[1] L. Bahiense, N. Maculan, and C. Sagastizábal. The volume algorithm revisited: relation with bundle methods. 2002. [ bib ]
[2] A. Belloni and C. Sagastizábal. Dynamic Bundle Methods: Application to Combinatorial Optimization. 200? [ bib ]
[3] C. Helmberg. Semidefinite programming. Eur. J. Oper. Res., 137(3):461-482, 2002. [ bib | DOI ]
[4] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM J. Optim., 10(3):673-696, 2000. [ bib | DOI ]
[5] K.C. Kiwiel. Efficiency of proximal bundle methods. J. Optimization Theory Appl., 104(3):589-603, 2000. [ bib | DOI ]
[6] Claude Lemaréchal, François Oustry, and Claudia Sagastizábal. The U-Lagrangian of a convex function. Trans. Am. Math. Soc., 352(2):711-729, 2000. [ bib | DOI ]
[7] Claude Lemaréchal and Claudia Sagastizábal. An approach to variable metric bundle methods. Henry, Jacques (ed.) et al., System modelling and optimization. Proceedings of the 16th IFIP-TC7 conference, Compiègne, France, July 5-9, 1993. London: Springer-Verlag. Lect. Notes Control Inf. Sci. 197, 144-162 (1994)., 1994. [ bib ]
[8] Angelia Nedić and Dimitri Bertsekas. Convergence rate of incremental subgradient algorithms. Uryasev, Stanislav (ed.) et al., Stochastic optimization: Algorithms and applications. Conference, Univ. of Florida, Tallahassee, FL, USA, February 20-22, 2000. Dordrecht: Kluwer Academic Publishers. Appl. Optim. 54, 223-264 (2001)., 2001. [ bib ]
[9] Carl Olsson, Anders P. Eriksson, and Fredrik Kahl. Solving large scale binary quadratic problems: Spectral methods vs. semidefinite programming. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 0:1-8, 2007. [ bib | DOI ]
[10] M.B. Shchepakin. An orthogonal descent algorithm to find the zero of a convex function, unsolvability test, and rate of convergence. Cybern. Syst. Anal., 28(5):727-734, 1992. [ bib | DOI ]
[11] Ilse Fischer, Gerald Gruber, Franz Rendl, and Renata Sotirov. The Bundle Method in Combinatorial Optimization. Technical report, University of Klagenfurt, Austria., 2003. [ bib ]
[12] John E. Beasley. Lagrangian relaxation. John Wiley & Sons, Inc., New York, NY, USA, 1993. [ bib ]
[13] Antonio Frangioni. Generalized bundle methods. SIAM J. Optim., 13(1):117-156, 2002. [ bib | DOI ]
[14] Andrzej Cegielski. The Polyak subgradient projection method in matrix games. Discuss. Math., 13:155-166, 1993. [ bib ]
[15] B. T. Poljak. Minimization of Nonsmooth Functionals. USSR Computational Mathematics and Mathematical Physics, 9:14-29, 1969. [ bib ]

This file was generated by bibtex2html 1.93.