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Linear Programming
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Linear Programming
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max CT X linear Max CTX
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A Polytope in the Plane
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A Polytope Iin 3-dimensional space
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Polyhedra-Poster

http://www.peda.com/posters/Welcome.html

/e currently offer one :
for secure online purchsens- o 9 140 FOR 1POSTER

Polyhed T, whicl
diplays allcomvexpoivheara 928 FOR 4 POSTERS
with regular polygonal faces (a

finite sampling of prisms and FBEE SI'IIPPI"E

anti-prisms are included).

It measures 22" x 37" and is
printed on glosssy paper. A
protective coating was applied
during printing.

The poster is shown on the left;
to see a close-up of a portion of
the poster, move your mouse
over the image.

This is the fourth edition of the
poster. Other versions of the
poster are shown in our Posters
Archive.

Poster which displays
all convex polyhedra
with regular polygonal
faces
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http://www.eqg-models.de/

EG-Models

Home

Models

EG-Models - a new archive of electronic geometry models
Internal Links:

No Applet Search Submit Instructions Links Help/Copyright

Managing Editors:
Michael Joswig, Konrad Palthier
Editorial Board:

Thomas Banchoff, Claude Paul Bruter,

Antonio F. Costa, lvan Dynnikov,
John M. Sullivan, Stefan Turek

— i

H.A. Schwarz Ges.Math.Abh
Springer Berlin 1880

Note: Some browser versions do not
display Java applets. Please, press
the ‘Mo Applet’ button in the
navigation bar to avoid using Java.

Anschauliche Geometrie - A tribute to Hilbert, Cohn-Vossen, Klein and all other geometers.

Electronic Geometry Models

This archive is open for any geometer to publish new geometric models, or to browse this site for material to be
used in education and research. These geometry models cover a broad range of mathematical topics from geometry,
topology, and to some extent from numerics.

Click "Models" to see the full list of published models. See here for details on the submission and review process.

Selection of recently published models

Model 2008.11.001 by Frank H. Lutz and Ginter M. Ziegler A Small Polyhedral Z-Acyclic 2-
Complex in R4.
Section: Polytopal Complexes

We present a 4-dimensional polyhedral realization of a 2-dimensional Z-acyclic but non-contractible
simplicial complex with 23 vertices.

Our example answers a query by Lutz Hille (Hamburg), who in November 2006 had asked us for
examples of Z-acyclic but non-contractible complexes realized in low dimensions. His question was
motivated by toric geometry.

Model 2008 10 002 by Thilo Rérig, Nikolaus Witte, and Ginter M. Ziegler Zonotopes With Large
2D-Cuts.

) 5y Section: Polytopes

For fixed d=2 there are d-dimensional zonotopes with n zones for which a 2-dimensional central
section has D{n“”} vertices. The result is asymptotically optimal for all fixed d=2.



http://www.ac-noumea.nc/maths/amc/polyhedr/index_.htm

a ride through the polyhedra world

" Geometry is a skill of the eyes and the hands as well as of the mind. " (Jean Pedersen)

&

4
T
g

animations % I
videos clips version FRANCALSE

LiveGraphics3D needs a for your browser. You must see a small grey dodecahedron on the left (use your
mouse and the key "f" to handle it). If your connection is slow be patient while some applets load.
A few pages have links to pop-up windows, thus JavaScript must be enabled.

thanks for reporting possible errors , ADSL and 1024768 screen (or better) desirable
or incorrect +ran5|a-|-|'nns HTML validated and links verified with

Starck ﬁ mstarck®canl.nc

I ENCTIYTEEEM © scorchin the polyhedra world
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Plato’s five regular polyhedra
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http://www.ac-noumea.nc/maths/polyhedr/index.htm

http://www.ac-noumea.nc/maths/amc/polyhedr/convex1.htm

1B

Martin
Grotschel




’§ convex polyhedra 1 - Microsoft Internet Explorer

Datei  Bearbeiten

LJ Zurlick = . ' Suchen + Favoriten Q;IJ‘Meu:Iir:n &)

Plato's five regular polyhedra

The regular polyhedra are, in the space, the analogues of the inthe plane ; thewfaces are regular and identical polygons, and their vertices, reqular and identical,
are regularly distributed on a sphere. Their analogues in dimension four are the

As we do for the polygons, we recognize a convex polyhedron by the very fact that all its dmgonals {segments which join two vertices not joined by an edge) are inside the
polyhedron.

Whereas there exist an infinity of regular convex polygons, the regular convex polyhedra are only five.

The angle of a regular polygon with n sides is 180%(n-2)/n : 60° {triangle}, 30° (square}, 108* (pentagon), 120° (hexagon)...
proof :

On a wertex of a regular polyhedron the sum of the face's angles [there are at least three) must be smaller than 360°.
Since Ex60° = 4x90° = 3x120° = 360° < 4x108%, there are only five possibilities: 3, 4, or 5 triangles, 3 squares or 3 pentagons.

name cube octahedron tetrahedron icosahedron dodecahedron

faces 6 squares 8 equiltriangles 4 equiltriangles 20 equiltriangles 12 regul. pentagons
vertices 8 6 4 12

edges 12 12 6 30 30
faces angle 90° 109°28' T0°32 138°11" 116°34°

applet by Martin Kraus (University of Stuttgart) allows you to mowve these polyhedra with your mouse.

The regular octahedron's edges are the sides of three
squares with the same centre and orthogonal by pairs.

The regular icosahedron's vertices are the vertices of
three { (sides in golden ratio 1.618..)
with the same centre and orthogonal by pairs.

D
B;

Martin
Grotschel £ Gra ) 1.54: Please drag to rotate.

Four vertices of a cube are the vertices of a regular tetrahedron ; so we can
make a regular tetrahedron by cutting four "corners” of a cube.

9 Internet
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Polyhedra have fascinated people
during all periods of our history

coa@w

book illustrations
magic objects

pieces of art

objects of symmetry
models of the universe

From Livre de Perspective by Jean Cousin, 1568.

Martin

Grotschel
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http://www.mathe.tu-freiberg.de/—hebisch/cafe/platonische.html
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Das Hexaeder (Wurfel) ist wohl in allen Hochkulturen des Altertums
bekannt gewesen, das Dodekaeder soll Pythagoras entdeckt haben, dem
auch das Tetraeder bekannt gewesen sein soll, allerdings noch unter dem
Namen Pyramide. Die Bezeichnung Tetraeder hierfiir stammt von Heron
von Alexandria. Das Oktaeder und das Ikosaeder schlieBlich soll
Theaitetos von Athen entdeckt haben. Im Buch XIII der Elemente des
Euklid findet man bereits um 300 v. Chr. Konstruktionsbeschreibungen

| aller Platonischen Korper und den Nachweis, daB es nur diese reguléren
~ konvexen Polyeder gibt. Platon hat die spater nach ihm benannten
Korper in seine Philosophie eingebaut, indem er sie mit den vier
Elementen Erde (Hexaeder), Wasser (Ikosaeder), Feuer (Tetraeder) und
Luft (Oktaeder) in Verbindung brachte und das Dodekaeder mit einer
geheimnisvollen quinta essentia, dem Himmelsather.

1B
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http://www.mathe.tu-freiberg.de/—hebisch/cafe/platonische.htmi
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Jeder Platonische Korper besitzt eine Innenkugel, auf der die
Mittelpunkte samtlicher Flachen des Korpers liegen, und eine
AuBenkugel, auf der samtliche Koérperecken liegen. Diese Eigenschaft
nutzte Johannes Kepler 1596 in seinem Jugendwerk Mysterium
Cosmographicum aus, um die Abstande der damals sechs bekannten
Planeten des Sonnensystems zu erklaren. Alle Planeten beschrieben
danach Kreisbahnen auf Kugelschalen. Zwischen diese sechs

I Kugelschalen paBte Kepler die Platonischen Korper so ein, daB jeweils

| Y eine Kugel Innenkugel des Korpers und die folgende Kugel AuBenkugel

BINE) des Korpers war. Danach lag das Oktaeder zwischen Merkur und Venus,

= das Ikosaeder zwischen Venus und Erde, das Dodekaeder zwischen Erde
und Mars, das Tetraeder zwischen Mars und Jupiter und der Wiirfel
zwischen Jupiter und Saturn.
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http://www.mathe.tu-freiberg.de/—hebisch/cafe/platonische.htmi
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Definitions

Linear programming lives (for our purposes) in the
n-dimensional real (in practice: rational) vector space.

convex polyhedral cone: conic combination

(i. e., nonnegative linear combination or conical hull)
of finitely many points

K = cone(E), E a finite set in R".

polytope: convex hull of finitely many points:
P = conv(V), V a finite set in R".

polyhedron: intersection of finitely many halfspaces

P={xeR"| Ax<Db}
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Important theorems
of polyhedral theory (LP-view)
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When is a polyhedron nonempty?
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Important theorems
of polyhedral theory (LP-view)
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When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

AX<Db

| is empty, if and only if there is a vector y such that

v>0,y'A=0", y'b< 0"

Theorem of the alternative

1B
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Important theorems
of polyhedral theory (LP-view)

Which forms of representation do polyhedra have?

coew

1B

Martin
Grotschel




23

Important theorems
of polyhedral theory (LP-view)

Which forms of representation do polyhedra have?
Minkowski (1896), Weyl (1935), Steinitz (1916) Motzkin (1936)

Theorem: For a subset P of R" the following are equivalent:

coa@w

(1) P is a polyhedron.
(2) P is the intersection of finitely many halfspaces, i.e.,
there exist a matrix A und ein vector b with

R P={xeR"| AX<b}. (exterior representation)
W% (3)P is the sum of a convex polytope and a finitely
generated (polyhedral) cone, i.e., there exist
finite sets V and E with

P = conv(V)+cone(E). (interior representation)

1B
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Representations of polyhedra

Carathéodory‘s Theorem (1911), 1873 Berlin — 1950 Miinchen

Let X e P =conv(V)+cone(E) , there exist

Vo,..o V. €V, Ay AeR ) A =1

ande,.,....6, €E, u,,...u €R_witht<nsuch that
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Representations of polyhedra

@) - X2 <=0

coew

The H-representation

gg - ﬁ - ig ::':1)) (exterior representation)
(4) + x1 <= 3~\\\
(5) + X1 + 2x2 <= 9 AXSb

~
\? K \
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Representations of polyhedra

The V-representation (interior representation)
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P = conv(V)+cone(E).

s
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Example: the Tetrahedron

coew

E : % _O_ _1_ N _O_ 3
yeconvy |O,|0|,|1 |, g
of|o]|o]|1].

Y+ Y, +Y; <1

Y, 20

Y, 20
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Example: the cross polytope
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2n points

P=conv{e,—¢ |i=1..nlcR




Example: the cross polytope
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2n points

P=conv{e,—¢ |i=1..nlcR

2" inequalities

P={xeR"|a'x<1V ae{-11}"|




Example: the cross polytope
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2n points

P=conv{e,—¢ |i=1..nlcR
The ™ power "of |.].

P=<X€Rn \Z\x <1;

by

2" inequalities

Pz{Xe]Rn a’x<1V ae{-11"|
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All 3-dimensional
0/1-polytopes 0/1-polytopes

i P
._ F
1 '
k. .-::'.Ff
|
I y
[ oy,
| .
oy,
] H

X C {0,1}d, P = conv X

coew

> combinatorial optimization




32

Contents

1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

= 4, Semi-algebraic geometry
| 5. Faces of polyhedra
¥ 6. Flows, networks, min-max results

coew

1B

Martin
Grotschel




33

Polyedra in linear programming

= The solution sets of linear programs are polyhedra.

coa@w

= If a polyhedron P =conv(V)+cone(E) is given explicitly
via finite sets V und E, linear programming is trivial.

il = In linear programming, polyhedra are always given in
| H-representation. Each solution method has its

,Standard form".

1B
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Fourier-Motzkin Elimination

= Fourier, 1847
= Motzkin, 1938

= Method: successive projection of a polyhedron in n-
dimensional space into a vector space of dimension n-1 by
elimination of one variable.

coa@w

.,

Projection on x: (x,0)
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A Fourier-Motzkin step

T’
al +

al +
am

b1l

|__copy |
bk

0 al
0 an
0 bl
0 bk
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Fourier-Motzkin elimination proves the
Farkas Lemma
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When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

AX<Db

| is empty, if and only if there is a vector y such that

v>0,y'A=0", y'b< 0"

1B
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Fourier-Motzkin Elimination:
an example

coew

min/max + x1 + 3x2 ~

N
(D - X2 <=0
(2) - x1 - x2 <=-1
(B3 - x1 + x2 <=3 ~
(4) + x1 <=3 & (s \6\
(5) + x1 + 2x2 <=9 h ) \\\\\\\\\\\
(@
<
()

/

1B

Martin
Grotschel




38

Fourier-Motzkin Elimination:
an example

coew

N

(D - X2 <=0
(2) - x1 - x2 <=-8 /4%3
(B3 - x1 + x2 <=3 ~
4 + x1 <=3 AL 3)

(b)) + X1 + 2x2 <= 9

@)
%
)
EZM- ////
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Fourier-Motzkin Elimination:
an example, call of PORTA

DIM = 3

INEQUALITIES_SECTION

(D - X2 <=0 (D - X2
(2) - x1 - x2 <=-8 (2) - x1 - x2
(3 - x1 + x2 <=3 (3 - x1 + x2
(4) + x1 <= 3 (4) + x1

(B5) + x1 + 2x2 <=9 (5) + x1 + 2x2

ELIMINATION_ORDER
10

<=0
<=-8
<= 3
<= 3
<= 9
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Fourier-Motzkin Elimination:
an example, call of PORTA

DIM = 3 DIM = 3
INEQUALITIES_SECTION INEQUALITIES_SECTION
(D) (1) - x2 <= 0 (O - X2
2,4 (2) - x2 <= -5(2) - x1 - x2
(2,5 (B) + x2 <=1 (3 - x1 + x2
(3.4) (4) + x2 <= 6 (4) + x1

y (3,5) (B) + x2 <= 4 (5) + x1 + 2x2

ELIMINATION_ORDER
10

<=0
<=-8
<= 3
<= 3
<= 9
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Fourier-Motzkin Elimination:
an example, call of PORTA

coa@w

DIM = 3 DIM = 3
INEQUALITIES SECTION INEQUALITIES_SECTION
1 @ -x2 <= 0 (2,3) 0 <= -4
2,4) (2) - x2 <= -5
(2,5) (3) + x2 <= 1
(3,4 (4) + x2 <= 6
y (3,5) (B) + x2 <= 4
¥l ELIMINATION_ORDER ‘
01

1B
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' Fourier-Motzkin elimination proves the
Farkas Lemma
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When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

AX<Db

| is empty, if and only if there is a vector y such that

v>0,y'A=0", y'b< 0"
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Which LP solvers are
used In practice?

coa@w

= Fourier-Motzkin: hopeless
= Ellipsoid Method: total failure
= primal Simplex Method: good
= dual Simplex Method: better
| = Barrier Method: for LPs frequently even better
1| = For LP relaxations of IPs: dual Simplex Method

1B
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' Fourier-Motzkin works reasonably well
for polyhedral transformations:

coa@w

Example: Let a polyhedron be given (as usual in
combinatorial optimization implicitly) via:

P = conv(V)+cone(E)
Find a non-redundant representation of P in the form:
P={xeR"|Ax<Db}
Solution: Write P as follows d
P={xeR’|Vy+Ez-x=0,>y,=1y>0,2>0}
=1

and eliminate y und z.

Grotschel
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Relations between polyhedra
representations

Given V and E, then one can compute A und b as indicated above.
Similarly (polarity): Given A und b, one can compute V und E.

The Transformation of a V-representation of a polyhedron P into a
H-representation and vice versa requires exponential space, and thus,
also exponential running time.

Examples: Hypercube and cross polytope.

That is why it is OK to employ an exponential algorithm such as Fourier-
Motzkin Elimination (or Double Description) for polyhedral
transformations.

Several codes for such transformations can be found in the Internet,
e.g.. PORTA at ZIB and in Heidelberg.
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The Schlafli Graph S
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Claw-free Graphs VI. Colouring Claw-free Graphs

Maria Chudnovsky
Columbia University, New York NY 10027 !
and
Paul Seymour
Princeton University, Princeton NJ 08544 2

May 27, 2009

Abstract

In this paper we prove that if G is a connected claw-free graph with three pairwise non-adjacent ver-
tices, with chromatic number y and clique number w, then y < 2w and the same for the complement
of G. We also prove that the choice number of G is at most 2w, except possibly in the case when &
can be obtained from a subgraph of the Schlifli graph by replicating vertices. Finally, we show that
the constant 2 is best possible in all cases.
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The Schlafli Graph S

coew

Clique and stability number

Maximal cliques in S have size 6.

Maximal stable sets in S have size 3.
S AT AR e S has chromatic number 9 and there
'-i.g-a ) ‘ -— are two essentially different ways to
PTG IIR  Uke4  color S with 9 colors. The
complementary graph has chromatic
number 6.

The Schlafli graph is a strongly regular graph on 27 nodes which is the
graph complement of the generalized quadrangle G @ (2, 4). Itis the
unique strongly regular graph with parameters (27, 16, 10, &) (Godsil
and Royle 2001, p. 259).

41 B :
Martin http://mathworld.wolfram.com/SchlaefliGraph.html

Grotschel
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he Polytope of stable sets of the
Schlafli Graph
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input file Schlaefli.poi

dimension 27

number of cone-points : 0 The incidence vectors of the
number of conv-points : 208  stable sets of the Schlafli graph

| sum of inequalities over all iterations : 527962
|| maximal number of inequalities : 14230

M transformation to integer values
sorting system

. % number of equations : O

Ziipll number of inequalities : 4086

Martin

Grotschel
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he Polytope of stable sets of the
Schlafli Graph

FOURIER - MOTZKIN - ELIMINATION:

coa@w

| iter- | upper | #ineq | max| long| non-| mem | time |
| ation| bound | | bit-|arith| zeros | used | used |
| | #ineq | |length|metic| in %]| inkB| insec|
R R R B B R |
| 180 | 29 | 29| 1] n| 0.04] 522 | 1.00 |
| 179 | 30 | 29| 1] n| 0.04]| 522 | 1.00 |

| 10| 8748283 | 13408| 3| n| 093] 6376 | 349.00 |
| 9] 13879262 | 12662| 3| n| 093| 6376| 368.00 |
| 8] 12576986 | 11877 3| n| 093] 6376 | 385.00 |
= | 7| 11816187 | 11556| 3| n| 0.93| 6376 404.00 |
| 6] 11337192 | 10431| 3| n]| 093] 6376 | 417.00 |
| 5] 9642291 | 9295| 3| n| 0.93| 6376| 429.00 |
| 4] 10238785| 5848 | 3| n| 0.92| 6376| 441.00 |
| 3] 3700762 | 4967 | 3| n| 092]| 6376| 445.00 |
| 2| 2924601 | 4087 2| n| 0.92| 6376| 448.00 |
| 1] 8073| 4086| 2| n| 092| 6376 448.00 |

1B
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he Polytope of stable sets of the
Schlafli Graph

INEQUALITIES_SECTION
(1) -xl<=0

coa@w

(4086) +2x1+2x2+2x3+ x4+ x5+ x6 + x10+ x11+ x12+ x13+ x14+ x15
+X16+ X174+ x18+ x19+2x20 + x22+2x23 + x25+2x26 <=3

“a 8 different classes of inequalities found in total, among these, 5 classes
| have been unknown so far.

41 B
Martin
Grotschel
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Web resources

Linear Programming: Frequently Asked Questions
http://www-unix.mcs.anl.gov/otc/Guide/faqg/linear-programming-fag.html

coew

= Q1. "What is Linear Programming?"

= Q2. "Where is there good software to solve LP problems?"
= "Free" codes

= Commercial codes and modeling systems

= Free demos of commercial codes

Q3. "Oh, and we also want to solve it as an integer program."
Q4. "I wrote an optimization code. Where are some test models?"
Q5. "What is MPS format?"

1B
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Web resources

= A Short Course in Linear Programming
by Harvey J. Greenberg

coa@w

http://carbon.cudenver.edu/~hgreenbe/courseware/LPshort/intro.html

= OR/MS Today : 2005 LINEAR PROGRAMMING
SOFTWARE SURVEY (~60 commercial codes)

http://www.lionhrtpub.com/orms/surveys/LP/LP-survey.html

l = INFORMS OR/MS Resource Collection

http://www.informs.org/Resources/

[ . NEOS Server for Optimization

http://www-neos.mcs.anl.gov/

1B
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Data resources at ZIB, open access

= MIPLIB
= FAPLIB
= STEINLIB

coew
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Z1B offerings

= PORTA - POlyhedron Representation Transformation Algorithm

coa@w

= SoPlex - The Sequential object-oriented simplex class library
= Zimpl - A mathematical modelling language

= SCIP - Solving constraint integer programs (IP & MIP)

1B
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Semi-algebraic Geometry
Real-algebraic Geometry

coa@w

i (x),9;(x),h,(x) are polynomials in d real variables

S, ={xeR’:}(X)>0,....f(X) >0} basic closed
= S, ={xeR’:g,(x)>0,...,g._(X) >0} basic open
B S ={xeR’:h(x)=0,..,h (x) =0}

S:=S US, US_ isasemi-algebraic set
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Theorem of Brocker(1991) & Scheiderer(1989)
basic closed case

coa@w

Every basic closed semi-algebraic set of the form

S={xeR" :(x)>0,...,f(x) >0},

where f € R[x,...,X;],1<1 <1, are polynomials,
can be represented by at most d(d +1)/2

polynomials, i.e., there exist polynomials
such that

Poreens Paaanyz € RIX o Xy ]
S={xeR" p(X) 2 Oi"'ipd(d+1)/2(x) > 0}

41 B
Martin
Grotschel
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Theorem of Brocker(1991) & Scheiderer(1989)
basic open case

coa@w

Every basic open semi-algebraic set of the form

S={xeR’:§(x)>0,..,5(x) >0}

where f. e R[x,...,X;],1<1<1, are polynomials,
can be represented by at most @

polynomials, i.e., there exist polynomials
such that

P Py € RIX, e X ]

f& S =X R 2, () > O,y () > O}

.’.'.'.'.".
...........

|||||
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A first constructive result

coa@w

Bernig [1998] proved that, for d=2, every convex
polygon can be represented by two polynomial
inequalities.

p(1)= product of all
linear inequalities

p(2)= ellipse
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A first Constructive Result

coa@w

Bernig [1998] proved that, for d=2, every convex
polygon can be represented by two polynomial
inequalities.

p(1)= product of all
linear inequalities

p(2)= ellipse
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Our first theorem

Theorem Let P — R" be a n-dimensional

coa@w

polytope given by an inequality representation. Then
k<n" polynomials p. € R[X,..., X.]
can be constructed such that

P — 7D(pl""’pk)'

%9 Martin Grotschel, Martin Henk:
The Representation of Polyhedra by Polynomial

Inequalities

Discrete & Computational Geometry, 29:4 (2003) 485-504

Martin
Grotschel
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Our main theorem

Theorem Let P — R" be a n-dimensional

coa@w

polytope given by an inequality representation. Then
2n polynomials p, € R[X,...,X.]
can be constructed such that

P — P(pl""’pZH)'

N9 Hartwig Bosse, Martin Grétschel, Martin Henk:
Polynomial inequalities representing polyhedra
Mathematical Programming 103 (2005)35-44

- http://www.springerlink.com/index/10.1007/s10107-004-0563-2
Z1 B

Martin

Grotschel
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' | case

Imensiona

e B
e

po(x) = 0}

{r e R4

{r e R - pr(x) = 0}

o
4=
(6]
0
]
Ho)
=
©)




" The construction in the
2-dimensional case

coew

{r € RY: pi(x) > Oandpo(x) > 0}
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Recent “Semi-algebraic Progress”

coa@w

three-dimensional polyhedra can be described by three
polynomial inequalities

jointly with Gennadiy Averkov
Discrete Comput. Geom_,42(2), 2009, 166-186;

representing simple d-dimensional polytopes by d
polynomials

jointly with Gennadiy Averkov
to appear in Math. Prog. (A);

http://fma2.math.unimagdeburg.de/~henk/preprints/henk&polynomdarstellungen%20von%?20polyedern.pdf

Brocker
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Contents

1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

= 4, Semi-algebraic geometry
) 5. Faces of polyhedra
¥ 6. Flows, networks, min-max results

coa@w
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Faces eftc.

= Important concept: dimension

coew

= face
= vertex
. = edge
| = (neighbourly polytopes)
bl = ridge = subfacet
= facet

1B
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Contents

1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

= 4, Semi-algebraic geometry
| 5. Faces of polyhedra
B 6. Flows, networks, min-max results

coew
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Linear Programming:
The DualityTheorem

coa@w

The most important and influential theorem in optimization.

min{wx|Ax>b}=max{yb|y >0, yA=w}

. A good research idea is to try to mimic this result:

min {something } = max {something }

A relation of this type is called min-max result.

-----
+ aels
Srielilely

.....
...........

.....
|||||



Max-flow min-cut theorem
(Ford & Fulkerson, 1956)

coa@w

Let D =(V,A)be adirected graph, let r,seV andlet c:A->R,

be a capacity function. Then the maximum value of an r-s -flow

subject to the capacity c is equal to the minimum capacity of an

r-s -Cut.

If all capacities are integer, there exists an integer optimum flow.
Here an r-s-flow is a vector x: A — R such that

1) O  x(a)z0 vae A
(i) x(6"(v))=x(6"(v)) YveV,rzv=s

The value of the flow is the net amount of flow leaving r, i.e., is
(2) x(5+ (r))— X(6 (r))

(which is equal to the net amount of flow entering s). The flow z
is subject to ¢ if x(a)<c(a)forall ain A.
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Ford-Fulkerson animation

= http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm

coew
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Flow Algorithms

= The Ford-Fulkerson Algorithm
The grandfather of augmenting paths algorithms

coa@w

= The Dinic-Malhorta-Kumar-Maheshwari Algorithm
= Preflow (Push-Relabel) Algorithms

1B
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Complexity survey

from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer

coew

10.8b. Complexity survey for the maximum flow problem

Complexity survey (* indicates an asymptotically best bound in the table):

O(n*mC) Dantzig [1951a] simplex method

Ford and Fulkerson [1955,1957b]
augmenting path

Dinits [1970], Edmonds and Karp

O(nmC)

2
O(nm) [1972] shortest augmenting path
. . Edmonds and Karp [1972] fattest
O(n*mlognC) augmenting path . |
2 Dinits [1970] shortest augmenting
O(rn"m) path, lavered network
O(mﬁ log C) Edmonds and Karp [1970,1972]
e capacity-scaling
O(nm log C) Dinits [1973a], Gabow [1983b,1985b]

capacity-scaling

Karzanov [1974] (preflow push); cf.
O(n?) Malhotra, Kumar, and Maheshwari

[1978], Tarjan [1984]

Cherkasskii [1977a] blocking preflow
with long pushes

Shiloach [1978], Galil and Naamad

ZA1B; O(nm log™n) [1979,1980]

M t 5/ p 1 . s
Grotschel O(n®*m?/?) Galil [1978,1080a]

O(n® /i)
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Complexity survey

from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer

Co@wW
continued
O(nmlogn) Sleator [1980], Sleator and Tarjan
e [1981,1983a] dynamic trees
¥ O(nmlog(n ,’m ) Goldberg and Tarjan [1986,1988a]

push-relabel+dynamic trees

Ahuja and Orlin [1989] push-relabel +

excess scaling

Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved

Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved + dynamic trees

O(nm + n* log C)

O(nm + n? Vviog C')

* (nmlog((n/m)ylog C' + 2))

Cherivan, Hagerup, and Mehlhorn
[1990,1996]

Alon [1990] (derandomization of
Cherivan and Hagerup [1989,1995])

* O(n*/logn)

O(n(m +n°/?logn))

(for each £ > 0) King, Rao, and Tarjan
[1992]

(for each = > 0) Phillips and
Westbrook [1993,1998]

* O(nmlog_m n) King, Rao, and Tarjan [1994]

T log n

* O(ﬂ:-t?”’2 log(n? /m) log C) Goldberg and Rao [1997a,1998]
* O(n?*mlog(n fm log ') Goldberg and Rao [1997a,1998]

O(nm + n**=)

* | O(nmlog,, . n+ n?log?te n)

1B

Martin . .
erorene) capacities, see Section 9.6a.

Here C' := ||c||oo for integer capacity function c. For a complexity survey for unit
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Complexity survey

from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer

coew

Research problem: [s there an O(nm )-time maximum fHow algorithm?
For the special case of planar undirected graphs:

O(n*logn) [tal and Shiloach [1079]

Reif [1983] (minimum cut), Hassin and Johnson
[1O85] (maximum fow)

O{nlognlog® n) | Frederickson [1953h]
* O(nlogn) Frederickson [1987h]

Ofrlog® n)

For directed planar graphs:

O(n?* % logn) Johnson and Venkatesan [1952]

Klein, Rao, Rauch, and Subramanian [1994],
Henzinger, Klein, Rao, and Subramanian [1997]

* Onlogn) Weihe [1994b,1997h]

O(n?log? nlog C)

Martin
Grotschel




Min-cost flow

Let D =(V,A)beadirected graph, let r,seV ,letc:A>R,
be a capacity function, w: A—R a cost function, and f a flow value.
Find a flow x of value f subject to ¢ with minimum value wTx.

min > w(a)x(a)

ae A

0<x(a)<c(a) Vae A
X(6"(v))-x(07(v))=0 Vr=v=s

x(67(r))-x(e (r))=f

There is a similarly large number of algorithms with varying
complexity, see Schrijver (2003).

coa@w




Min-Max Results
Konig 's Matching Theorem (1931) (Frobenius, 1912)

coa@w

The maximum size of a matching in a bipartite
graph is equal to the minimum number of
vertices covering all edges, i. e,

v(G)=7(G)
¢ for bipartite graphs G.
W Tutte-Berge Formula (Tutte(1947), Berge(1958))

max{| M |:M < E matching| :minWCV%(N |+|W | -O(G -W))

where G=(V,E) is an arbitrary graph.




Total unimodularity

A matrix A is called fotally unimodular if each square submatrix of
A has determinant 0, +1 or —1. In particular, each entry of A4 is

0, +1 or —1.

The interest of totally unimodular matrices for optimization was
discovered by the following theorem of Hoffman and Kruskal (1956):

coa@w

=2 If A is totally unimodular and b and w are
= integer vectors, then both sides of the LP-duality
W equation

max {wx| Ax <b} =min{yb|y >0, yA=w}

have integer optimum solutions.




Total unimodularity

There have been many characterizations of totally
unimodular matrices:
Ghouila-Houri (1962)
Camion (1965)
Padberg (1976)
- Truemper(1977)

coa@w

Full understanding was achieved by establishing a link to
regular matroids, Seymour (1980). This connection also
> A Yields a polynomial time algorithm to recognize totally

...........

»
|||||

unimodular matrices.



Min-Max Results

Dilworth's theorem (1950)
The maximum size of an antichain in a partially ordered
set (P, <) is equal to the minimum number of chains
needed to cover P.

coa@w

Fulkerson's optimum branching theorem (1974)
Let D=(V,A) be a directed graph, let reV and let
|:A— R, be a length function. Then the minimum
length of an rarborescence is equal to the maximum number ¢ of
r-cuts C,,..., C, (repetition allowed) such that no arc a is in more
than I(a) of the C.

Edmonds’ disjoint branching theorem (1973)
Let D=(V,A)be a directed graph, and let r€V . Then the
maximum number of pairwise disjoint r—arborescences is equal
to the minimum size of an rcut.




Min-Max Results

coa@w

Edmonds’ matroid intersection theorem (1970)
Let M,=(S,J,) and M,=(S,7J,) be matroids,

with rank functions r, and r,, respectively. Then the
maximum size of asetin J,NJ, is equal to

min (r(S')+r,(S\S")).

S'cS
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Min-Max Results and Polyhedra

= Min-max results almost always provide polyhedral insight
and can be employed to prove integrality of polyhedra.

coa@w

= For instance, the matroid intersection theorem can be
used to prove a theorem on the integrality of the
intersection of two matroid polytopes.
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Min-Max Results and Polyhedra

Let M=(E, /) be a matroid with rank function r.
Define IND(/):=conv{x! | I is an Element of 7}.
IND(J) is called matroid polytope. Let

coa@w

P(I):={xeR*: Y x,<r(F)V FcE, x,20V ecE }

ecF

"‘?1 Theorem: P(Z) = IND(J).
B Theorem: Let M;=(E, 7,) and M,=(E, ) be two matroids

o
(N

with rank functions ; and £, respectively. Then
IND(4N5) = P(Z)NP(%)

o e
Srielilely

.....
...........

|||||

1B

Martin
Grotschel



84

Min-Max Results and Polyhedra

In other words, if M,=(E, 7,) and M,=(E, I,) are two matroids on the
same ground set E with rank functions r; and r,, respectively, and if c, is
a weight for all elements e of E, then a set that is independent in M; and
M, and has the largest possible weight can be found via the following
linear program

coa@w

max ) C.x,
eckE

Yx,<r(F)VY FcE

ecF

Y x,<n(FYV FcE

ecF

X,20V eekE

1B
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