver” – with some exceptions, of 
course

 The ellipsoid method of 1979 was no practical success.



The Decade of the 80’s and beyond
 Mid 80’s:  

 There was perception was that LP software had progressed about 
as far as it could.

 There were several key developments 

 IBM PC introduced in 1981
 Brought personal computing to business

 Relational databases developed.  ERP systems introduced.

 1984, major theoretical breakthrough in LP  
N. Karmarkar, “A new polynomial-time algorithm for linear 
programming”, Combinatorica 4 (1984) 373-395 
(Interior Point Methods, front page New York Times)

 The last ~20 years:  Remarkable progress
 We now have three competitive algorithms:  

Primal & Dual Simplex, Barrier (interior points)
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My opinion on Linear Programming

 From an commercial/economic point of view:

Linear programming is the most important 
development of mathematics in the 20th century.
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 Transportation-airlines
 Fleet assignment

 Crew scheduling

 Ground personnel scheduling

 Yield management 

 Fuel allocation

 Passenger mix

 Booking control

 Maintenance scheduling

 Load balancing/freight packing

 Airport traffic planning

 Gate scheduling/assignment

 Upset recover and management

 Transportation-other
 Vehicle routing

 Freight vehicle scheduling and 
assignment

 Depot/warehouse location

 Freight vehicle packing

 Public transportation system 
operation

 Rental car fleet management

 Process industries
 Plant production scheduling and 

logistics

 Capacity expansion planning

 Pipeline transportation planning

 Gasoline and chemical blending

Application of LP & MIP - I
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 Financial
 Portfolio selection and 

optimization
 Cash management
 Synthetic option development
 Lease analysis
 Capital budgeting and rationing
 Bank financial planning
 Accounting allocations
 Securities industry surveillance
 Audit staff planning
 Assets/liabilities management
 Unit costing
 Financial valuation
 Bank shift scheduling
 Consumer credit delinquency 

management
 Check clearing systems
 Municipal bond bidding
 Stock exchange operations
 Debt financing

 Manufacturing
 Product mix planning
 Blending
 Manufacturing scheduling 
 Inventory management
 Job scheduling
 Personnel scheduling
 Maintenance scheduling and planning
 Steel production scheduling

 Coal Industry
 Coal sourcing/transportation logistics
 Coal blending
 Mining operations management

 Forestry
 Forest land management
 Forest valuation models
 Planting and harvesting models

Application of LP & MIP - II
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 Agriculture
 Production planning
 Farm land management
 Agricultural pricing models
 Crop and product mix decision 

models
 Product distribution

 Public utilities and natural 
resources
 Electric power distribution
 Power generator scheduling
 Power tariff rate determination
 Natural gas distribution planning
 Natural gas pipeline 

transportation
 Water resource management
 Alternative water supply 

evaluation
 Water reservoir management
 Public water transportation 

models
 Mining excavation models

 Oil and gas exploration 
and production
 Oil and gas production 

scheduling
 Natural gas transportation 

scheduling
 Communications and 

computing
 Circuit board (VLSI) layout
 Logical circuit design
 Magnetic field design
 Complex computer graphics
 Curve fitting
 Virtual reality systems
 Computer system capacity 

planning
 Office automation
 Multiprocessor scheduling
 Telecommunications scheduling
 Telephone operator scheduling
 Telemarketing site selection

Application of LP & MIP - III
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 Food processing
 Food blending

 Recipe optimization 

 Food transportation logistics

 Food manufacturing logistics and 
scheduling

 Health care
 Hospital staff scheduling

 Hospital layout

 Health cost reimbursement

 Ambulance scheduling

 Radiation exposure models

 Pulp and paper industry
 Inventory planning

 Trim loss minimization

 Waste water recycling

 Transportation planning

 Textile industry
 Pattern layout and cutting 

optimization 

 Production scheduling

 Government and military
 Post office scheduling and planning

 Military logistics

 Target assignment

 Missile detection

 Manpower deployment

 Miscellaneous applications
 Advertising mix/media scheduling

 Pollution control models

 Sales region definition

 Sales force deployment

Application of LP & MIP - IV
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Examples: ZIB & MATHEON-projects
http://www.zib.de/Optimization/Projects/index.en.html
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Examples: ZIB & MATHEON-projects
http://www.zib.de/Optimization/Projects/index.en.html
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Linear Programming
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Optimizers‘ dream: Duality theorems
 Max-Flow Min-Cut  Theorem

The value of a maximal (s,t)-flow in a capacitated network is equal to 
the minimal capacity of an (s,t)-cut.

 The Farkas Lemma

 The Duality Theorem of Linear Programming

max

0

Tc x
Ax b

x



min

0

T

T T

y b
y A c

y

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=
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Important theorems
 Complementary slackness theorems

 Redundancy characterizations

 Polyhedral theory
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LP Solvability
 I assume that the audience is somewhat familiar with complexity 

theory:
 Polynomial time solvability, solvability in strongly polynomial time

 Classes:  and , -completeness , -hardness , etc.

 Linear programs can be solved in polynomial time with

 the Ellipsoid Method (Khachiyan, 1979)

 Interior Points Methods (Karmarkar, 1984, and others)

 Open: Is there a strongly polynomial time algorithm for the solution 
of LPs?

 Certain variants of the Simplex Algorithm run – under certain 
conditions – in expected polynomial time  (Borgwardt, 1977…)

 Open: Is there a polynomial time variant of the 
Simplex Algorithm?
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Separation

K
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LP Solvability: Generalizations
Theorem (GLS 1981, 1988) (modulo technical details) : There exists 

a polynomial time algorithm to minimize convex functions (e.g., linear 
functions) over the elements of a class of convex bodies K (e. g. 
polyhedra)  if and only if, there exists a polynomial time algorithm that 
decides, for any given point x, whether x is in K, and that, when x is 
not in K, finds a hyperplane that separates x from K.

Short version: 
Optimization and Separation are polynomial-time equivalent.

Consequence: Theoretical Foundation of cutting plane algorithms.

Particular special case: Polynomial time separation algorithm for the 
set of positive semi-definite matrices.

Consequences:

 Polynomial time algorithm for stable sets in perfect graphs.

 The beginning of semi-definite programming
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You can download this book from the 
publications list on my Web page.

http://www.zib.de/groetschel/pu
bnew/paper/groetschellovaszsch
rijver1988.pdf
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 Iterative methods that solve the equation and inequality sytems 
representing the necessary local optimality conditions (e.g., KKT).

 Sufficient conditions are rarely checked.

Algorithms for nonlinear programming

1

~ "descent direction"
~"steplength"

i i i i

i

i

x x d
d





  

( )i id f x  Steepest descent

1( ( )) ( )i i id H x f x   Newton

(Quasi-Newton, conjugate-gradient-, SQP-, subgradient…methods)
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Fourier-Motzkin Elimination 
 Fourier, 1826/1827 

 Motzkin, 1938

 Method: successive projection of a polyhedron in 
n-dimensional space into a vector space of dimension n-1
by elimination of one variable.

Projection on y: (0,y)

Projection on x: (x,0)



Martin
Grötschel

40

A Fourier-Motzkin step
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Fourier-Motzkin Elimination:
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(4)
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Fourier-Motzkin Elimination:
an example, call of PORTA (Polymake)

DIM = 3

INEQUALITIES_SECTION

(1)      - x2      <= 0
(2) - x1 - x2      <=-1
(3) - x1 +  x2      <= 3
(4) + x1            <= 3
(5) + x1 + 2x2      <= 9
(6) + x1 + 3x2 - x3 <= 0
(7) - x1 - 3x2 + x3 <= 0

ELIMINATION_ORDER
1 0 0 

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9
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Fourier-Motzkin Elimination:
an example

DIM = 3

INEQUALITIES_SECTION

(1)      - x2      <= 0
(2) - x1 - x2      <=-1
(3) - x1 +  x2      <= 3
(4) + x1            <= 3
(5) + x1 + 2x2      <= 9
(6) + x1 + 3x2 - x3 <= 0
(7) - x1 - 3x2 + x3 <= 0

ELIMINATION_ORDER
1 0 0 

DIM = 3

INEQUALITIES_SECTION

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  2
(2,5) (3) + x2      <=  8
(2,6) (4) +2x2 - x3 <= -1
(3,4) (5) + x2      <=  6
(3,5) (6) + x2      <=  4
(3,6) (7) +4x2 - x3 <=  3
(7,4) (8) -3x2 + x3 <=  3
(7,5) (9) - x2 + x3 <=  9
(7,6)
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Fourier-Motzkin Elimination:
an example

(1,4) (  1) -x3 <=  -1
(1,7) (  2) -x3 <=   3
(2,4) (  3) -x3 <=   3
(2,7) (  4) -x3 <=  11
(8,3) (  5) +x3 <=  27
(8,4) (  6) -x3 <=   3
(8,5) (  7) +x3 <=  21
(8,6) (  8) +x3 <=  15
(8,7) (  9) +x3 <=  21
(9,3) ( 10) +x3 <=  17
(9,4) ( 11) +x3 <=  17
(9,5) ( 12) +x3 <=  15
(9,6) ( 13) +x3 <=  13
(9,7) ( 14)+3x3 <=  39

min = 1 <= x3 <= 13 = max

x1 = 1           x1 = 1
x2 = 0           x2 = 4

DIM = 3

INEQUALITIES_SECTION

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  2
(2,5) (3) + x2      <=  8
(2,6) (4) +2x2 - x3 <= -1
(3,4) (5) + x2      <=  6
(3,5) (6) + x2      <=  4
(3,6) (7) +4x2 - x3 <=  3
(7,4) (8) -3x2 + x3 <=  3
(7,5) (9) - x2 + x3 <=  9
(7,6)

ELIMINATION_ORDER
0 1 0 
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Fourier-Motzkin Elimination:
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(4)

max

min



Fourier-Motzkin Elimination 
 FME is a wonderful constructive proof method.

 Elimination of all variables of a given inequality system 
directly yields the Farkas Lemma:

 FME is computationally lousy.
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 has a solution or 0, 0 has a solution
but not both.

T TAx b y A y b  
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The Simplex Method
 Dantzig, 1947: primal Simplex Method

 Dantzig, 1953: revised Simplex Method

 Lemke, 1954; Beale, 1954: dual Simplex Method

 ….

 Underlying Idea: Find a vertex of the set of feasible LP 
solutions (polyhedron) and move to a better neighbouring 
vertex, if possible (Fourier‘s idea 1826/27).
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The Simplex Method:
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(4)
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The Simplex Method:
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(4)
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Hirsch Conjecture
If P is a polytope of dimension n with m facets then every 
vertex of P can be reached from any other vertex of P on a 
path of length at most m-n.
In the example before: m=5, n=2 and m-n=3, conjecture is true.

At present, not even a polynomial bound on the path length is known.

Best upper bound: Kalai, Kleitman (1992): The diameter of the graph of an 
n-dimensional polyhedron with m  facets is at most m(log n+1).

Lower bound: Holt, Klee (1997): at least m-n (m, n large enough).
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arXiv:1006.2814v1 [math.CO] 14 Jun 2010



To appear in STOC 2011 
proceedings, June 2011
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Computationally important idea of the 
Simplex Method

0

Tc x
Ax b
x



max 

Let a (m,n)-Matrix A with full row rank m, an m-vector b and 
an n-vector c with m<n be given. For every vertex y of the 
polyhedron of feasible solutions of the  LP,

there is a non-singular (m,m)-submatrix B (called basis) 
of A representing the vertex y (basic solution) as follows

1 , 0B Ny B b y 

Many computational consequences:
Update-formulas, reduced cost calculations, 
number of non-zeros of a vertex,… 

A = B N



Numerical trouble often 
has geometric reasons

Where are 
the points of intersection 

(vertices, basic solutions)?
What you can‘t see with your eyes,
causes also numerical difficulties.



Dual Simplex Method
 The Dual Simplex Method is the (Primal) Simplex Method 

applied to the dual of a given linear program.

Surprise in the mid-nineties:

 The Dual Simplex Method is faster than the Primal in 
practice.
One key: Goldfarb’s steepest edge pivoting rule!

 A wonderful observation for the cutting plane methods of 
integer programming!
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The Ellipsoid Method
 Shor, 1970 - 1979

 Yudin & Nemirovskii, 1976

 Khachiyan, 1979

 M. Grötschel, L. Lovász, A. Schrijver, 
Geometric Algorithms and Combinatorial Optimization

Algorithms and Combinatorics 2, Springer, 1988
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The Ellipsoid Method: an example



The
Ellipsoid 
Method

Initialization

Stopping criterion
Feasibility check
Cutting plane

choice

Update
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Ellipsoid Method

feasible
solution 
found

a(1)

a(0)

a(2)

a(7)



Martin
Grötschel

62



Martin
Grötschel

63

There was an Oberwolfach 
meeting on Mathematical
Programming in 9/1979 
where I learned about 
Khachiyan’s work
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May 1980
New York Times, Nov. 7, 1979
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May 1980
National Association of Science Writers
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National Association of Science Writers
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Interior-Point Methods: an example

(1)

(4)

min

central path

interior Point

Often also called
Barrier Methods

Why?



The Karmarkar Algorithm
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Milestones for 
Interior Point Methods (IPMs)
 1984 Projective IPM: Karmarkar – efficient in practice!?

 1989 O(n3L) for IPMs: Renegar – best complexity

 1989 Primal–Dual IPMs: Kojima ... – dominant since then

 1989 Self-Concordant Barrier: Nesterov–Nemirovskii 
– extensions to smooth convex optimozation

 1992 Semi-Definite Optimization (SDO) and Second Order 
Conic Optimization (SOCO): Alizadeh, Nesterov–Nemirovskii 
–new applications, approximations, software

 1998 Robust LO: Ben Tal–Nemirovskii
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Towards IPMs: The Primal–Dual 
Linear Optimization Problems
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following Tamás Terlaky



Towards IPMs: The Central Path
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Self-Regular Functions
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Primal-Dual Interior Point Methods 
with small and large updates
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Complexity of Self-Regular IPMs
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Lagrangean Relaxation & 
Non-differentiable Optimization
 Approach for very large scale and structured LPs

 Methods:
 subgradient

 bundle

 bundle trust region

or any other nondifferentiable NLP method that looks
promissing



Lagrangian Relaxation
 Turning an LP into a nonlinear nondifferentiable 

optimization problem
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

 


  T T

max ( )

( ) : min ( )
x Q

f

f c x Ax b

min

0

Tc x
Ax b
Dx d

x




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Algorithms for 
nonlinear nondifferential programming

1

subgradient (instead of gradient)
        or element of -subdifferential (bundle)

steplength

i i i i

i

i

x x s d
d

s


  




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Bundle Method
(Kiwiel [1990], Helmberg [2000])

 Max

X polyhedral (piecewise linear)



f

1

1
f

2

f̂

3

     T T( ) ( )f c x b Ax

   
2

1
ˆ ˆargmax ( )

2
k

k k k
uf


   


ˆ ( ) : min ( )

k
k J
f f

 


  T T( ) : min ( )

x X
f c x b Ax 
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Quadratic Subproblem

 
2ˆ ˆmax ( )

2
k

k k
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Primal Approximation

 Theorem

 ( )k k Nx converges to a point    : ,x x Ax b x X

T( ) ( )k k kf c x b Ax     
k̂f

z

f



1kf 

1k 




  1
k

k
J

x x 







  1
1ˆ ( )

k

k k
J

b Ax
u  


  

0 ( )kb Ax k  



Where Bundle Wins
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Coputational Results for a (Duty Scheduling) 
Set Partitioning Model 

Duty Scheduling Problem Ivu41:
• 870 500 col

• 3 570 rows 

• 10.5 non-zeroes per col

Coordinate Ascent: Fast, low quality
Subgradient: (Theoretical) Convergence

Volume: Primal approximation
Bundle+AS: Conv. + primal approx.

Dual Simplex: Primal+dual optimal
Barrier: Primal+dual optimal

250

300

350

400

450

0 20 40 60 80 100

Coordinate Ascent Subgradient Volume Bundle+AS Dual Simplex Barrier

[s]
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Semi-algebraic Geometry
Real-algebraic Geometry

1: { : ( ) 0,..., ( ) 0}    dS x x x lf f

is called a basic closed semi-algebraic set

( ), 1,...,i x i lf are polynomials in d real variables
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Every basic closed semi-algebraic set  of the form

where                                           are polynomials,

can be represented by at most                      

polynomials, i.e., there exist polynomials 
such that

and  d(d+1)/2  is best possible.

1{ : ( ) 0,..., ( ) 0},dS x x x    lf f

1[ ,..., ],1 ,dx x i l  if

( 1) / 2d d 

( 1) / 2 1,..., [ ,..., ]d d dx x 1p p

1 ( 1)/2{ : ( ) 0,..., ( ) 0}   d
d dS x x x p p

Theorem of Bröcker(1991) & Scheiderer(1989) 
basic closed case
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Theorem Let               be a n-dimensional 

polytope given by an inequality representation. Then              

k ≤ nn polynomials                          

can be constructed such that

Martin Grötschel, Martin Henk:

The Representation of Polyhedra by Polynomial Inequalities

Discrete & Computational Geometry, 29:4 (2003) 485-504

nP  

1[ ,..., ]i nx xp

( ,..., ).kP   1p p

Our first Theorem
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Theorem Let              be a n-dimensional 

polytope given by an inequality representation. Then              

2n polynomials                          

can be constructed such that

Hartwig Bosse, Martin Grötschel, Martin Henk:
Polynomial inequalities representing polyhedra
Mathematical Programming (2005)

http://www.springerlink.com/index/10.1007/s10107-004-0563-2

nP  

1[ ,..., ]i nx xp

2( ,..., ).nP  1p p

Our Main Theorem
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Homework: Try to describe an n-gon in 
2-space by 2 polynomial inequalities



Latest News
 Martin Henk, Gennadiy Averkov, „Representing simple

d-dimensional polytopes by d polynomials “  
Mathematical Programming (A), 126(2), 2011, 203-230; 
arXiv:0709.2099v1

 Bröcker, “Solution of the general case for polyhedra”  ??,
handwritten manuscript
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My dream
 Make this result computationally useful!

 E.g., for every graph G with n nodes there are 
n polynomials, such that
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( ) ( ,..., ). nSTAB G 1p p
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Other Methods
There are many, see, e.g.,

 A. Schrijver (1986), Theory of Linear and Integer Programming, Wiley, 
Chichester, 1986 

 M. J. Todd (2002) The many facets of linear programming. Math 
Program, Ser B 91:417–436

 M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and 
Combinatorial Optimization, Springer, 1988

 A LP-Newton method, based 
on the zonotope formulation 
and the minimum-norm-point 
algorithm of Wolfe (1976)
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Some LP/MIP Solvers

State of 
the Art in 

Mixed 
Integer 
Program

ming     
Thorsten 

Koch     
Zuse 

Institute 
Berlin 
(ZIB)      

100

Solver Version URL
IBM CPLEX 12.2 www.cplex.com

Gurobi 3.0 www.gurobi.com

FICO XPress-MP 7 www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-
Optimization-Suite.aspx

…

Lindo 6.1 www.lindo.com

Minto 3.1 coral.ie.lehigh.edu/~minto

SCIP 2.0 scip.zib.de

CBC 2.5 projects.coin-or.org/Cbc

Symphony 5.2 projects.coin-or.org/SYMPHONY

glpk 4.43 www.gnu.org/software/glpk/glpk.html 

lp_solve 5.5 lpsolve.sourceforge.net

…



OR/MS Today Surveys
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Which LP solvers are 
used in practice?
Preview summary

 Fourier-Motzkin: hopeless

 Ellipsoid Method: total failure

 primal Simplex Method: good

 dual Simplex Method: better

 Barrier Method: for large LPs frequently better

 For LP relaxations of IPs: dual Simplex Method



http://www.netlib.org/lp/index.html
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Importance of test data!



MIPLIB 1992/2010
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Independent Testing

http://plato.asu.edu/bench.html
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LP survey
Robert E. Bixby, Solving Real-World Linear Programs: A 

Decade and More of Progress. 
Operations Research 50 (2002)3-15.

Bob on September 27, 2010
at his 65th birthday party



(Operations Research, Jan 2002, pp. 3—15, updated in 2004)

 Algorithms (machine independent):  

Primal versus best of Primal/Dual/Barrier 3,300x

 Machines (workstations PCs): 1,600x

 NET:  Algorithm × Machine 5,300,000x

(2 months/5300000 ~= 1 second)

Progress in LP: 1988—2004

Courtesy Bob Bixby



 Where are we today?
 The good news

 “LP is a solved problem in practice”

 But, …. a word of warning

 2% of MIP models are blocked by linear programming

 Little progress in LP computation since 2004 

 LP could become a serious bottleneck in the future

Progress in LP: 1988—2004

Courtesy Bob Bixby



The latest computational study: 
Ed Rothberg (Gurobi)
 Rothberg slides

 LP state of the art - according to Gurobi:
as of September 28, 2010 (Bixby’s 65th birthday 
conference in Erlangen, Germany)

 All software producer do computational studies 
permanently but rarely make them publicly available.
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“strange examples”

Problem name : patrick1     

Optimal objective :  28609090 

Variables            : 2,666,441  [Boxed: 2,656,781,  Nneg: 9,660]

Objective nonzeros :    684,145

Linear constraints :      44,886  [Less: 8,173,  Equal: 36,713]

Nonzeros          : 7,991,889

RHS nonzeros       :      41,808

Dual Simplex :    488,900 iterations  in 10,009 s (not finished)

Barrier+crossover :          349 iterations in  3,111 s

Primal Simplex : 3,268,455 (895,004) iterations in 1,900 s

Example: Primal > Barrier > Dual
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“strange examples”

Problem name : aflow_2000_50

Optimal objective : 4720.3225806

Variables            : 3,996,000  [Boxed: 1,998,000,  Nneg: 1,998,000]

Objective nonzeros : 1,958,437

Linear constraints : 2,001,998  [Less: 1,998,000,  Equal: 3,998]

Nonzeros           : 9,988,972

RHS nonzeros :       3,998

Dual Simplex : 1,049,300 iterations in 10,054 sec (not finished)

Primal Simplex : 2,321,540 (28277) iterations in 6,752 sec

Barrier + crossover : 40 iterations in 1,704 sec (total 1,938 sec)

8 threads : 430.03 sec

Example: Barrier > Primal > Dual
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“strange examples”

Problem name : ts.log-bundle-060831-162253

Optimal objective : 5.69997.52369

Variables            :    218,776  [Boxed: 218,776]

Objective nonzeros :    124,060

Linear constraints   : 1,102,735  [Less: 970,339,  Greater: 11,590,  Equal: 120,806]

Nonzeros           : 2,554,196

RHS nonzeros       :    981,241

Presolve generated explicit dual

Dual Simplex : 132854 in 163 sec

Primal Simplex : 96397 (0) in 31 sec

Barrier : 53 iterations in 10069 sec (not finished)

Example: Primal > Dual > Barrier



ZIB Instances

Variables Constraints Non-zeros Description

1 12,471,400 5,887,041 49,877,768 Group Channel Routing on a 
3D Grid Graph
(Chip-Bus-Routing) 

2 37,709,944 9,049,868 146,280,582 Group Channel Routing on a 
3D Grid Graph
(different model, infeasible)

3 29,128,799 19,731,970 104,422,573 Steiner-Tree-Packing on a 3D 
Grid Graph

4 37,423 7,433,543 69,004,977 Integrated WLAN 
Transmitter Selection and 
Channel Assignment

5 9,253,265 9,808 349,424,637 Duty Scheduling with base 
constraints



LP can still be difficult
We were not able to compute a feasible basis for zib03 so far. 
 After 10 h we still do not even have a primal feasible solution. Furthermore, 

experiments with smaller instances suggest the model is very unfavorable for 
the simplex method, especially regarding warm starts. Unfortunately, it is an IP. 

Algorithm Time [h] Result Memory 
[GB]

Resident 
[GB]

Primal 
Simplex

>300 Infeasibility
2189

24 18

Dual Simplex >300 Lower bound
8335

24 18

Bundle 13 Lower bound
5951

55 18

Interior Point 103
(32 threads)

Optimal
1.2228.148

256 175

Crossover >300 unfinished



Summary

You should be surprised
if a linear program could not be solved
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SoPlex Sequential object-oriented simplex 
SoPlex is an implementation of the revised simplex 
algorithm. It features primal and dual solving routines for 
linear programs and is implemented as a C++ class library 
that can be used with other programs. 

Roland Wunderling, 
Paralleler und Objektorientierter 
Simplex-Algorithmus, 
Dissertation, TU Berlin,1997 



Optimization Problems in 
Printed Circuit Board 
Assembly
Petra Bauer

Siemens AG, Munich, Germany
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SIPLACE Placement Machines



Zimpl
 Zimpl is a little language to translate 

the mathematical model of a problem 
into a linear or (mixed-) integer 
mathematical program expressed in 
.lp or .mps file format which can be 
read and (hopefully) solved by a LP or 
MIP solver. 

 Thorsten Koch, Rapid Mathematical Programming, 
Dissertation, TU Berlin 2004 
(awarded with the Dissertation Prize 2005 of the 
Gesellschaft für Operations Research) 
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SCIP    http://scip.zib.de/
Tobias Achterberg, Tobias, Constraint Integer 
Programming, Dissertation, TU Berlin, 2007 

 Dissertation Prize 2008 of the Gesellschaft
für Operations Research (GOR) 

 George B. Dantzig Dissertation Award 2008 
of the Institute of Operations Research and 
the Management Sciences (INFORMS), 
2nd prize) 

 Beale-Orchard-Hays Prize 2009 of the 
Mathematical Optimization Society for the paper: 
Tobias Achterberg, “SCIP: Solving constraint integer programs”,
Mathematical Programming Computation, 1 (2009), pp. 1-41. 
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Improving the Simplex Numerics
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http://opus.kobv.de/zib/volltexte/2009/1188/



From the Abstract: 
The Findings in Brief
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A major question addressed in B17
 Most Simplex-based LP codes (such as ZIB´s SoPlex)

use Dynamic Markowitz pivoting (Markowitz, 1957) 
to find fill-in reducing permutations.

 There have been dozens of 
new LU codes, particularly in 
recent years (see Davis´ list).

 Is Markowitz still state of the art?

Economics Nobel Price Winner 1990
Harry M. Markowitz (*1928)



Martin
Grötschel

127

Results of B17:
Typical structure of LP basis matrix
 Using 200 different LPs (392.701 computed LU factorizations)

from various collections (MIPLIB, Mittelmann, Netlib, ZIB)

we demonstrated that typically
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Results of B17:
Typical structure of LP basis matrix
 Often Order(N) remains small throughout the 

Simplex run, particularly for large-scale LPs.

 This means B is almost reducible (decomposable)
(for graph theorists: irreducible means digraph is strongly connected).
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Results of B17: Why Markowitz globally
is so close to optimal
 Markowitz yields permutations that identify N

(main task: identify column/row singletons).

 Shown above: Often Order(N) << Order(B).

 Everything except N can be solved without fill-in, 
hence Markowitz is almost optimal in the LP context.

 In most examples:
The Markowitz of SoPlex
produces a relative fill-in 
in B close to the optimal 1.0.
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Results of B17:
Markowitz is even the best for N
 A surprising result: Dynamic Markowitz even outperforms 

top-notch LU codes (PARDISO, UMFPACK, WSMP) 
in terms of fill-in when applied just to N.

 Apparent reason: Most modern LU codes assume some 
type of structure (made for engineering applications).

 Typical N in the LP context:
Extremely sparse with 
extremely low degree of 
structural symmetry.
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Concluding remarks
 Sparse GE involves many areas, including graph theory, 

numerical linear algebra, numerical analysis, scientific 
computing, …

 Many possibilities for further research.

 B17: Markowitz, though from the 50s, still is the method
of choice in the LP context (fill-in close to optimal).

 Not addressed here: Numerical stability, efficient solution 
of B x=c, interplay of Simplex and linear solver, … 
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Exact Linear Programming
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Slide from Dan Steffy
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Slide from Dan Steffy
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Exact LP Solver
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Overview of Aproaches:
Steffy & Cook
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Who is interested in 
exact solutions?
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Current issues: veryn large scale
 Very, very large scale LPs derived from IPs:

billions of variables (verification of systems on chip, 
transportation, telecommunication,..),
(column generation, cutting planes, Lagrange …)

 Modeling languages ZIMPL, OPL, AMPL

 “Effortless” solution of IPs using appropriate models via 
modeling languages



Future Hardware Speed-Up
It is widely believed that in the future

 the speed of a single processor core will not substantially 
increase anymore

 the number of cores per processor will continuously 
increase

 GPUs and CPUs will merge again.

 Conclusion: If we want to continue to benefit from the 
development in hardware, LP and MIP solvers have to 
take advantage of parallel processing.

State of 
the Art in 

Mixed 
Integer 
Program

ming     
Thorsten 

Koch     
Zuse 

Institute 
Berlin 
(ZIB)      
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Parallelization
 The simplex algorithm can’t be efficiently parallelized.

 There is much more hope for Barrier codes, and a lot of 
work is going on.
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Variables 

 Path und config usage (request i uses path p, track j uses config q)

Constraints

 Path and config choice

 Path-config-coupling (track capacity)

Objective Function

 Maximize proceedings and robustness

Bicriteria Optimization Model -
Profit versus Robustness
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Price of Robustness (LP case)

Maximize 
Profit

Scalarization method

(see Gandibleux & Ehrgott 
2002)

Maximize 
Robustness

Single-Objective 

Optimum



Multi-objective LP
 Commercial software vendors offer scalarization.

 Computing the Pareto set is (in general) beyond what we 
can do.

 However, for small numbers of objective functions, special 
purpose methods may work.
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“Nonlinear” LPs
 Quadratic (convex) objective functions can be handled 

with the simplex method.
Commercially available for the convex case.

 Additional quadratic (convex) constraints can be handled 
with interior point methods. 
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Current issues
 Very very large scale IPs:

billions of variables (verification of systems on chip, 
transportation, telecommunication,..),
(column generation, cutting planes, Lagrange …)

 Modeling languages ZIMPL, OPL, AMPL

 “Effortless” solution of IPs using appropriate models via 
modeling languages
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