Prof. Dr. h.c. mult. Martin Grötschel Dr. Axel Werner Torsten Klug

6. Übungsblatt

Abgabetermin: 03.06.2015 bis 10:15 in MA041

Aufgabe 16. 10 Punkte

Für das Problem, ein gegebenen Euro-Betrag mit möglichst wenigen Münzen und Scheinen auszahlen, wird der Greedy-Algorithmus angewendet, der für den jeweils zu zahlenden Restbetrag immer die größtmögliche Münze bzw. den größtmöglichen Schein auszahlt und dann iteriert.

- a) Zeigt, dass der Greedy-Algorithmus optimal arbeitet.
- b) Arbeitet der Greedy-Algorithmus auch dann noch korrekt, wenn zusätzlich 30 Cent bzw. 40 Cent Münzen eingeführt würden? Wie groß ist der maximale Fehler?

Aufgabe 17. 10 Punkte

Zeigt die folgenden Aussagen:

- a) Sei G = (V, E) ein einfacher Graph (schlingenfrei, keine parallelen Kanten). Eine Teilmenge $F \subseteq E$ ist abgeschlossen und inseparabel im graphischen Matroid auf E genau dann, wenn
 - entweder $F = \{e\}, e \in E$ gilt
 - oder wenn F die Kantenmenge eines knoteninduzierten Untergraphen (W, E(W)) mit $|W| \geq 3$ ist, der 2-fach knotenzusammenhängend ist.
- b) Sei (E, \mathcal{I}) das Partitionsmatroid auf E, das definiert ist durch $E_1, \ldots, E_k \subseteq E$ und b_1, \ldots, b_k mit $1 \leq b_i < |E_i|$ für alle $i = 1, \ldots, k$. $F \subseteq E$ ist genau dann abgeschlossen und inseparabel in \mathcal{I} , wenn $F = E_i$ für ein $i \in \{1, \ldots, k\}$ oder $F = \{e\}, e \in E_i$ für ein $i = \{1, \ldots, k\}$ mit $b_i \geq 2$ gilt.

Aufgabe 18. 10 Punkte

Wir betrachten den vollständigen Graphen $K_7 = (V, E)$ mit sieben Knoten $\{1, \ldots, 7\}$. \mathcal{I} sei das Unabhängigkeitssystem auf E, das aus allen hamiltonschen Kreisen in K_7 und allen Teilmengen davon besteht. Betrachte die Zielfunktion, die sich aus den Kantengewichten in Abbildung 1 ergibt. Alle nicht gezeichneten Kanten haben den Wert 0.

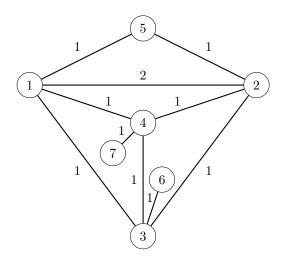


Abbildung 1: Graph

- (a) Findet ein Element von $\mathcal I$ mit maximalem Wert c_0 (Beweis!).
- (b) Die Ungleichungen

$$x(\delta(v)) \le 2,$$
 $\forall v \in V$
 $x(E(W)) \le |W| - 1,$ $2 \le |W| \le 6$

sind offensichtlich Rangungleichungen. Findet einen nichtnegativen Vektor $x^* \in \mathbb{K}^E$, der diese Rangungleichungen erfüllt und dessen Zielfunktionswert größer als c_0 ist.

Letztes Blatt der ersten Semesterhälfte!!!

Fragen: klug@zib.de