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Remark

= This set ppt-slides has basically the same contents as the
set shown in the classes on April 12 and 16. However, for
copyright purposes some pictures, in particular those,

whose origin/copyright holders could not be correctly
identified, have been removed.
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Why LP/IP/MIP Survey?

= Almost all infrastructure planning problems discussed in
this class are of some combinatorial nature - plus some
nonlinearities and stochastic aspects.

= In most of the cases treated, in the end, some integer or
mixed-integer programs have to be solved.

= In almost all of the solution approaches linear
programming problems arise, usually as sub-problems and
very often of very large scale.

T - It is therefore necessary to understand the LP/IP/MIP
solution technology and to know what which approaches
are able to “deliver”.

4= Thatis why we start with this survey (and provide a brief
ziell preview of some of the topics to be covered).

Martin
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What drives my research
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I like integer programming and combinatorial optimization.
I am really interested in real applications.

The world is full of important, difficult, and very large
scale optimization problem. I like to contribute to their
solution.

Almost every practically relevant problem creates new
research problems that need new theory.

Application driven approach is an excellent way to
combine theory and practice.

ZIB: We make our algorithmic advances freely available.



What is large scale?
LP/IP Sizes:
= Largest TSP solved to optimality: 85900 cities

= Largest TSP “in operation”

;?5..9[][]. LD.Ci;Iti.D;'IE; i.r'l a."-.-‘L.SI ;ﬁlppl.icat.icr.r'l.
Solved in 2006
=  See http://www.tsp.gatech.edu/optimal/index.html
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LP/1P Sizes handled: the TSP case
= Largest TSP solved to optimality: 85,900 cities (in 2006)

= Number of integer variables:
3,689,362,050
~ 3.5 x 10°

89,900 Locations in a VLS| Application
ZIB Solved in 2006
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LP/IP Sizes handled: the TSP case
= Largest TSP “in operation”: 1,904,711 cities

= Number of integer variables:
1,813,961,044,405
~ 1.8 x 1012

= Number of constraints

(conservative lower bound):
21,904,710 ~ 10573,317 ‘m,

best known solution

= http://www.tsp.gatech.edu/world/pictures.html o
optimality gap below 0.1%
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ZIB LP/MIP Group

> Tobias Achterberg (IBM)
> Thorsten Koch
> Marc Pfetsch (TU Braunschweig)

Timo Berthold
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Yuji Shinano
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Kati Wolter

Gregor Hendel
7B Robert Waniek
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Einstein Center for Mathematics
Berlin (application to be decided in May 2012)

= Innovation Area
»,Mathematics in Metropolitan Infrastructure®
Skutella Lecture (March 21, 2012)
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typical optimization problems

max f (x) or min f(x)| |minc’x minc’ x
: Ax=a Ax=a
9 (x) =0, !_1’2""’k Bx<b Bx <b
hj(x)SO, ]=12,...m >0 «>0
xeR"(and x e S) (xeR") somex; € Z
(xek") (xe{0,1}")
»general” (linear)
(nonlinear) linear 0/1-
program program mixed-
NLP LP integer

o program
program = optimization problem 1p vp
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Linear Programming:
a very brief history

= 1826/1827 Jean Baptiste Joseph Fourier (1786-1830):
rudimentory form of the simplex method in 3 dimensions.

= 1939 L. V. Kantorovitch (1912-1986): Foundations of
linear programming (Nobel Prize 1975)

= 1947 G. B. Dantzig (1914-2005): Invention of the
(primal) simplex algorithm

max c¢' X
il = 1954 C.E. Lemke: Ax =b
b Dual simplex algorithm >0

= 1953 G.B. Dantzig,
1954 W. Orchard Hays, and
1954 G. B. Dantzig & W. Orchard Hays:
Revised simplex algorithm
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Dantzig and Bixby

George Dantzig and

Bob Bixby
(founder of CPLEX and GUROBI)

at the International
Symposium on Mathematical
Programming,

Atlanta, August 2000

This lecture employs a lot of
information I obtained from
Bob and some of his slides.
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Optimal use of scarce ressources
foundation and economic interpretation of LP

Leonid V. Kantorovich  Tjalling C. Koopmans
Nobel Prize for Economics 1975
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Stiglers ,,Diet Problem®:
,1he first linear program*

Min x1 + X2 costs
2x1+ x2>3 protein
X1 +2x2 >3 carbohydrates
x1 >0 potatoes
x2 >0 beans
minimizing the George J. Stigler
cost of food Nobel Prize in

economics 1982




Sets n nutrients / calorie thousands , protein grams , calcium grams , iron milligrams vitamin-a thousand ius, vitamin-b1 milligrams, vitamin-b2
milligrams, niacin milligrams , vitamin-c milligrams /

f foods / wheat , cornmeal , cannedmilk, margarine , cheese , peanut-b , lard liver , porkroast, salmon , greenbeans, cabbage , onions ,
potatoes spinach, sweet-pot, peaches , prunes , limabeans, navybeans /

Parameter b(n) required daily allowances of nutrients / calorie 3, protein 70, calcium .8 , iron 12 vitamin-a 5, vitamin-b1 1.8, vitamin-b2 2.7, niacin 18,
vitamin-c 75 /

Table a(f,n) nutritive value of foods (per dollar spent)

calorie protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c

(1000) @ ) (mg) (1000iu) (mg) (mg) (mg) (mg)
wheat 44.7 1411 2.0 365 55.4 33.3 441
cornmeal 36 897 1.7 99 30.9 17.4 7.9 106
cannedmilk 8.4 422 15.1 9 26 3 23.5 11 60
margarine 20.6 17 .6 6 55.8 .2
cheese 7.4 448 16.4 19 28.1 .8 10.3 4
peanut-b 15.7 661 1 48 9.6 8.1 471
lard 41.7 .2 .5 5
liver 2.2 333 .2 139 169.2 6.4 50.8 316 525
porkroast 4.4 249 3 37 18.2 3.6 79
salmon 5.8 705 6.8 45 3.5 1 4.9 209
greenbeans 2.4 138 3.7 80 69 4.3 5.8 37 862
cabbage 2.6 125 4 36 7.2 9 4.5 26 5369
onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184
potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522
spinach 1.1 106 138 918.4 5.7 13.8 33 2755
sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912
peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57
prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257
limabeans 17.4 1055 3.7 459 5.1 26.9 38.2 93
navybeans 26.9 1691 11.4 792 38.4 24.6 217

Positive Variable x(f) dollars of food f to be purchased daily (dollars)

Free Variable cost total food bill (dollars)

Equations nb(n) nutrient balance (units), cb cost balance (dollars) ; http://WWW_gams_Com/mOdI|b/||bhtm|/d|et_ htm
nb(n).. sum(f, a(f,n)*x(f)) =g= b(n); cb.. cost=e= sum(f, x(f));

Model diet stiglers diet problem / nb,cb /;




21

Solution of the Diet Problem

Goal: Find the cheapest combination of foods that will
satisfy the daily requirements of a person!

The problem motivated by the army’s desire to meet
nutritional requirements of the soldiers at minimum cost.

Army’s problem had 77 unknowns and 9 constraints.
= Stigler solved problem using a heuristic: $39.93/year (1939)
8N Laderman (1947) used simplex: $39.69/year (1939 prices)
P first “|large-scale computation”

took 120 man days on hand operated
desk calculators (10 human “computers”)

Srissrient
.....
...........

»
|||||

http://www.mcs.anl.gov/home/otc/Guide/CaseStudies/diet/index.html

Grotschel
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Commercial software
William Orchard-Hayes (in the period 1953-1954)

The first commercial LP-Code was on the market in 1954
(almost 60 years ago) and available on an IBM CPC
(card programmable calculator):

Code: Simplex Algorithm with explicit basis inverse, that was
recomputed in each step.

Shortly after, Orchard-Hayes implemented a version with product form of
the inverse (idea of A. Orden),
Record: 71 variables, 26 constraints, 8 h running time

e
.

ZJ BB About 1960: LP became commercially viable, used largely by oil
walil COMpanies.

Grotschel




The Decade of the 70’s: Theory

= V. Klee and G. J. Minty, ,,How good is the simplex

algorithm?%, in O. Shisha (ed.), Inequalities III, Academic
Press, New York, 1972, 159-172

= K. H. Borgwardt, ,,Untersuchungen zur Asymptotik der
mittleren Schrittzahl von Simplexverfahren in der linearen
Optimierung”, Dissertation, U Kaiserslautern, 1977

= L. G. Khachiyan, ,A polynomial algorithm in linear
programming", (Russian), Doklady Akademii Nauk SSR
244 (1979) 1093-1096




The Decade of the 70’s: Practice

= Interest in optimization flowered

= Large scale planning applications particularly popular

= Significant difficulties emerged
= Building applications was very expensive and very risky
= Technology just wasn't ready:
= LP was slow and
= Mixed Integer Programming was impossible.
il = OR could not really “deliver” — with some exceptions, of
course

= The ellipsoid method of 1979 was no practical success.




The Decade of the 80’s and beyond
= Mid 80’s:

= There was perception was that LP software had progressed about
as far as it could.

= There were several key developments
= IBM PC introduced in 1981

= Brought personal computing to business
= Relational databases developed. ERP systems introduced.

= 1984, major theoretical breakthrough in LP
N. Karmarkar, “A new polynomial-time algorithm for linear
programming”, Combinatorica 4 (1984) 373-395
(Interior Point Methods, front page New York Times)

= The last ~20 years: Remarkable progress

= We now have three competitive algorithms:
Primal & Dual Simplex, Barrier (interior points)




My opinion on Linear Programming
= From an commercial/economic point of view.

Linear programming is the most important
development of mathematics in the 20t century.
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Linear Programming

minc'x! Iminc' x| Iminc' x| [minc’x
AXx =a Ax=a | |Ax=a | |IBx<b

Bx<b Bx<h X>0
X>0 x>0

Linear program in various forms.
They are all equivalent!
ZIB There are more versions!

Martin

Grotschel
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Optimizers‘ dream: Duality theorems

1B
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= Max-Flow Min-Cut Theorem
The value of a maximal (s,t)-flow in a capacitated network is equal to

the minimal capacity of an (s,t)-cut.
= The Farkas Lemma
= The Duality Theorem of Linear Programming

maxc'x = _ miny'b
Ax<b y'A>c'
x>0 y=>0
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Important theorems

= Complementary slackness theorems

= Redundancy characterizations

= Polyhedral theory

1B
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LP Solvability

= ] assume that the audience is somewhat familiar with complexity
theory:

= Polynomial time solvability, solvability in strongly polynomial time

= (lasses: 7 and NP, N'P-completeness , N’P-hardness , etc.

= Linear programs can be solved in polynomial time with
= the Ellipsoid Method (Khachiyan, 1979)
= Interior Points Methods (Karmarkar, 1984, and others)

. = Open: Is there a strongly polynomial time algorithm for the solution
of LPs?

= (Certain variants of the Simplex Algorithm run — under certain
conditions — in expected polynomial time (Borgwardt, 1977...)

= QOpen: Is there a polynomial time variant of the
Simplex Algorithm?

1B

Martin
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Separation
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LP Solvability: Generalizations

Theorem (GLS 1981, 1988) (modulo technical details) : There exists
a polynomial time algorithm to minimize convex functions (e.g., linear
functions) over the elements of a class of convex bodies K (e. g.
polyhedra) if and only if, there exists a polynomial time algorithm that
decides, for any given point x, whether x is in K, and that, when x is
not in K, finds a hyperplane that separates x from K.

Short version:
Optimization and Separation are polynomial-time equivalent.
k| Consequence: Theoretical Foundation of cutting plane algorithms.

Particular special case: Polynomial time separation algorithm for the
set of positive semi-definite matrices.

Consequences:

el " Polynomial time algorithm for stable sets in perfect graphs.

Rkl = The beginning of semi-definite programming
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You can download this book from the
publications list on my Web page.

A Algorithms and Combinatorics 2

Martin Grotschel .
Laszl6 Lovasz http://www.zib.de/groetschel/pu

Alexander Schrijver

Geometric bnew/paper/groetschellovaszsch

Algorithms and rijveri988.pdf
Combinatorial
Optimization

Second Corrected Edition

Zﬂ- @ Springer-Verlag

Martin

Grotschel



36

Contents

1. Linear, Integer, Nonlinear 6. State of the Art in LP:
Programming: What's that? CPLEX, Gurobi (Bixby, Rothberg)
2. Historic Roots 7. ZIB Optimization Suite:
3. Applications ZIMPL, Soplex
4. LP-Theory Noncommercial Codes
5. Algorithms for the Solution of 8. Current Issues
Linear Prpgrams S a) Improving Numerics
a) Fourier-Motzkin Elimination b) Exact LP Solving

b) The Simplex Method
c) The Ellipsoid Method
d) Interior-Point/Barrier Methods

c) Difficult/Very Large and
Parallel LP Solving

e) Lagrangian Relaxation, d) Multi-Objective LP Solving
Subgradient/Bundle Methods e) Nonlinear and Stochastic
f) Semi-algebraic Geometry LP Solving

ZIB g) Other Approaches

Martin
Grotschel




37

Algorithms for nonlinear programming

= [terative methods that solve the equation and inequality sytems
representing the necessary local optimality conditions (e.g., KKT).

Xiy1 = X +ﬂ"|di
d.

A

~ "descent direction™

"steplength™

di = —Vf (xi) Steepest descent

d =—(H (%)) ™“Vf(x)| Newton

@ (Quasi-Newton, conjugate-gradient-, SQP-, subgradient...methods)

= Sufficient conditions are rarely checked.

P tetet e
ORI
SCPEETIESL
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Fourier Elimination
= Fourier, 1826/1827
= Motzkin, 1938

= Method: successive projection of a polyhedron in
n-dimensional space into a vector space of dimension n-1
by elimination of one variable.

1B e

Martin Projection on x: (x,0)

Grotschel
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step

A Fourier

1 ay +

,

-1 aq +

4 .

0 b,

| | copy
0 b,

ZZ[133
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Fourier-Motzkin Elimination:
an example

min/max + x1 + 3x2 ~

N
(D - X2 <=0
(2) - x1 - x2 <=-1
(B3 - x1 + x2 <=3 ~
(4) + x1 <=3 & (s \6\
(5) + x1 + 2x2 <=9 h ) \\\\\\\\\\\
, ‘@
o
)

/

1B
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Fourier-Motzkin Elimination:
an example, call of PORTA (Polymake)

DIM = 3

min/max + x1 + 3x2 INEQUALITIES_SECTION
@) - X2 <=0 @) - X2 <=0
(2) - x1 - x2 <=-1 (2) - x1 - x2 <=-1
(3 - x1 + x2 <=3 (3 - x1 + x2 <= 3
(4) + x1 <=3 (4) + x1 <=3
(5) + x1 + 2x2 <= 9 (5) + x1 + 2x2 <=9

+ x1 + 3x2 - x3 <=0

> S

ELIMINATION_ORDER
100

X1 - 3x2 + X3 <=0

1B

Martin
Grotschel
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Fourier-Motzkin Elimination:
an example

DIM = 3 4‘||||| DIM = 3

INEQUALITIES_SECTION INEQUALITIES_SECTION

&9 (1) - x2 <= 0 (O - X2 <=0
(2,4 (2) - x2 <= 2 (2) - x1 - x2 <=-1
(2,5 (3) + x2 <= 8 (3) - x1 + x2 <= 3
(2,6) (4) +2x2 - x3 <= -1 (4) + x1 <=3
(3,4) (b)) + x2 <= 6 (b)) + x1 + 2x2 <=9
(3,5) (6) + x2 <= 4 (6) + x1 + 3x2 - x3 <=0

= (3,6) (7) +4x2 - x3 <= 3 (D)
e (7.,4) (8) -3x2
(7,5) (9) - x2 + x3 <= 9

(7,6) ELIMINATION_ORDER
100

X1 - 3x2 + X3 <=0

+
X
w
N
[
w

Martin
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Fourier-Motzkin Elimination:
an example

DIM = 3 (1,4 ( 1) -x3 <= -1

1,7 ( 2) -x3 <= 3

INEQUALITIES_SECTION (2,4 ( 3) -x3 <= 3

2,7 ( 4) -x3 <= 11

D @) - x2 <= 0 (8,3) ( 5) +x3 <= 27

(2,4) (2) - x2 <= 2 (8,4 ( 6) -x3 <= 3

(2,5) (3) + x2 <= 8 (8,5 ( 7) +x3 <= 21

(2,6) (4) +2x2 - x3 <= -1 (8,6) ( 8) +x3 <= 15

(3,4) (5) + x2 <= 6 (8,7) ( 9 +x3 <= 21

(3,5) (6) + x2 <= 4 (9,3) ( 10) +x3 <= 17

o (B,6) (7) +4x2 - x3 <= 3 (9,4) ( 11) +x3 <= 17

BN (7,4) (8) -3x2 + x3 <= 3 (9,5) ( 12) +x3 <= 15

BN (7,5) (9) - X2 + x3 <= 9 (9,6) ( 13) +x3 <= 13

JEQT_ (7,6) (9,7) ( 14)+3x3 <= 39
ELIMINATION_ORDER min = 1 <= x3 <= 13 = max

010
x1

1
4

x1
X2

o PR

X2

Martin
Grotschel
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Fourier-Motzkin Elimination:

an example

1B

Martin
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min/max + x1 + 3x2

\\ max
(D - X2 <=0
(2) - x1 - x2 <=-1
(B3 - x1 + x2 <=3 ~
4 + x1 <=3 Q 5
(5) + x1 + 2x2 <= 9 h ) ::::::::é:?\\
@)
&
)
min

/
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Fourier-Motzkin Elimination

= FME is a wonderful constructive proof method.

= Elimination of all variables of a given inequality system
directly yields the Farkas Lemma:

Ax <b has a solution or y' A=0, y'b < 0 has a solution
but not both.

k) = FME is computationally lousy.
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The Simplex Method
= Dantzig, 1947: primal Simplex Method

= Dantzig, 1953: revised Simplex Method
= Lemke, 1954; Beale, 1954: dual Simplex Method

= Underlying Idea: Find a vertex of the set of feasible LP
solutions (polyhedron) and move to a better neighbouring
vertex, if possible (Fourier's idea 1826/27).
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he Simplex Method.:
an example

min/max + x1 + 3x2
N

(D - X2 <=0

(2) - x1 - x2 <=-1

(B3 - x1 + x2 <=3

(4) + x1 <= 3

(5) + x1 + 2x2 9

/

1B
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he Simplex Method.:
an example

min/max + x1 + 3x2

(D - X2 <=
(2) - x1 - X2 <=-
(B - x1 + X2 <=
(4) + x1 <=
(5) + x1 + 2x2 <=

/

1B
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Computationally important idea of the
Simplex Method

Let a (m,n)-Matrix A with full row rank m, an m-vector b and
an n-vector ¢ with m<n be given. For every vertex y of the
polyhedron of feasible solutions of the LP,
max c' x

Ax=Db

x>0
- there is a non-singular (m,m)-submatrix B (called basis)
| Bl of A representing the vertex y (basic solution) as follows
Yg = B_1b1 Yn = 0

A=| B N

.......
e

21Ny Update-formulas, reduced cost calculations,

> 4 Many computational consequences:
el number of non-zeros of a vertex, ...



Numerical trouble often
has geometric reasons

SO

4 Where are
the points of intersection
(vertices, basic solutions)?

What you can't see with your eyes,
causes also numerical difficulties.
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Dual Simplex Method

= The Dual Simplex Method is the (Primal) Simplex Method
applied to the dual of a given linear program.

Surprise in the mid-nineties:

= The Dual Simplex Method is faster than the Primal in
practice.

One key: Goldfarb’s steepest edge pivoting rule!

= A wonderful observation for the cutting plane methods of
integer programming!
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The Ellipsoid Method
= Shor, 1970 - 1979

= Yudin & Nemirovskii, 1976

= Khachiyan, 1979

= M. Grotschel, L. Lovasz, A. Schrijver,
Geometric Algorithms and Combinatorial Optimization
Algorithms and Combinatorics 2, Springer, 1988

1B
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The Ellipsoid Method: an example

N

=N

|
:
§< 1i><
1




k =0,
N :=2n(@n+ 1)(C) +n(d)—n’) 5"
={x|Cx<d
Ay := R?I with R := /n2(Cd-r X | j
Initialization

ay =0
Ifk = N, STOP! (Declare P empty.) Stop_pi_n_g criterion
If a; € P, STOP! (A feasible solution is found.) Feasibility check
Ifa, ¢ P, then choose an inequality, say ¢" x <y, Cutting plane

of the system Cx < d that is violated by ay. choice
1
b = AkC
‘/CTA"‘; The
A1 = ay 1b Update Ellipsoid
" Method

n® 2 -
| Akt = o (A= b))
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Interior-Point Methods: an example

central path

~

~~

)

Often also called
Barrier Methods

(5)\

@)

inté.rior Point
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Milestones for

Interior Point Methods (I1PMs)

= 1984 Projective IPM: Karmarkar — efficient in practice!?

= 1989 O(n3L) for IPMs: Renegar — best complexity

= 1989 Primal-Dual IPMs: Kojima ... — dominant since then

= 1989 Self-Concordant Barrier: Nesterov—Nemirovskii
— extensions to smooth convex optimozation

1992 Semi-Definite Optimization (SDO) and Second Order
Conic Optimization (SOCO): Alizadeh, Nesterov—Nemirovskii
—new applications, approximations, software

= 1998 Robust LO: Ben Tal-Nemirovskii

1B
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Lagrangean Relaxation &
Non-differentiable Optimization
= Approach for very large scale and structured LPs

= Methods:

= subgradient

= bundle
= bundle trust region

or any other nondifferentiable NLP method that looks
promissing
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Lagrangian Relaxation

= Turning an LP into a nonlinear nondifferentiable
optimization problem

minc' x
maxf (A1)
AX=D Ty T
f(A)=minc'x+41 (Ax—-Db)
Dx <d e x€Q
X=>0

(14.25) Satz. Sei Q nicht leer und endlich und f(\) := mingeq(ch o+ AT (Ax —
b)), so gilt folgendes: Setzen wir fiir \g € R™, Ly := {29 € R™ | f(\o)
oo+ AN (Axg — b)}. soist

ZiB Jf(Ao) = conv{(Axg —b) | 29 € Lo} .

Martin
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Algorithms for
nonlinear nondifferential programming

Xy = X + 8,0,
d. = subgradient (instead of gradient)

or element of ¢-subdifferential (bundle)
s, = steplength

1B
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Bundle Method

(Kiwiel [1990], Helmberg [2000])
= Max f(A1)=minc"x+A"(b-Ax)

Xe X

X polyhedral (piecewise linear)

3 T T
f,(A)=c'x,+4 (b-Ax,)

f.(1)=minf (1
k(1) min (1)

2

s = angma, (1) %,
A
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Quadratic Subproblem

~

(1) mafo(/i)—u?k”Z — A

2

< (2) max v—%‘”ﬂ—ik

st. v<f, (1) forall ueJy

2
_
o (3) max > af(A)-—]| D a,(b-Ax,)
4ed, 2 || ue,
s.t. Z a, =1
HEI,

Os%st forall e Jy
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Primal Approximation

ﬂk+1:ik+&zay(b_AXﬂ) 4

Hed,

Xk+1 z CZ,UX,U
ued,

(ﬂ) chk + A(b — AXy )

= " Theorem

;k+1 A

b A% - 0 (k )

= (Xk )ken cONverges to a point X € {x: Ax =b,x e X}
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Where Bundle WIins

RALF BORNDORFER ANDREAS LOBEL STEFFEN WEIDER

A Bundle Method for Integrated
Multi-Depot Vehicle and Duty
Scheduling in Public Transit
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Coputational Results for a (Duty Scheduling)
Set Partitioning Model

Duty Scheduling Problem Ivu41:

Coordinate Ascent: Fast, low quality

* 870 500 col Subgradient: (Theoretical) Convergence
e 3570 rows Volume: Primal approximation
 10.5 non-zeroes per col Bundle+AS: Conv. + primal approx.
Dual Simplex: Primal+dual optimal
Barrier: Primal+dual optimal
450 -
400 - ’_r

|
e 7
'] /

250
0 20 40 60 80 100 [s]

— Coordinate Ascent — Subgradient Volume Bundle+AS —— Dual Simplex — Barrier
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Some LP/MIP Solvers

IBM CPLEX 12.2 www.cplex.com
Gurobi 3.0 www.gurobi.com
FICO XPress-MP 7 www.fico.com/en/Products/DMTools/Pages/FICO-Xpress-

Optimization-Suite.aspx

Lindo 6.1 www.lindo.com

Minto 3.1 coral.ie.lehigh.edu/~minto

SCIP 2.0 scip.zib.de

CBC 2.5 projects.coin-or.org/Cbc

Symphony 5.2 projects.coin-or.org/SYMPHONY

glpk 4.43 www.gnu.org/software/glpk/glpk.htmi

|p_solve 5.5 Ipsolve.sourceforge.net

Berlin
(4 15))
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OR/MS Today Surveys

Martin
Grotschel

OR/MS Today, June 2009

Linear Programming Survey

Table 3
Platforms Supported
PC/ PC S Umnix Other OS5 Microprocessor Support
Windows |Linux
32- |64~ |32-|64- [32- | 64- Specify flavor |[32-|64- Shared Distributed
Product bit |bit |bit |bit |bit bit [of Unix bit |bit |Specify Memory Memory
AIMMS, the ¥ ¥ ¥ ¥ Parallel Sclver
modeling Sessions
system (Windows/Linux)
AMPL ¥ ¥ ¥ ¥ ¥ ¥ Solaris, Mac 05
¥ ATX, HP-UX,
IRI¥
BendX ¥ v v ¥y ¥y ¥ Sun Solaris, HP-
Stochastic U, ALY (Unix
Solvar platforms are
(C/C++/1ava
only)
C-WHIZ v v v
CBC ¥ Y ¥y |y Y ¥ Al¥, Solaris Can be Linus, Unis,
ported to  |Windows (needs
most pthreads)
systems
CLP ¥ ¥ ¥ ¥ ¥ ¥ Al¥, Solaris Can be
ported to
mast
systems
CoinMP ¥ Y ¥y |y Solaris, Mac OS5
X
DATAFORM v |y ly
FICO Xpress ¥ ¥ ¥ ¥ ¥ ¥ Solaris, ALY, All
HP-LX
flopc++ ¥y v vy ¥ |y v
Frontier ¥ Task splitting
Analyst on Windows
XP threads
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Which LP solvers are
used In practice?

Preview summary

= Fourier-Motzkin: hopeless

= Ellipsoid Method: total failure

= primal Simplex Method: good

= dual Simplex Method: better

. = Barrier Method: for large LPs frequently better
g - For LP relaxations of IPs: dual Simplex Method

1B
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http://www.netlib.org/Ip/index.html

Ip

Click here to see the number of accesses to this ibrary.

lib data

for a zet of test problem=s in MPS format.

lib generators

for programs that generate linear programming test problems
lib infeas

for infeasible linear programming test problems

1B
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MIPLIB 199272010

MIPLIB - Mixed |nteger Prnblem LlBrar:,t

MIPLIB 2010

After its introduction, MIPLIB has become a standard test set used to compare the performance of mixed integer optimizers.

Since the first release in 1992 the MIPLIB has been updated several times. Now again 7 years have past since the last update in 2003. And again improvements in state-
of-the-art optimizers, as well as improvements in computing machinery have made several instances too easy to be of further interest.

Last year a group of interested parties including participants from ASU, COIN, FICO, Gurobi, IBM, and MOSEK met at ZIB to discuss the guidelines for the 2010 release
of the MIPLIB.

Involved people:

Tobias Achterberg (IBM)

Erling D. Andersen (Mosek)

Oliver Bastert (FICO)

Timo Berthold (1B, Matheon)

Rabert Bixby (Gurobi)

Gerald Gamrath (ZIB)

Ambros Gleixner (ZIB)

Stefan Heinz (ZIB, Matheon)

Thorsten Koch (ZIB, Matheon)

Alexander Martin (TU Darmstadt)

Hans D. Mittelmann (Arizona State University)
Ted Ralphs (COIN-OR, Lehigh University)
Kati Wolter (ZIB)

We would be happy if you contribute to this library by sending us hard and/or real life instances. If you have any instances you would like to add to MIPLIB,
please use the form below to submit it. The current deadline for instances is 10/1/2010!

1B
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Independent Testing

Benchmarks for Optimization Software

by Hans Mittelmann (mittelmann at asu.edu)

The following are NEOS solvers we have installed.

BNBS, BPMPD, BPMPD-AMPL, Concorde, CONDOR, CSDP,
DDSIP, FEASPUMP, FEASPUMP-AMPL, ICOS, NSIPS,

PENBMI, PENSDP, QSOPT_EX, SCIP, SCIP-AMPL, SDPA,
SDPLR, SDPT3, SeDuMi

LINEAR PROGRAMMING

@ Benchmark of serial LP solvers (10-12-2010)

. @ Benchmark of parallel LP solvers (10-16-2010)
http://plato.asu.edu/bench.html ¢ o, .iel cpiex. GUROBL and MOSEK on LP problems (7-18-2010)

@ Large Network-LP Benchmark (commercial vs free) (10-16-2010)
MIXED INTEGER LINEAR PROGRAMMING

@ MILP Benchmark - serial codes (10-15-2010)
@ MILP Benchmark - parallel codes (10-14-2010)
@ MILP cases that are difficult for some codes (10-8-2010)

Z[l @ Feasibility Benchmark - Feaspump,CPLEX,SCIP,GUROBI (10-15-
2010)

@ Infeasibility Detection for MILP Problems (10-14-2010)

Martin
Grotschel
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LP survey

Robert E. Bixby, Solving Real-World Linear Programs: A
Decade and More of Progress.
Operations Research 50 (2002)3-15.

Bob on September 27, 2010
at his 65t birthday party

1B
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Progress in LP: 1988—2004

(Operations Research, Jan 2002, pp. 3—15, updated in 2004)

= Algorithms (machine independent):

Primal versus best of Primal/Dual/Barrier 3,300x
= Machines (workstations —PCs): 1,600x
= NET: Algorithm x Machine 5,300,000x

(2 months/5300000 ~= 1 second)

Courtesy Bob Bixby




Progress in LP: 1988—2004

= Where are we today?

= The good news
= “LP is a solved problem in practice”
= But, .... a word of warning
= 2% of MIP models are blocked by linear programming
= Little progress in LP computation since 2004
= LP could become a serious bottleneck in the future

Courtesy Bob Bixby




81

The latest computational study:
Ed Rothberg (Gurobi)

= Rothberg slides

% = LP state of the art - according to Gurobi:

as of September 28, 2010 (Bixby’s 65t birthday
conference in Erlangen, Germany)

. J = All software producer do computational studies
permanently but rarely make them publicly available.
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What can we solve today?
“strange examples”

Example: Primal > Barrier > Dual

Problem name : patrickl
Optimal objective : 28609090
Variables : 2,666,441 [Boxed: 2,656,781, Nneg: 9,660]

Objective nonzeros : 684,145

Linear constraints 44,886 [Less: 8,173, Equal: 36,713]
Nonzeros : 7,991,889
RHS nonzeros ; 41,808
Dual Simplex : 488,900 iterations in 10,009 s (not finished)
Barrier+crossover 349 iterations in 3,111 s

ZIB Primal Simplex : 3,268,455 (895,004) iterations in 1,900 s

Martin
Grotschel
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What can we solve today?
“strange examples”

Example: Barrier > Primal > Dual

Problem name : aflow_2000_50
Optimal objective : 4720.3225806
Variables : 3,996,000 [Boxed: 1,998,000, Nneg: 1,998,000]

Objective nonzeros : 1,958,437
Linear constraints : 2,001,998 [Less: 1,998,000, Equal: 3,998]

Nonzeros : 9,988,972

RHS nonzeros : 3,998

Dual Simplex : 1,049,300 iterations in 10,054 sec (not finished)
Primal Simplex : 2,321,540 (28277) iterations in 6,752 sec

Barrier + crossover : 40 iterations in 1,704 sec (total 1,938 sec)
8 threads : 430.03 sec

41 B
Martin
Grotschel
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What can we solve today?
“strange examples”

Example: Primal > Dual > Barrier

Problem name : ts.log-bundle-060831-162253
Optimal objective : 5.69997.52369
Variables : 218,776 [Boxed: 218,776]

Objective nonzeros : 124,060
Linear constraints : 1,102,735 [Less: 970,339, Greater: 11,590, Equal: 120,806]
Nonzeros : 2,554,196
RHS nonzeros ;981,241

Presolve generated explicit dual
Dual Simplex : 132854 in 163 sec

Primal Simplex : 96397 (0) in 31 sec
Barrier : 53 iterations in 10069 sec (not finished)

41 B
Martin
Grotschel




ZIB Instances

Variables | Constraints

Non-zeros

Description

112,471,400 5,887,041

49,877,768

Group Channel Routing on a
3D Grid Graph
(Chip-Bus-Routing)

2| 37,709,944 | 9,049,868

146,280,582

Group Channel Routing on a
3D Grid Graph
(different model, infeasible)

29,128,799 | 19,731,970

104,422,573

Steiner-Tree-Packing on a 3D
Grid Graph

37,423 | 7,433,543

69,004,977

Integrated WLAN
Transmitter Selection and
Channel Assignment

9,253,265 9,808

349,424,637

Duty Scheduling with base
constraints




LP can still be difficult

* We were not able to compute a feasible basis for zibO3 so far.

= After 10 h we still do not even have a primal feasible solution. Furthermore,
experiments with smaller instances suggest the model is very unfavorable for
the simplex method, especially regarding warm starts. Unfortunately, it is an IP.

Algorithm Time [h] Result Memory Resident
[GB] [GB]
Primal >300 Infeasibility 24 18
Simplex 2189
|| Dual Simplex >300 Lower bound 24 18
| 8335
Bundle 13 Lower bound 55 18
5951
Interior Point 103 Optimal 256 175
(32 threads) | 1.2228.148
Crossover >300 unfinished
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Summary

You should be surprised
if a linear program could not be solved

41 B
Martin
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Advertisement:
http://zibopt.zib.de/

ZIB Optimization Suite

Konrad-Zuse-Zentrum fur Informationstechnik Berlin
Division Scientific Computing
Department Optimization

The ZIB Optimization Suite is a tool for generating and solving mixed integer programs. It consists of the following parts

ZIMPL  a mixed integer programming modeling language
SoPlex  alinear programming solver
SCIP a mixed integer programming solver and constraint programming framework.

The user can easily generate linear programs and mixed integer programs with the modeling language ZIMPL. The
resulting model can directly be loaded into SCIP and solved. In the solution process SCIP may use SoPlex as
underlying LP solver.

Since all three tools are available in source code and free for academic use, they are an ideal tool for academic
Z[l research purposes and for teaching integer programming.

Martin See /1B licences for more information.
Grotschel
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SoPlex s o plex

SoPlex is an implementation of the revised simplex
algorithm. It features primal and dual solving routines for
linear programs and is implemented as a C++ class library
that can be used with other programs.

Roland Wunderling,

Paralleler und Objektorientierter
Simplex-Algorithmus,
Dissertation, TU Berlin,1997

1B
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Zimpl

= Zimpl is a little language to translate
the mathematical model of a problem
into a linear or (mixed-) integer
mathematical program expressed in
Ip or .mps file format which can be
read and (hopefully) solved by a LP or
MIP solver.

= Thorsten Koch, Rapid Mathematical Programming,
Dissertation, TU Berlin 2004
(awarded with the Dissertation Prize 2005 of the
Gesellschaft fur Operations Research)

1B
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SCIP nhttp://scip.zib.de/

Tobias Achterberg, Tobias, Constraint Integer
Programming, Dissertation, TU Berlin, 2007

= Dissertation Prize 2008 of the Gesellschaft
fir Operations Research (GOR)

= George B. Dantzig Dissertation Award 2008
of the Institute of Operations Research and
the Management Sciences (INFORMS),
2nd prize)

= Beale-Orchard-Hays Prize 2009 of the
Mathematical Optimization Society for the paper:

Tobias Achterberg, “SCIP: Solving constraint integer programs”,
Mathematical Programming Computation, 1 (2009), pp. 1-41.

) »

1B

Martin
Grotschel




93

Contents

1. Linear, Integer, Nonlinear 6. State of the Art in LP:
Programming: What's that? CPLEX, Gurobi (Bixby, Rothberg)
2. Historic Roots 7. ZIB Optimization Suite:
3. Applications ZIMPL, Soplex
4. LP-Theory Noncommercial Codes
5. Algorithms for the Solution of 8. Current Issues
Linear Pr.ograms S a) Improving Numerics
a) Fourier-Motzkin Elimination b) Exact LP Solving

b) The Simplex Method .
¢) The Ellipsoid Method c) Difficult/Very Large and

d) Interior-Point/Barrier Methods Para-IIeI L_P S-olvmg |
e) Lagrangian Relaxation, d) Multi-Objective LP Solving

Subgradient/Bundle Methods e) Nonlinear and Stochastic
f) Semi-algebraic Geometry LP Solving

Z0B g) Other Approaches

Martin
Grotschel




Mathematics of Infrastructure

Planning (ADM 111)
Part 11: Solving IP/MIP Problems

TU Berlin
Summer Semester 2012
First Lecture on April 12, 2012

_ berln

Ralf Borndorer & Martin Grotschel

@ ZIB, TU, and MATHEON, Berlin
2 = Institut flir Mathematik, Technische Universitat Berlin (TUB)

» DFG-Forschungszentrum “Mathematik fur Schlisseltechnologien” (MATHEON)
= Konrad-Zuse-Zentrum fur Informationstechnik Berlin (ZIB)

http://www.zib.de/groetschel

% Martin Grotschel

ZD groetschel@zib.de
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typical optimization problems

max f (x) or min f(x)| |minc’x minc’ x
: Ax=a Ax=a
9;(x) =0, !_1’2""’k Bx<b Bx <b
h,(x)<0, J=12,...m >0 x>0
xeR"(and x e S) (xeR") somex; € Z
(xek") (xe{0,1}")
»general” (linear)
(nonlinear) linear 0/1-
program program mixed-
NLP LP integer

o program
program = optimization problem 1p vp
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1954, the Beginning of IP
G. Dantzig, D.R. Fulkerson, S. Johnson

USA
49 cities

1146 variables

1954

George Dantzig’s contributions to integer programming
Martin Grotschel and George L. Nemhauser

ZIB Discrete Optimization

weml  Volume 5, Issue 2, May 2008, Pages 168-173

Grotschel
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A Milestone Paper

1B

Martin
Grotschel

H.W. Kuhn, The Hungarian
Method for the assignment
problem,

Naval Research Logistic
Quarterly, 2 (1955) 83-97.

In 2006, it was discovered
that Carl Gustav Jacobi had
solved the assignment
problem. The paper (on
diferential equations) was
published posthumously in
1890 in Latin.

EGRES Technical Report No. 2004-14 1

On Kuhn’s Hungarian Method — A tribute from
Hungary

Andras Frank*

Harold W. Kuhn, in his celebrated paper entitled The Hungarian Method for the as-
signment problem, [Naval Research Logistic Quarterly, 2 (1955), pp. 83-97] described
an algorithm for constructing a maximum weight perfect matching in a bipartite
graph. In his delightful reminescences [18], Kuhn explained how the works (from
1931) of two Hungarian mathematicians, D. Konig and E. Egervary, had contributed
to the invention of his algorithm, the reason why he named it the Hungarian Method.
(For citations from Kuhn's account as well as for other invaluable historical notes on
the subject, see A. Schrijver’s monumental book [20].)

In this note 1 wish to pay tribute to Professor HW. Kuhn by exhibiting the ex-
act ralationship between his Hungarian Method and the achievements of Kénig and
Egerviry, and by outlining the fundamental influence of his algorithm on Combina-
torial Optimization where it became the prototype of a great number of algorithms
in areas such as network flows, matroids, and matching theory. And finally, as a
Hungarian, [ would also like to illustrate that not only did Kuhn make use of ideas of
Hungarian mathematicians, but his extremely elegant method has had a great impact
on the work of a next generation of Hungarian researchers.



A Milestone Book In IP

PRINCETON LANOMARKS
IN MATHEMATICS

Hows In
Networks
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George Dantzig and Ralph Gomory

,founding fathers"

~1950 ~1960
linear programming integer programming
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George Dantzig and Ralph Gomory

ISMP Atlanta 2000

the fathers of
Linear Programming and Integer Pragramming

1B
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Dantzig and Bixby

George Dantzig and
Bob Bixby (founder of CPLEX)

at the International
Symposium on Mathematical
Programming,

Atlanta, August 2000
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Optimizers‘ dream: Duality theorems

= Max-Flow Min-Cut Theorem
The value of a maximal (s,t)-flow in a capacitated network is equal to

the minimal capacity of an (s,t)-cut.
= The Duality Theorem of Linear Programming

maxc'x = _ miny'b
Ax<b y'A>c'
x>0 y=>0

1B
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Optimizers' dream:
Duality theorems for integer programming

= The Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given
(multicommodity flow).

= The Duality Theorem of Linear Programming

does not hold if integrality conditions are added Important technique:
Use polyhedral theory
l to obtain ="
maxc'x = < miny'b
Ax<b y'A>c'
<<
X=>0 y=>0
XeZ" yeZ"

1B
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IP Solvability

Theorem

Integer, 0/1, and mixed integer programming are NP-hard.

Consequences
= Investigation of special cases

= Exact problem specific special purpose algorithms
= Design of special purpose heuristics

) »

1B
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Overview

Public Transport Projects s and matheon)

Busses (Berlin and elsewhere)

= Telebus (Transportation of
disabled persons)

= Bus Circulation
= Bus driver Scheduling

= Integrated Vehicle and
Driver Scheduling

= Timetable Exchange
Subways and Light Railways
= Subway Time Tabling

= Vehicle Scheduling

Infrastructure Planning

= Line Planing

= Network Planning (Potsdam)
= Fare Planing

Airlines

= Airline Crew Scheduling

= Tail Assignment: Robustness
Railways

= Railway Track Allocation

= ICE Circulation

Spin-Offs : LBW, Intranetz
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Current traffic/transport projects at ZIB

MATHEON-B22: Rolling Stock Roster Planning
' Umlaufplanung im Schienenverkehr

» zur Projektdarstellung

Optimale Zugfihrung im
Schienengiiterverkehr

» zur Projekidarstellung

Vehicle Rotation Planning

BAHN Fahrzeugumlaufplanung fiir die DB
Fernverkehr AG

» zur Projektdarstellung

741

9,

Transport

MATHEON-B15: Service Design in Public Transit

TollControlOpt

Angebotsplanung im Offentlichen
Mahverkehr

» zur Projektdarstellung

Optimierung des Mautkontrolldienstes

» zur Projektdarstellung

\ehicle Positioning Problem

» zur Projektdarstellung



Savings In Berlin public transport
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Overview

Network, Line and Fare Planning
(Potsdam)
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CS-0OPT In
NetLine/Crew

_ NetLine/Crew Pairing: 735 / 01Mar05-31Mar05 / Cockpit&Cabin [ZIB/LISADMIN 20740]

CMS  View BasicData CrewData Pairings Detalls Checks Printouts ﬂelp'

Inport| Fix Ehangesl Refreshl Search Flightl Filterl |

Rearrange| Hew Sby Pairing| New Abs Pairing| Mew Sin Pair‘inglilter‘l AL = | |

735
735
735
735
735
735
735
735
735
735
735

=

0 Ued Har 02 Thu Mar 03 Fri Har 04 ]

OEIOO 12IOO 1800 0600 1200 18I00 OEIOO
L 1

e
i
o
i

 — ; : o
||DM148 7357 01Mar WAW 1250 1250 1405 1405 CPH [1:15] | 14:46 17Jan05

Grotschel
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Production und Logistics

= Optimization of a container terminal in Botany Bay, Sydney
(TUB, UNSW, Uni Melbourne, Patrick Corp.)

=  Open-pit mine scheduling (BHP Billiton)
= Laser welding (Volkswagen AG)

Planung einer Schweil3station: Vorgeben:

@ Menge von Schwei3nahten
B . o Positionen
f ! AN e SchweilBzeiten
!;f"‘- s @ Umschaltzeit einer
/ Laserquelle
/ REREY - FRERRNL. | SRRy Q Taktzeit
RI -t - - - 34.3200
R2 - = 31.0700
R3 34.9400
Martin
Grotschel i 5 To 1 % 2 30 3 )
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Herlitz at Falkensee (Berlin)




Optimization and control of transport devices
(such as elevators, stacker cranes) In factories
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Printed Circuit Board
Drilling and Assembly Machines

-

Martin
Grotschel
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Telecommunication topics:
Hardware and logistics

= Designing mobile phones
= Task partitioning
= Chip design (VLSI)
= Component design
= Producing Mobile Phones
= Production facility layout
= Control of CNC machines
= Control of robots
= Cutting and welding
= Printed Circuit Boards
= Via minimization
= Component Placement
= Mounting Devices
= Routing
= Lot sizing
i = Scheduling

|||||

i = Logistics
wottll = Marketing and Distributing Mobiles

Grotschel
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The Basic Question

Telecommunication {\ network design:

......:E ;......,;T. a,[:—::fﬂ
~L1
ol e
/TR
Tesmaans N
Input: Output: cost-minimal
> potential network > subset of nodes and links
> demands > discrete capacities
> cost values > survivable routing

> various additional constraints > satisfying all constraints
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Multi-layer
telecommunication network design:

Logical layer = Challenges:

III

= “physical” and “logical” layer
= |ogical links = physical paths
= complete “logical graph”

= parallel “logical links”

multiple link failures

= Project goal, MATHEON B3
(Wessaly, Orlowski):

= Integrated planning of
several network layers

networks
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Multi-layer multi-level Planning

Goal: Integration of multi-layer backbone and regional networks
> Future networks: IP/Ethernet layer over shared optical fiber layer
> Huge networks (900 nodes), combine different services/technologies
> More structure: hierarchical routing Kernnetzstandort

Point of Presence POP

DTAG: 73
Service Access Aggregation IP Edge Core
Umiledeeses HELpEEr Ry LER: Label Edge Router  LSR: Label Switch Router
derive demand matrices for Central Office
access points (central offices) DTAG: ~8.000 IP Routing
72y FTTH Broadband remote S g T
access server PMPLS Cdre expensive technology
3Play VDSL — ]
s i 4
Customer IP Service 7 1 = H !
ACCess
Switch PBE-TE / PEB Carrier Ethernet Transport
R . e e
= — ey e b o he
DS i ) = . cheap technology
PBB-TE { PBB 1 y bt 5,
CES b —— R
Customer Ethemet Serdee L
Cos

Customer Optical Service

Courtesy NSN



Integrated MIP model

= Integrated mixed-integer programming model:
first model that is

= Realistic: survivability, several bandwidths, node hardware

= Suitable for computations

min Z Z ¢ x" + Zc Xe +Z Z "y

ieV meM; eckE fel meM,;

> D (- f:f,u —vk eV, kek
JEV teLy
Z 87 _Zﬂg*%’;)zﬂ tel
me My keK
Bexe — Z Z,Vg > eckE
fele meM,
Soxm<1 o iev
meM
2ZCmem—ZZCF’yE’ > v ieV
mEM _ fEL mEME

Too complex for standard tools, special algorithms needed




elecommunication network design
MATHEON B4

Logical connections Physical connections
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Network design
MATHEON B3

Logical connections: solution Physical connections: solution

e PFlensburg]

1S
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A success story:
Deutsches Wissenschaftsnetz

= Evolution of the Wissenschaftsnetz
= 1990 S-WIN (Schmalband-WiN)
= 1996 B-WiN (Breitband-WiN)

* 2000 G-WiN (Gigabit-WiN) optimization of the
= 2006 X-WiN B-WiN, G-WiN, and X-WiN was
carried out by Andreas Bley

(with support of DFN, in particular,
Marcus Pattloch)

= Example publication:
A. Bley, M. Pattloch, Modellierung und Optimierung der X-
WiN Plattform, Journal DFN-Mitteilungen, 67 (2005) 4-7
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DFN-Verein X-WIN:
German Science Network

= Project carried out by Andreas Bley (ZIB) in cooperation
with DFN-Verein (Marcus Pattloch)

PhD Thesis Andreas Bley:

Routing and Capacity Optimization for IP Networks
at TU Berlin

| = GOR Dissertationspreis 2007 and

= INFORMS Doctoral Dissertation Award for
% Operations Research in Telecommunications 2008

ORI
COPPEEIS

Grotschel
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Data and a glimpse at the model

Martin
Grotschel

Gegebene Parameter

v Menge der V-Standorte.

A Menge der méglichen A-Standorte. Sie werden entweder A-Standort oder Anwenderstandort.

N Menge der Anwenderstandorte

L Menge aller méglichen Verbindungen zwischen Anwenderstandort und V- oder A-Standort. Fiir jede An-
bindung wird jeweils nur die billigste Verbindung beriicksichtigt, deren Kapazitit mindestens so grof ist
wie die Anschlussbandbreite des Anwenders.

P Menge aller méglichen Ketten zur Anbindung von A-Standorten an die V-Standorte. Jede Kette hat die
Form (vq,aq,..., am,va). dh sie bindet die A-Standorte aq,. .., ttym ausfallsicher an die beiden V-
Standorte vy und vo an. Fiir jede Kombination von Kapazititen auf den einzelnen Verbindungen gibt es
eine eigene Kette p

k2 Kosten fiir das Einrichten des A-Standortes a € A.

kE  Kosten der (billigsten) Zugangsleitung ij = L von Anwenderstandort ¢ zu A- oder V-Standort j.

> Kosten der Kette p = (v1,a01,..., am,v2) € P zur Anbindung der A-Standorte a1, ..., am an die V-

Standorte vy, vz2. Die Kosten einer Kette sind die Summe aller Emzelverbindungskosten.
cp  Kapantit der Kette p. Sie ist die kleinste Kapazitit aller Emzelverbindungen.

Entscheidungsvariablen

Ya 1 genau dann, wenn @ zum A-Standort wird, 0 sonst.
2y 1 genau dann, wenn ¢ ein Anwenderstandort 1st oder wird und ¢ an den A- oder V-Standort j angebunden
wird, O sonst.

zp 1 genan dann. wenn ai,..., am zu A-Standorten werden und diese iiber die Kette p =
(vp, g, .00, Q. v an die V-Standorte vy, vy angebunden werden, 0 sonst.
Zielfunktion

Ziel 1st die Mimnimierung der Gesamtkosten fiir das Einnichten der gewishlten A-Standorte, fiir die Ketten zur An-
bindung dieser A-Standorte an das V-Netz. sowie fiir die Zugangsleitungen zu den iibrigen Anwenderstandorten:

min > kKl + S ke + S kg
~ . cA =P ije L
Nebenbedingungen - ?

Jeder Anwenderstandort wird an genau einen A- oder V-Standort angebunden:

N riy =1 fiirallei e N.
L
e L
Wird ein méglicher A-Standort nicht eingerichtet, so wird dieser Standort als Anwenderstandort an einen anderen
A- oder V-Standort angebunden:
5 raj=1—y, firalleaec A
. ajeL .
Ein Anwenderstandort kann nur dann an einen méglichen A-Standort angebunden werden. wenn dieser auch
tatséichlich emgenchtet wird:
Tia < Yo firallea e Aundio € L.
Jeder emngerichtete A-Standort wird iiber genau eine Kette doppelt an das V-Netz angebunden:
N sy =ye firalleac A

i

PEF mit asp

Die Kapazitit einer Kette muss mindestens so grof sein wie die Anschlussbandbreiten aller iiber sie angebundenen
Standerte zusammen:

S (bt bimia) Sopt+( D b} (1-2) farallepe P

asp ias L dEAUN

Initial model:

= 1 billion variables
after reduction

= ~100.000 variables

= ~100.000 constraints
solved by ZIMPL/CPLEX
iIn a few minutes.

= 81 scenarios have been
considered and solved —
after lots of trials — for each
choice of a reasonable
number of core nodes.
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Number of Nodes In the Core Network

Kosten

10 20 30 40 50
Anzahl Kernnetzstandorte

1B

Martin
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Location- and Network Topology Planing:
solvable to optimality in practice

Faser KPN

Faser GL

Faser vorhanden

Wellenlange

AAC

LGAR



GSM 900-Optimization in Germany

1.  Optimierung je Region aller
« Standorte
« Sektoren
« Bander

2. Zusammenfuhrung der
Ergebnisse aller Regionen

3. Optimierung eines Streifens
entlang der Regionsgrenzen

P 4. Optimierung des 1800 MHz-
Anteils von Dualband-
Sektoren

atesio
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special ,,simple*
combinatorial optimization problems
Finding a

= minimum spanning tree

= shortest path

= maximum matching

= maximal flow through a network

= cost-minimal flow

solvable in polynomial time by special purpose algorithms

1B

Martin
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Dijkstra algorithm for shortest paths

1 function Dijkstra(Graph, source):
2 for each vertex v in Graph: A/ Initializations
3 dist[v] := infinity /4 Unknowvn distance function from source to v
4 previou=s[v] := undefined J/ Previous node 1n optimal path from source
o dist[scurce] = 0 S/ Distance from source to source
& g = the =set of all node=s in Graph
A4 All nodes in the graph are uncoptimized - thus are in
T while ¢ is not empty: A4 The main loop
i u := vertex in ¢ with smallest dist][]
9 if dist[u] = infinity:
10 break S/ all remaining vertices are ilnaccessible from Source
11 remove 1 from O
12 for each neighbor v of o: S/ whers v has not vet besn removed from .
13 alt = dist[u] + dist between(u, W)
14 if alt < dist[v]: - // Relax (u,v,a)
15 dist[v] := alt
16 previou=s[v] = ©
17 return previous|[)

http://en.wikipedia.org/wiki/Dijkstra’'s_algorithm

1B
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Special “hard”
combinatorial optimization problems

= travelling salesman problem

= Jocation und routing

= set-packing, partitioning, -covering
= max-cut

= |inear ordering

scheduling (with a few exceptions)
¢ * node and edge colouring

{ | o

NP-hard (in the sense of complexity theory)

..'_.;!:.:.'
At leteltin

Zipl] Programming. Lessons learned from these have no entered
sl the general tools developed for general MIP solving.

The most successful solution techniques employ linear
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The importance of LP In IP solving
(slide from Bill Cook)

1,904,711-City World TSP, 2001

K Optimality Gap

0 0.235%
8 0.190%
12 0.135%
14 0.111%
16 0.103%

Solution of LP Problems takes over 99% of CPU time

# of variables = 1,813,961,044,405 = 1,8 trillion

1B
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LP solvers in MIP solving

= A big computational issue for the simplex method is
degeneracy.

= And LP relaxations of IPs/MIPs tend to be enormously
degenerate.

1B

Martin
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Mixed Integer Programming

minc' x
AX =a

Bx <Db

X =0
someX; € Z

somex, €{0,1}

(linear) 0/1- or
mixed-integer
program
IP, MIP
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Heuristics: A Survey

Greedy Algorithms

Exchange & Insertion Algorithms
Neighborhood/Local Search

Variable Neighborhood Search, Iterated Local Search
Random sampling

Simulated Annealing

Taboo search

Great Deluge Algorithms

Simulated Tunneling

Neural Networks

Scatter Search

Greedy Randomized Adaptive Search Procedures



Heuristics: A Survey

Genetic, Evolutionary, and similar Methods
DNA-Technology

Ant and Swarm Systems

(Multi-) Agents

Population Heuristics

Memetic Algorithms (Meme are the “missing links” gens and
mind)

Fuzzy Genetics-Based Machine Learning
Fast and Frugal Method (Psychology)
Method of Devine Intuition (Psychologist Thorndike)



An Unfortunate Development

= There is a marketing battle going on with unrealistic,
or even ideological, claims about the quality of
heuristics — just to catch attention

= Linguistic Overkill:

Vodoo Approach
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The state of heuristics In MIP Is
“not optimal”

Primal MIP heuristics, Examples:

= Rounding Heuristics
= Diving Heuristics

= Large Neighborhood Search TR0 BERTHOLD

u LOCaI Bl‘anChIng Heuristics of the
Branch-Cut-and-Price-Framework

= RINS SCIP

¢ = Crossover #18-Report 07-30 (October 2007)
¥ . DINS
= RENS (Relaxation Enforced Neighborhood Search)
= Feasibility Pump(s)
= Undercover

Grotschel
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Branching
= Branching is “without mathematical theory”.

= Implementation, however, is a major issue!

= New branching rules played an important role in the last
years for the improvement of MIP codes.

= Their evaluation is based on “experimental analysis”.

1B
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An Example

he Branch&Bound Technique:

Grotschel

minc' x
AX =a
Bx<Db
x>0

X e {O,l}n

0/1-
program

minc' X
AX =a
Bx<b
x>0
etord

Xx<1

LP-
relaxation

= Solve the LP-relaxation and get
optimal solution y. (lower bound)

= If y integral, DONE!

= Otherwise pick fractional
component y(i).

= Create two new subproblems by
adding y(i)=1 and y(i)=0, resp.

- LP solution
y(D=1" = |ower bound

@
f

integral solution
= upper bound
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Branching (in general)

%= Current solution is infeasible
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Branching (in general)

= Rounding a fractional component up and down

.- # = Decomposition into subproblems removes infeasible
ZIBll  solution

Martin

Grotschel
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A BranChing sw24978 Branching Tree

T ree Computation Carried out in Paralle| at Georgia Tech, Princeton, Rice

Applegate w | [ ' e
Chvatal e 1 i || i 1l
Cook e ;‘ﬂ

tree copied from e | SR g

Bs5545 | &

www1.ctt.dtu.dk/ROUTE2003/ | 3.' y i ; | [ | 4
Rl

presentations/cook.pdf mssss— [0 B L QITH 44l l; 4 H
855560 | | NN | I | [ I
BS55E5 —i ‘ U
855570 | ' I ' ! || ': ‘
aﬁssrs--i | L+ | |
855580
BE6GRE —
ZI] ESESBG“
Martin BS5595 |

Grotschel
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Cutting plane technique for integer and
mixed-integer programming

Feasible © 0000000010000 00
integer ©e 00000 ooePeooo oo
solutions ¢ 5.0 0000000000
o dooeoé¢nooeoedooeo oo
Objective ® © & © © & ©°V.9 ® & © ¢ o
function : ea,

® 000000006t oo0oeece
Convex i 2 ® . © © 0 o
= hull s @ <o o ofe
LP-based ¢ ’ o/ °
relaxation 7 A

: C @

-4 Cutting e @ @ @ ®

planes o
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Cutting Plane Theory & Practice

The Traveling Salesman Problem:

The Traveling A Computational Study

Salesman Frobice David L. Applegate, Robert E. Bixby, Vasek
Chvatal & William J. Cook

Winner of the 2007 Lanchester Prize, Informs

Cloth | 2007 | $70.00/ £48 95
606 pp. |6 x 9] 200 line illus.

Daved L Applegate,

R e Vbdh Chidtal, Shopping Cart | Reviews | Table of Contents
Chapter 1 [PDF]

Gérard Cornuéjols *

Valid Inequalities for
Mixed Integer Linear Programs

December 2005, revised July 2006

Abstract. This tutorial presents a theory of valid inequalities for mixed integer linear sets.
[t introduces the necessary tools from polyvhedral theory and gives a geometric understanding
of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed
integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the
relationships between these families. The tutorial also discusses computational aspects of gen-
ZA1B; erating the cuts and their strength.

Martin

ol Mathematical Programming, Volume 112, 2008, pp 3-44
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Other Names
= Branch & Cut

= Branch & Price
= Branch & Cut & Price

= efc.

Branch—anQ—Bound Cutting Planes Column Generation

e | © o o o o o o o o
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Bus circulation:
Flow through a bus line network

Multicommodity
flow with minimum
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Urban Scenarios

BVG HHA VHH

depots 10 14 10
vehicle types 44 40 19
timetabled trips 25 000 16 000 5 500
pumaer of 70000 000 15100 000 10 000 000
cpu mins 200 50 28
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MCF Literature

(on Lobel's implementation of the Min-Cost Flow algorithm)

= Marty Itzkowitz, Brian J. N. Wylie, Christopher Aoki, and Nicolai Kosche:
Memory Profiling using Hardware Counters

= ARCTIC Labs: 181.mcf - Datasets profile vs. Reference Dataset

= Joshua J. Yi, Resit Sendag, and David J. Lilja: Increasing Instruction-
Level Parallelism with Instruction Precomputation

= Jinwoo Kim, Weng-Fai Wong, and Drishna V. Palem: Data Prefetching
using Off-line Learning

= Resit Sendag, Peng-fei Chuang, and David J. Lilja: Address Correlation:
Exceeding the Limits of Locality

= Kim M. Hazelwood, Mark C. Toburen, and Thomas M. Conte: A Case for
Exploiting Memory-Access Persistence

= Jan R. Bratt, Alex Settle, and Daniel A. Connors: Predicate-Based
Transformations to Eliminate Control and Data-Irrelevant Cache Misses

= Andreas Stiller: Hammer, Nagel und Kopfe: Das Microprocessor Forum
2001, c't 23/2001, S. 28

Transport
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Column Generation

Column Generation can be viewed as a procedure dual to the cutting
plane method. The basic principle:

1.

Select a small number of variables and solve the linear program
(or LP relaxation) using only these.

Find an unused variable (or several) which, if included, would
(most) improve the objective value, or determine that there is
none, i.e., the linear program has been solved: stop.

Solve the column generation subproblem (Pricing).
Model this as an optimization problem, works best if
this is an easy IP (shortest path, dynamic program, etc.)

Include the variable(s) in the linear program, re-solve it, and go to
step 2.



Successful Applications: Examples

1960 Cutting stock problems (Gilmore, Gomory)
Air crew scheduling
Aircraft fleeting and routing
Crew rostering
Vehicle routing
Driver assignment
Global shipping
Multi-item lot-sizing
Telecommunications network design
Cancer radiation treatment using IMRT
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Column Generation

» This method is
to be satisfied t

particularly important if lots of rules have
nat are not easy to model, blow up the IP

enormously anc

are subject to frequent changes, such as

the work rules for drivers in public transport or pilots and
crew in the airline business.
(I can give a full hour lecture on “break rules”.)

1B

Martin
Grotschel

» The “difficult side constraints” are treated in the column
51 generation subroutine(s).
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Column Generation

= Typical application for column generation: set partitioning

minc' x
Ax =1
x>0
X e {O,l}n
where A Is a 0/1-matrix

We have used this in many of the projects mentioned.




Telebus
(transportation of disabled persons)
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Graph Theoretical Model
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Model

10

Set Partitioning

IP

| = AV A=
S Y
mlmiﬁl_ﬁw[m

[ew] O
2]l ls

o0 (e 0]

| 1%

o N

\_ \ J/

oM <\

A — A=
(@»] = _H (-
— - ~H —
\ = |= /

o o

s - 1=

— (]
=

/1

Q)
i
©
+
/D]

10

8¥o 0¢ 8V 'n o SV 1
LD T¢ LVp N . Lvx
oo | TE 9Fp | . .= || 9%
S¥o 0¢ S¥'n o T o B | SYo
Yo | T8 Wop | —r— . . || P
e¥o 0¢ v 'n — o= . ev
Z¥o 1€ ¥ D —— .= — Tk
I¥o 1% 7' n — . i v
ovo | 08 0F'p | . oF
6€D 514 6€'D e —— . 6ExT
S€D &G SE'D A e B SE
LED &G LE'D N — VA
9¢€n 0¢ 9€p — . — — 9e
geo | 8T GE D i |
veo | 6T ¥eD — e
g0 | OF £€'p —— . . e
z€o 6% zep — — — . zer
g0 | €C 1€ e —— .. €x
0€n 0% 0e'p — . . — oex
62D 6G 62 p L T o B | 6Z
8ZoH 0¢ 8C'p — . o= . 8T
LZo 6G LZ'p L B o B LT
92O |G 9Z'p ™ o . . 9T
SZo £C GZ'p — o szx
vZo | O ¥Zp B — e
€To 0% €2'p ™ IR o I €T
2Zo &G ZZ'm ™ - . . ZZx
120 | €C 12p — — — .. 121
0Zo 971 0Z'p . ™ oc
61p TG G6T'p A e | 6T
STo G ST'p Y i e BN STz
L1n GG LT'p N S LIy
910 1¢ 9T'p S R 9Tz
1o | 91 STp e
vio RG ¥i'p N Ylx
€15 6% €l p = . = el
Zlo 1¢ Z1'p N e e BT A%
I1o GG I1'p el . .. Iy
0To 6G 0Tl'p Lo N 0lx
6D SRG 6'm Lo BN 61
80 G 8D b TR e |
1D 1¢ LD ™ . . Lx
90 9T 9'n —— . . .. 9r
SO 71 S e . S
Yo V1 b N Vo
€0 1 €D N ex
Zo il Z'p . Zx
10 71 YY) N Tx
0o 71 0'p —— . . ... O
e O <O

S
o
=
5 [
=0
>
O



166

Coputational Results for a (Duty Scheduling)
Set Partitioning Model

Duty Scheduling Problem Ivu41:

Coordinate Ascent: Fast, low quality

* 870 500 col Subgradient: (Theoretical) Convergence
e 3570 rows Volume: Primal approximation
 10.5 non-zeroes per col Bundle+AS: Conv. + primal approx.
Dual Simplex: Primal+dual optimal
Barrier: Primal+dual optimal
450 -
400 - ’_r

|
e 7
'] /

250
0 20 40 60 80 100 [s]

— Coordinate Ascent — Subgradient Volume Bundle+AS —— Dual Simplex — Barrier
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Integrated Bus and Driver Scheduling:
Model Structure

+«——700.000 arcs > 1.000.000 duties ——

28.000 rows
VSP DSP

I | 6.000 rows

coupling constraints 150.000 rows
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Other Methods

= Dantzig-Wolfe decomposition

= Benders' decomposition

= Algebraic approach, lattice point methods, Grobner basis
techniques, test sets
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Smooth relaxations

1B
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Instead of an LP relaxation, one can
consider “smooth relaxations” such
as "semidefinite relaxations” or
polynomial equations/inequalities.

Theoretical success: stable sets in

Pel‘feCt gra phS elliptope formed from all positive
. . semidefinite 3x3 matrices having
Some practical success in 1's on the main diagonal

max-cut algorithms

Some theoretical/practical success in mathematical proofs.

In general: Possible success in special cases,
not a general tool yet.
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Independent Testing

Benchmarks for Optimization Software

by Hans Mittelmann (mittelmann at asu.edu)

The following are NEOS solvers we have installed.

BNBS, BPMPD, BPMPD-AMPL, Concorde, CONDOR, CSDP,
DDSIP, FEASPUMP, FEASPUMP-AMPL, ICOS, NSIPS,

PENBMI, PENSDP, QSOPT_EX, SCIP, SCIP-AMPL, SDPA,
SDPLR, SDPT3, SeDuMi

LINEAR PROGRAMMING

@ Benchmark of serial LP solvers (10-12-2010)

. @ Benchmark of parallel LP solvers (10-16-2010)
http://plato.asu.edu/bench.html ¢ o, .iel cpiex. GUROBL and MOSEK on LP problems (7-18-2010)

@ Large Network-LP Benchmark (commercial vs free) (10-16-2010)
MIXED INTEGER LINEAR PROGRAMMING

@ MILP Benchmark - serial codes (10-15-2010)
@ MILP Benchmark - parallel codes (10-14-2010)
@ MILP cases that are difficult for some codes (10-8-2010)

Z[l @ Feasibility Benchmark - Feaspump,CPLEX,SCIP,GUROBI (10-15-
2010)

@ Infeasibility Detection for MILP Problems (10-14-2010)

Martin
Grotschel
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http://miplib.zib.de/
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MIPLIB - Mixed Integer Problem Library

In response to the needs of researchers for access to real-world mixed integer programs a group of researchers Robert E. Bixby, E A
Boyd and R R Indovina created 1n 1992 the MIPLIE, an electronically available library of both pure and mixed integer programs. This
was updated in 1996 by Eobert E. Bixby, Sebastian Ceria, Cassandra M. McZeal, and Martin W P. Savelshergh

Since 1ts introduction, MIPLIB has become a standard test set used to compare the performance of mixed integer optimizers. Its
availability has provided an important stimulus for researchers 1n this very active area.

MIPLIB 2010

The collection of instances for the next version of the MIPLIB 1s finished (we had about 60 submitters).

These instances were evaluated and put together into some test sets, including a general benchmark set, a challenge set with hard and
unsolved mstances, and specialized sets that focus on problems with a specific property. This includes testsets with huge, infeasible, and
numerically unstable problems_ as well as testsets where finding the optimal primal solution 1s the major 1ssue, where the LP resolve takes
long at each node, and where a large enumeration tree 1s created during the search.

An updated beta version of MIPLIB 2010 can be downloaded here. The final version of MIPLIB 2010 wall be released within the next
weeks, the web page will then also be updated, presenting contributors, background and statistics about the instances of the final MIPLIB
2010.
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http://miplib.zib.de/

Development over the years

B0
ﬁ i)
L
=
z
4l
—
—
[
©E0
-
e
=
H ‘
E 20)
,.-1, B casy
10 L] hard
B not solved
0
2003 20041 2005 2006 2007 2000 2009 2010
Year
Z[l Comparison of the number of solved MIPLIB 2003 instances at the beginning of each year.
'Easy’ means, that the imnstance could be solved within one hour using a commercial MIP-solver, 'hard’ stands for instances, that were
Martin solved, but not i the previous conditions.

Grotschel
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http://miplib.zib.de/

> fifth version of the Mixed Integer Programming Library, first established in 1992

> program committee: people from Cbc, Cplex, Gurobi, Mosek, Scip, Xpress

> 1000 instances submitted by 60 contributors

> data-mining the public domain gave another 1000 instances

> final benchmark set: 90 instances

> special test sets:

infeasible: instances which dot not have any integral solution
challenge: unsolved and very hard instances

XXL: millions of variables, constraints or nonzeros.

large Tree: millions of nodes in branch-and-bound tree

hardLP: many iterations per LP resolve

hardPrimal: root LP optimum = IP optimum, “lucky guess’ suffices
numerics: unstable behaviour, large conditon number

Yy ¥y ¥y ¥y ¥y %Y ¥

> http://miplib.zib.de
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How does a Branch-and-Cut
MIP Solver work?
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Mixed Integer Program (MIP)

Characteristics

Objective function

> linear function

Feasible region

> described by
linear constraints

g& Variable domains

> real or integer values

.’.'.'.'.".
...........

|||||

minc' x
AX =a
Bx<Db
X=>0
someX; € Z

some X, €10,1}
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MIP Solver Technigues

Presolving

¥ Branch & Bound
D_______Cf__;iv_o— )

Primal Heuristics

0 Lo 0 o

Domain Propagation

X X1 IR
ETE 0T
e R

GEETE XK

Cutting Planes

Conflict Analysis

y
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West-Germany and Berlin

120 cities
7140 variables

1975

M. Grotschel
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A trip around the world

666 cities
221,445 variables

1987/1991

Ziel M. Grotschel, O. Holland

Martin
Grotschel
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Some TSP World Records

2006 year| authors| # cities # variables
pla 85,900
solved 1954 DFJ 42/49 820/1146
3,646,412,050 | 1977 G 120 7140
variables
1987 PR 532 141,246
number of cities | 1988 GH 666 221,445
X
increase 1991 PR 2,392 2,859,636
4000000 | 1992  ABCC| 3,038 4,613,203
times 1994 ABCC 7,397 27,354,106
problem size
increase 1998 ABCC 13,509 91,239,786
[ .- 2001  ABCC| 15,112 114,178,716
| years 2004|  ABCC| 24,978] 311,937,753

2005 W. Cook, D. Epsinoza, M. Goycoolea 33,810 571,541,145 \
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The current TSP world record

65,900 Locations in a VLS| Application
Solved in 2006

http://www.tsp.gatech.edu/optimal/index.html
7413 http://www.tsp.gatech.edu/pla85900/index.htmi

Martin
Grotschel
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Information about computational Mixed
Integer Programming, see, e.g.,

=

This book appeared in

MPS-SIAM "Series on Optimization”,
2004,

One particularly interesting

Mixed-Integer Programming: A Progress Report
Robert E. Bixby, Mary Fenelon, Zonghao Gu, EEd Rothberg, and

Roland Wunderling 309
[8.1  Linear Programming . . . . . . .. .. ..., 309
8.2  Mixed-Integer Programming . . . . . . .. ... ... 313
8.3 A Short Computational History of Mixed-Integer Programming . . . . 315
8.4  The New Generationof Codes . . . . . . . .. ... ... ... 317
8.5 Computational Results . . . . . ... . ... o 0 00000, 320

Bibliography . . . . . . . oo 323



Courtesy Bob Bixby
MIP Speedups 1991 — 2008

‘ mmm V-V Speedup  ==l==Cumulative Speedup ‘

10 100000
Mined Theoretical
o | Backlog: 1998 — 29.530x
8 + 10000
Mature Dual
o 7 1
3 Simplex: 1994
> =
o 6 + 1000
S 5 a
g 2
e 47 1100 5
! £
% 3 | o
(©)
> - T
2 1 -1 MINC X
§ | N | N | Ax=a
0 f f f f -1
12—21 21-3 354 45 556 6—6.5 65—»71 7.1—8 89 9510 10—11 BX S b
CPLEX Version-to-Version Pairs X > O
1% years in 1991 ~ 1 second in 2008 -
X e




Slide of Zonghao Gu (Gurobi), 9/2010

Gurobi MIP Solver

* New parallel design taking full advantage of multi-core
architecture

* Leverage over existing cutting planes
— Constraint aggregations: network cut
— Different solutions: submip cut

* New heuristics and better desighed and balanced for
parallel

e MIP domination
— Symmetry breaking: e.g. orbit branching

* A bag of new tricks
— New presolve reductions

186



Slide of Zonghao Gu (Gurobi), 9/2010

MIP Performance

Internal MIP set
Gurobi V1.1 ->V2.0

Time

> 1s

> 10s

>100s

>1000s
Gurobi V2.0->V3.0

Time

> 1s

> 10s

> 100s

>1000s

#Models
650

410

210

59

#Models
794
521
295
144

Speedup
1.7x
1.9x
2.2X
3.9x

Speedup
1.6x
2.0x
2.9x
6.7x

187



Slide of Zonghao Gu (Gurobi), 9/2010
Mittelmann MIP Benchmark

* 2.72X faster since 2007
— CPLEX 11.1 (best at 2007)
— Gurobi 1.1 is 1.6X faster than CPLEX 11.2 on P4
— Gurobi 3.0 is 1.7X faster than Gurobi 1.1 on P4
— CPLEX 12.2 is also much faster

188



Progress: MIP w

Changing the rules of business™

Example 1: LP still can be HARD

SGM: Schedule Generation Model
157323 rows, 182812 columns, 6348437 nzs

A LP relaxation at root node:
« 18 hours

JdBranch-and-bound
1710 nodes, first feasible
 3.7% gap
 Time: 92 days!!
JdMIP does not appear to be difficult: LP

IS aroadblock (but 1000x LP improvement would
make “solvable” in 2 hours!) 189
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Example: bell3a (MIPLIB 3)

123 constraints 133 variables (39 binary, 32 integer)

Solution time line (3.0 GHz Xeon 5160):

= 1995 (CPLEX 3.0.7):
= 1996 (CPLEX 4.0.9):
= 1998 (CPLEX 6.0.1):
= 1999 (CPLEX 6.5.3):

= 2006 (CPLEX 10.0.1):
= 2007 (CPLEX 11.0.0):
= 2010 (CPLEX 12.2.0):

1.74 seconds
1.13 seconds
1.18 seconds
3.11 seconds
1.89 seconds
1.42 seconds
1.84 seconds

Speedup: <1xX

Mined theoretical backlog
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Example: magicsquare
89 constraints 552 variables (529 binary)

Solution time line (3.0 GHz Xeon 5160):

= 1995 (CPLEX 3.0.7): 13.51 seconds

= 1996 (CPLEX 4.0.9): 8.10 seconds

= 1998 (CPLEX 6.0.1): 0.03 seconds Mined theoretical backlog
= 1999 (CPLEX 6.5.3): 159.16 seconds

= 2006 (CPLEX 10.0.1): 19.7 minutes| Dynamic search introd.
= 2007 (CPLEX 11.0.0): 1.5 hours

Slowdown: 179463x
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A nasty example: bmf24mar

44 constraints 51 variables (51 integer)

Solution time line (3.0 GHz Xeon 5160):

= 1995 (CPLEX 3.0.7): cannot solve
= 1996 (CPLEX 4.0.9): cannot solve
= 1998 (CPLEX 6.0.1): cannot solve
= 1999 (CPLEX 6.5.3): cannot solve
= 2006 (CPLEX 10.0.1): cannot solve
= 2007 (CPLEX 11.0.0): cannot solve
= 2010 (CPLEX 12.2.0): cannot solve

Speedup: what is this?

1B
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A three variables MIP
that can’t be solved by CPLEX

Welcome to CPLEX Interactive Optimizer 12.1.0
CPLEX is a registered trademark of IBM Corp.
CPLEX> read check/IP/Bugs/Kaibel/ggt3.1p
CPLEX> optimize

Presolve time = 0.00 sec.

MIP search method: dynamic search.

Parallel mode: none, using 1 thread.

Root relaxation solution time = 0.00 sec.
Node Left Objective IInf Best Integer Best Node Gap
0 0 1.0000 1 1.0000
* 0+ 0 3.0000 1.0000 66.67%
0 2 1.0000 1 3.0000 1.0000 66.677

1B
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http://zibopt.zib.de/

ZIB Optimization Suite

Konrad-Zuse-Zentrum fur Informationstechnik Berlin
Division Scientific Computing
Department Optimization

The ZIB Optimization Suite is a tool for generating and solving mixed integer programs. It consists of the following parts

ZIMPL  a mixed integer programming modeling language
SoPlex  alinear programming solver
SCIP a mixed integer programming solver and constraint programming framework.

The user can easily generate linear programs and mixed integer programs with the modeling language ZIMPL. The
resulting model can directly be loaded into SCIP and solved. In the solution process SCIP may use SoPlex as
underlying LP solver.

Since all three tools are available in source code and free for academic use, they are an ideal tool for academic
Z[l research purposes and for teaching integer programming.

Martin See /1B licences for more information.
Grotschel
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SCIP Design

MIP MIP, CP, and SAT
> LP relaxation > branch-and-bound

> cutting planes

CP

> domain propagation

SAT

> conflict analysis

> periodic restarts
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Impact: -48%0 solving time
SCIP Presolving

Techniques

> Variables:

» dual fixing

» probing

» bound strengthening
> type changes

> Constraints:

» coefficient tightening
Task » dominance
» upgrading
> Restarts:

» abort search
> Extract information » reapply global presolving

> Simplify model

> Strenghten formulation
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Impact: -34%0 solving time
Primal Heuristics

?VD“E Techniques
v y 7 > Rounding
» Change fractional to integral values

t * g > Diving
» simulate DFS in the B&B tree
@] Q Qo @]

using some special branching rule

> Objective diving
Task » manipulate objective function
(instead of bounds)

> Large Neighborhood Search
> Incomplete methods » solve some sub-MIP

> Improve primal bound

> Effective on average > Combinatorial

> Guide remaining search » use special polyhedral properties
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Impact: -20%0 solving time
Domain Propagation

X1 X1
Techniques
X2 X2
- > Constraint specific
x> Il i X3 » Each constraint handler may
provide a propagation routine
X T W Xa Xl » Reduced presolving (usually)
> Dual propagation:
= » Root reduced cost strengthening
» Objective function
> Simplify model locally > Reverse propagation:
> Improve local dual bound > Reconstruct a propagation

. o » Necessary for conflict analysis
> Detect infeasibility Y !
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Impact: -12%0 solving time
Conflict Analysis

> Analyze infeasibility
> Derive valid constraints

Ziel © Help to prune other nodes

Martin
Grotschel

Techniques

> Analyze:

» Propagation conflicts

» Infeasible LPs
» Bound-exceeding LPs
» Strong branching conflicts

> Detection:

» Cut in conflict graph
» LP: Dual ray heuristic

> Use conflicts:

» Only for propagation
» As cutting planes
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SCIP: solving Constraint Integer Programs
Newest Hans Mittelmann test, 55 instances

B GLPK 4.43
50T 12.0x 12.1x non-commercial | commercial B Ipsolve 5.5
5.07% B Symphony 5.3.0
l CBC 2.6.0
o0 DRSNS BN W SCIP 2.0.1 - CLP 1.13.2

[1SCIP 2.0.1 — SoPlex 1.5.0
500 |- N B Minto 3.1 - Cplex 9
. I SCIP 2.0.1 — Cplex 12.2.0.2

=00 -0 il
(1X 010 0.09 B Cplex 12.2.0.2
0 == W Gurobi 4.0.0

not solved 75% T71% 39% 16% 11% Th 52% 1% 2% 2%

time in seconds

SCIP is currently one of the fastest non-commercial mixed integer
programming solver. It is also a framework for
>4 Constraint Integer Programming and branch-cut-and-price.

Z SCIP allows total control of the solution process and the access of
L detailed information down to the guts of the solver.

Grotschel
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SCIP
Solving Constraint Integer Programs

SCIP is developed at ZIB in cooperation with

= TU Braunschweig, Institute for Mathematical Optimization
= University of Erlangen-Nirnberg, Chair of EDOM

= Siemens AG, Corporate Technology

= SAP

= Google (new supporter)

= |ast release: September 30, 2010

: The initial version of SCIP was developed in the PhD thesis of Tobias
Achterberg (now IBM/CPLEX):

1B

Martin
Grotschel
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Variability of SCIP solve runs:
just permute rows and columns

= Pick a “representative standard problem”.

= Permute rows and columns randomly 100 times.

= Run SCIP and analyze the runs.

= Graphical representation of number branch&bound nodes
follows.

S| Running Time:

= We have seen examples where the longest running time
was 60 times larger than the shortest one.

o e
Srielilely

.. J S0, be careful when you claim that your code is faster than
ZIER some other codel!

Martin
Grotschel
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Variability of SCIP solve runs, problem 1:
just permute rows and columns

0 : o’
T 000000
g 8,000 1

:

56,000

2

L 4,000

T ! ]

. z

;o

o 2,000

0 :

: i

H 0:"'"":::I"""""I"""""|"""':::|:::"""'I"""""I"""'"'|"""""I"""""I"'"""'I
2 0 10 20 30 40 50 60 70 80 a0 100

instances

Ordered by increasing # of B&B nodes
node: Median

B .
- red node: default variant
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Variability of SCIP solve runs, problem 2:
just permute rows and columns

% 150 o
T i
o
q .
ERRTE
. 00
5 ]
O N .
'? M
go] |
. 50 - 00000008
5
R
v ]
g |
o 0 -9000000000000000000000000000000000000000000000000000000000000000000——————————— .
= ) 10 20 30 10 50 60 70 20 90 104
instances

Ordered by increasing # of B&B nodes
node: Median

B .
- red node: default variant

Grotschel
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Variability of SCIP solve runs, problem 3:
just permute rows and columns

6,000 0
: o*

cP..
. 0080
4,000

2,000

branch-and-bound nodes

0 10 20 30 40 50 60 70 80 a0 100
instances

Ordered by increasing # of B&B nodes
node: Median

B .
- red node: default variant

Grotschel
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General Summary

= Tremendous improvements in the last 10-15 years.

= We are getting close to solving the really exciting and
economically relevant cases.

= Industry, once a special problem has been solved,
immediately asks for more.

1B
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