
LP approaches to survivable networks with
single path routing

Diplomarbeit bei

Prof. Dr. M. Grötschel

vorgelegt von

Ulrich Menne

Fachbereich Mathematik der TU Berlin,

Studiengang Wirtschaftsmathematik

Berlin, den 17. Dezember 2003

Contents

1 Introduction 5

2 Graphs and polyhedra 7

2.1 Basic notation . 7

2.2 Graph Theory . 7

2.3 Polyhedral Theory . 9

3 The network design problem 10

3.1 Problem description . 10

3.2 Model . 14

3.2.1 Notation and parameters . 14

3.2.2 Variables . 17

3.2.3 Inequalities . 18

3.2.4 Objective function . 27

3.3 The model . 28

4 Classes of valid inequalities 29

4.1 GUB cover inequalities . 29

4.1.1 Valid inequalities from knapsack and GUB 30

4.1.2 Edge (secure) capacity constraints 31

4.1.3 Port constraints . 32

4.1.4 Node capacity constraints . 33

4.2 Cutset inequalities . 34

4.2.1 Cut traffic inequalities . 36

4.2.2 Particular commodity inequalities 36

4.3 Edge capacity inequalities . 39

3

4 CONTENTS

4.3.1 Setup . 39

4.3.2 Inequality . 41

4.3.3 Relaxation . 42

4.3.4 Lifting . 50

5 Algorithmic approach and implementational aspects 53

5.1 Branch-and-Cut . 53

5.1.1 Overview . 53

5.1.2 Node selection . 55

5.1.3 Variable selection . 55

5.2 Separation . 57

5.2.1 Separation of the GUB cover inequalities 57

5.2.2 Separation of the hoplimit constraints 58

5.2.3 Separation of the subtour elimination constraints 58

5.3 Preprocessing . 61

5.3.1 Constraints reduction . 61

5.3.2 Reduction of the commodity edge flow variables 62

5.3.3 Reduction of the linkdesign installation variables 63

5.4 Heuristics . 64

5.4.1 Determination of a feasible routing 64

5.4.2 Determination of a feasible linkdesign installation 66

5.4.3 Additional edge exclusion . 67

5.4.4 Heuristic parameters . 68

6 Data and computational results 70

6.1 Data set . 70

6.2 Computational results . 71

6.2.1 Downsizing results . 71

6.2.2 Branching rule comparison . 74

6.2.3 Hoplimit inclusion . 77

6.2.4 Heuristic modes . 77

6.2.5 Results . 79

7 Conclusion 89

Bibliography 93

Chapter 1

Introduction

Customer growth, increasing demands for old and new services, deregulation and
the innovations in switching and transmission technologies are all placing pressure
on telecommunication companies to upgrade and expand their networks. With over
50 percent of a telephone company’s total investment in communication facilities and
with deregulation making the market more competitive, these expansion decisions can
have huge economic and strategic ramifications.
The conflictive aims towards network design are the creation of a low-cost network
capable of handling the communication demands and maximum customer satisfaction
in terms of quality of service. A crucial aspect of customer satisfaction is survivability,
which means that the offered service has to survive certain failure situations. Common
types of network failures are cable cuts caused by dredgers or other external impacts
as well as defects of hardware or overloaded network.

The design of communication networks bases on an estimation of communication
demands between locations. This communication traffic has to be routed over the
connection links between these locations. When traffic is routed over the network it
consumes capacity provided by some installed hardware. The problem can be mod-
eled as an optimization problem where, on the one hand, the link capacity must be
assigned at the lowest cost and, on the other hand, the communication flow must be
routed over the network requiring the accomplishment of certain conditions. There ex-
ist different approaches towards survivability. The main strategies are protection and
restoration. Protection ensures survivability by conditions on the normal operating
state routing while no or little predetermined reconfiguration is required in case of a
failure. Restoration techniques react in case of a failure by rerouting the affected traffic
(ensuring firstly the existence of spare capacity). Another concept is the approach to-
wards resilience, which means that there exist certain hardware technologies, installed
at the locations and links of a network, which can never fail. In this thesis we focus
on the latter approach. Also the exclusion of routing demands over unacceptably long
paths in the network is taken into account (to decrease the probability of a failure of a
path component and transmission delays) as well as certain restrictions on the network

5

6

locations.

This thesis is motivated by the network planning problem discussed in the context
of the ROCOCO project (“Recherche Opérationnelle et COntraintes pour la COncep-
tion de réseaux“). The participants of this project (ILOG, France Télécom CNET,
LRI and INRIA [2]) aimed at developing algorithms integrating the effectiveness of
combinatorial optimization and the flexibility of Constraint Programming to optimize
the dimensioning and the redimensioning of networks of telecommunications compa-
nies in particular. Robustness of optimization techniques was a main aspect in their
research endeavors. Robust means that the applied algorithm must not only provide
“good“ solutions to problem instances of different size and numerical characteristics,
but also that the algorithm must continue to work well when constraints are added
or removed. Hence a network design problem is considered including a number of
different additional constraints. These constraints are added arbitrarily to the base
problem. No proper mathematical model integrating all constraints simultaneously
has been published until now and only an informal problem description was available
to us.

The fact that no publicly accessible model exists represents the initial point of this
thesis. We develop a comprehensive approach to cope with the described problem
including an extensive model able to handle all conditions considered within the RO-
COCO project. Chapter 2 gives a short overview on notations. In the first part of
Chapter 3 we present the given description, point out the relation to reality and explain
the effects of certain constraints. In the second section of this chapter we introduce in
detail the developed model including all constraints and restrictions on the routing and
capacity installation. It is inclusively capable of modeling any possible combination of
the additional constraints. In Chapter 4 we examine the associated polyhedron and
elaborate valid inequalities. We show that some of them are even facet-defining for a
relaxation of the problem. We apply an LP-based approach to solve the given network
design problem. The developed inequalities are used in a branch-and-cut algorithm
presented in Chapter 5. Also preprocessing and heuristic endeavors are introduced and
described in detail in the last section of this chapter. We evaluate different strategies
and measure the quality of our approach on an extensive benchmark suite built on the
basis of real network design data provided by France Tèlècom R&D [13]. This suite
has been developed in the context of the prementioned ROCOCO project. The in-
homogeneous structure of the benchmark reflects their ambitions towards robustness.
The achieved computational results are presented in Chapter 6, together with a study
of the given data. Finally, in Chapter 7 some conclusions are drawn.

Chapter 2

Graphs and polyhedra

In this chapter, we present an outline of the elementary mathematical tools we utilized
to approach our problem. We describe graph theory, since we present the given problem
in this context. We further modeled the problem as a linear program and surveyed the
respective polyhedron, hence we introduce some facts from the polyhedral theory.
We assume some basic knowledge of linear optimization. For these fundamentals the
reader is referred to [8], and especially regarding integer programming [14] and [11].

2.1 Basic notation

We will denote by R (Q, Z) the real (rational, integer) numbers. The sets R+ (Q+, Z+)
stand for the non-negative real (rational, integer) numbers. For ease of notation, we
use K (or K+) if one of these three sets can be applied. We denote the set of positive
integer numbers without zero by N = Z+\{0}. For some n ∈ N, we define by Kn the
set of vectors with n components from K. The transposition of a vector x is xT .

2.2 Graph Theory

Formally, an (undirected) graph is a triple G = (V,E,Ψ1) consisting of a nonempty
set V , called the nodes (or vertices), a set E, called the edges (or links), and a relation
of incidence Ψ1 : E → V × V that associates with each edge two nodes, called its
ends. Usually we just write G = (V,E) and assume that the incidence relation is
given implicitly in E. For each edge e ∈ E there exist nodes u, v ∈ V such that
Ψ1(e) = {u, v} = {v, u}. Two nodes that are ends of an edge are adjacent to one
another (neighbors). The degree |δ(v)| of a node v is the number of incident edges
to v. An edge with identical ends is called a loop. If two edges join the same pair of
ends, they are called parallel. A graph is simple if it has neither loops nor parallel
edges. For a subset W ⊆ V of nodes, E(W) ⊆ E denotes the subset of edges with
both ends in W .

7

8 Graph Theory

A digraph (directed graph) is a triple G = (V,A,Ψ1) consisting of a nonempty set
V , called the nodes (or vertices), a set A, called the arcs, and a relation of incidence
Ψ1 : A → V × V that associates with each arc an ordered pair of nodes, called its
ends. Usually, we just write D = (V,A) and assume that the incidence relation is
given implicitly in A. For each arc a = (u, v) we call u the source and v the target
of a. Parallel arcs and loops are defined as for undirected graphs. Two arcs (u, v) and
(v, u) are called associated. For an arc (u, v), the arc (v, u) is called its associated
backward arc. A digraph where each arc has its associated backward arc is called
bidirectional. We call the graph G = (V,E) the underlying graph of the digraph
D = (V,A) if there is a bijection between the arcs of D and the edges of G, such
that for each arc a = (u, v) ∈ A there is an edge e = {u, v} ∈ E, and for each edge
e = {u, v} ∈ E the arc a = (u, v) and the arc a′ = (v, u) are in A. The overlaying
digraph D(G) of a graph G is the digraph obtained from G by replacing each edge
by two associated arcs with the same ends.

In the following, let G = (V,E) denote a graph and D = (V,A) a digraph.

A path p in G (or a directed path in D) from v0 to vl is a sequence p =
(v0, e1, v1, ..., el, vl) of nodes v0, ..., vl ∈ V and edges (arcs) e1, ..., el ∈ V (∈ A) of G
(D), such that the nodes vi−1 and vi are the ends of edge ei (are source and target of
ei) for each 1 ≤ i ≤ l. Node v0 is called the source and vl the target of p, while both
are denoted as the endnodes of p. The nodes v1, ..., vl−1 are called the inner nodes
of p. The length of a path is the number of edges (arcs). We use the notation e ∈ p

(a ∈ p) or v ∈ p, if e ∈ E (a ∈ A) is an edge (arc) of p or v ∈ V is a node of p. We
denote by V (p) and E(p) (A(p)) the set of inner nodes and edges (arcs) of p. That
is, for a path p = (v0, e1, v1, ..., el, vl) in G (D) we have V (p) = {v1, v2, ..., vl−1} and
E(p) = {v1, v2, ..., vl−1} (= A(p)). We will use the term simple path to denote paths
without node repetition. A (simple) cycle is a (simple) path where the endnodes are
identical. Two paths p1 and p2 are node-disjoint if V (p1) ∩ V (p2) = ∅. Analogously,
p1 and p2 are edge-disjoint (arc-disjoint) if E(p1) ∩ E(p2) = ∅ (= A(p1) ∩A(p2)).

A graph G̃ = (Ṽ , Ẽ) is a subgraph of G = (V,E) if Ṽ ⊆ V and Ẽ ⊆ E. A graph
G = (V,E) is said to be connected if there is a path between any two nodes. A graph
G is k-node(edge)-connected if there exist k node (edge)-disjoint paths between
any two nodes. A tree is a connected graph with no cycles. A spanning tree is a
subgraph of G which has the same set of nodes of G and is a tree.

If G = (V,E) is a graph and X ⊆ V , then the set of edges δ(X) :=
{

{u, v} ∈
E | u ∈ X, v /∈ X

}

is a cut. For a digraph D = (V,A) and a subset X ⊆ V
of nodes, let δ(X)+ := {(u, v) ∈ A | u ∈ X, v /∈ X}, δ(X)− := δ(V \X)+ and
δ(X) := δ+(X) ∪ δ)−(X). The arcset δ(X)+ is called a directed cut.

Graphs and polyhedra 9

2.3 Polyhedral Theory

A set X ⊆ Kn is bounded, if M ∈ K+ exists with ‖ x ‖≤ M for all x ∈ X and some
norm ‖ · ‖: Kn → K+. For X ⊆ Kn we define:

aff(X) := {x ∈ Kn | ∃λ1, ..., λt ∈ K and ∃x1, ..., xt ∈ X, t ∈ N s.t.
∑t

i=1 λi = 1 and x =
∑t

i=1 λixi},
conv(X) := {x ∈ Kn | ∃λ1, ..., λt ∈ K+ and ∃x1, ..., xt ∈ X, t ∈ N s.t.

∑t
i=1 λi = 1 and x =

∑t
i=1 λixi},

to be the affine and convex hull of X, respectively. The dimension dim(W) of W
is dim(aff(X)), that is the maximum number of linear independent vectors in aff(X).
If dim(W) = n, we call W full-dimensional.

Given a ∈ Kn\{0} and α ∈ K, the set {x ∈ Kn | aT x ≤ α} is a halfspace and
{x ∈ Kn | aT x = α} is a hyperplane. The finite intersection of halfspaces given by
{x ∈ Kn | Ax ≤ b} with A ∈ Km×n and b ∈ Km is a polyhedron, where Km×n is
the space of matrices with m rows and n columns. A bounded polyhedron is called a
polytope.

For the polyhedron P = {x ∈ Kn | Ax ≤ b} and M = {1, ...,m}, the set
M= = {i ∈ M | aix = bi ∀x ∈ P} is called the equality set of P and the set
M≤ = M\M= the inequality set. Let (A=, b=) and (A≤, b≤) the corresponding rows
of (A, b).

The inequality aT x ≤ α for a ∈ Kn, α ∈ K is valid for a polyhedron P, if P ⊆ {x ∈
Kn | aT x ≤ α}, and is tight for P if it is valid and Fa,α = P∩{x ∈ Kn | aT x = α} 6=
∅. We say, Fa,α is a face of P induced by aT x ≤ α. A face F 6= P of a polyhedron
P is a facet of P if it is maximal with respect to inclusion. If aT x ≤ α is valid for
P and F = P ∩ {x ∈ Kn | aT x = α} is a facet of P, we say that aT x ≤ α is facet-
defining. An equivalent characterization of a facet is that ,dim(F) =,dim(P)− 1. If
a polyhedron P is full-dimensional, and aT x ≤ α and bT x ≤ β are facet-defining with
Fa,α = Fb,β, then there exist λ ∈ R+ with λa = b and λα = β.
If the polyhedron P is not full-dimensional and aT x ≤ α and bT x ≤ β represent the
same facet, then one facet can be obtained from the other by multiplication by a
positive scalar and then adding multiples of equations of the linear equation system
(A=, b=) of P.

Chapter 3

The network design problem

In this chapter, we present the given problem description and point out possible real
world relations. Afterwards, a mathematical model is constructed which models the
specified network planning problem.

The initial objective of the ROCOCO project was to design an algorithm provid-
ing best solutions and/or lower bounds on average for all instances of the applied
benchmark suite and all combinations of additional constraints. For each instance and
combination a CPU limit of 10 minutes was given. A wide range of techniques have
been tested, such as Constraint Programming, Local Search, Linear Programming, etc.
The best published upper bounds so far have been obtained by a hybrid algorithm of
Constraint Programming and Local Search, presented in [6]. A newer approach comes
from Alain Chabrier who applied a Heuristic Branch-and-Price-and-Cut procedure [7].
But until now, only outlines of solution approaches exist in literature and no publicly
accessible model including all constraints has been published so far.

3.1 Problem description

In this section, we introduce the information available to us, including an attempt at
explanation towards reality and importance.

The network design and routing problem studied in the ROCOCO project can be
described as follows: Given is a set of nodes and a set of arcs corresponding to all poten-
tial connections between the nodes. The graph has no parallel arcs and is bidirectional.
There also exists a set of directed demands representing the communication demand
between two locations (nodes), which have to be routed over the network along a single
path from their origin to their destination node. When these demands are routed over
some arc they consume capacity in the corresponding direction. The problem consists
of selecting from a discrete set of possible capacities which one to install on each arc
and how often. The capacities must be chosen in such a way, that all demands can
be routed over the network simultaneously without exceeding the capacities and the

10

The network design problem 11

capacity installation cost is minimal. Also some additional constraints concerning the
routing or the capacity choices are present and arbitrarily considered.
Each arc has an indexed set of directed base capacities, out of which at most one can
be chosen. Associated arcs have the same number of base capacities and the corre-
sponding choices are linked. The capacity can be increased by an integer multiplier
coming out a certain range assigned by the base capacity. Thus the overall capacity of
the arc is the product of the base capacity and the multiplier. The choices of an arc
determine the choices of the associated backward arc. The multiplier of associated arcs
has to be the same, as well as the index of the base capacity. This does not necessarily
result in the same amount of capacity for both arcs, since the sets of base capacities
may vary. The overall cost for both arcs results from the product of the cost of the
base capacity and the chosen multiplier.

Example 3.1 For further explanation, consider the example shown in Figure 3.1.
For arc (a, b) from node a to node b the base capacity Capa1(a, b) is given with the
associated multiplier range from 0 to 3. This capacity is chosen, such that the choice
for the arc (b, a) is imposed at the same time: (b, a) is equipped with Capa1(b, a). The
multiplier for both is the same (in our case 3, the available maximum) and the overall
costs for both were calculated by the cost of the base capacity Capa1(a, b) times 3. For
the arc (d, a), the range of the multiplier associated to the base capacity Capa2(d, a)
is from 1 to 2. Thus, if this capacity is chosen on the arc, it must be at least equipped
once with this capacity.

In−Ports Out−Ports

Out−PIn−P

Out−PIn−P

a

b

c

d

Capa1(b, a)
Capa1(a, b)

Capa3(a, c)
Capa3(c, a)

Capa2(d, a)
Capa2(a, d)

Figure 3.1: Example of network with capacity installation.

12 Problem description

Part of the benchmark suite is also the consideration of six constraints which were
added to the problem in arbitrary combinations.

sec Each node, capacity and demand has an indicator which determines its security
level. It can be risky or secure. When this constraint is taken into account,
a secure demand must only be routed over secure nodes and arcs which are
equipped with secure capacity. For the remaining demands, this constraint is of
no matter. Also the secure status of the endnodes of any demand is not relevant.
This constraint can be interpreted regarding the anti-interception as well as the
survivability aspect. For communication demands transporting sensitive data,
there could exist a set of specially shielded nodes and capacities (like ssh- or
https-connections). Alternatively and under the condition of the existence of
secure, indestructible nodes and links (for which we have a guarantee that they
never collapse), this constraint ensures the satisfiability of certain communication
demands at any rate.

nomult This constraint forbids the multiplication of the base capacities of arcs. For
each arc we have to consider two cases:

If there exists a base capacity with a lower bound of the associated multi-
plier range greater than 0, this capacity has to be chosen with the minimal
multiplier (if we want to install any capacity on this arc). The arc can not
be equipped with any other base capacity.

Otherwise the choice of capacity is free but a multiplier less than or equal
to 1 is imposed.

This leads to the application of large capacities on the arcs instead of multiple
smaller ones.

Example 3.2 We recall the example in Figure 3.1. It follows that for the arcs
(a, d) and (d, a) the capacity and multiplier choice is imposed. Concerning the
base capacity Capa2(a, d), the lower bound of the associated multiplier is greater
than 0. Therefore the arcs (a, d) and (d, a) must be equipped with the base ca-
pacity Capa2(a, d) and Capa2(d, a) respectively, and the corresponding multiplier
is 1.
For the arcs (a, b) and (b, a), the possible multiplier regarding the capacities
Capa1(a, b) and Capa1(b, a) respectively, is 0 or 1 (and this only if there is no
other base capacity available with a lower bound of the associated multiplier
greater than 0).

Remark 3.3 The given problem description does not specify how to deal with
two or more base capacities having a lower bound of the associated multiplier
range greater than 0. We assume that this cannot happen.

The network design problem 13

symdem This constraint states that two demands where the origin of one is the
destination of the other and vice versa, have to be routed symmetrically. Hence
for a demand from node a to node b, if there exists a demand from b to a, then the
paths used to route these demands must be symmetric, i.e. that the two paths
were indicated by the same node set and differ only in an opposite order of the
nodes. From this it follows that demands with the same origin and destination
have to use the same path, if there exists at least one reverse demand for them.
This symmetric routing is required by some routing protocols, e.g. the Network
Time Protocol (NTP) [1] which is used to synchronize the time of devices in a
network.

bmax Each demand has a parameter limiting the length of its routing path.
This limit is normally referred to as hoplimit, as it takes into account only the
amount of arcs used by the path, and not its actual physical length. It avoids
unacceptably long paths and decreases the probability of a failure of a path
component or transmission delays.

pmax For each node an upper bound on incoming and outgoing ports is imposed. The
capacities installed on the incoming arcs consume the inports amounting to their
associated multipliers and analogously for the outgoing arcs and the outports. If
the particular directed capacity is zero, no ports are consumed.
This constraint ensures that the ports are not exhausted. It makes sense if the
node configuration is predetermined, as well as for survivability. If for a node
the number of incident arcs on which capacity can be installed is restricted, only
these arcs are affected in case of a failure of this node.

Example 3.4 Recall the example of Figure 3.1: for the arc (a, c) this means that
the chosen capacity and associated multiplier require 2 inports at node c and 2
outports at node a. The base capacity installed on the associated backward arc
(c, a) does not require any ports, because it does not provide positive capacity.
Since the node c has only one outport, it follows that at most one outgoing arc
can be equipped with a capacity, and thus used by some routing.

tmax This constraint associates an upper traffic bound to each node. The sum of all
demands routed from, to or through a node must not exceed this fixed capacity.
Like the pmax constraint, this one has two aspects. The configuration on the
node may be predetermined or the network designer wants to route only a certain
amount of data through the node to limit the probably vulnerable data.

Remark 3.5 In the ROCOCO project, all possible combinations of these additional
constraints were considered. But the restriction to some, more plausible/probable vari-
ants may be worth considering.
The bundle of tmax and pmax constraints would be convenient in case of a prede-
termination of the technology installed at the nodes. If there exists a restriction on

14 Model

the nodes it seems plausible that the number of ports is limited as well as the traf-
fic. The nomult can be related to these constraints as well, because it reduces port
consumption of the links regarding their endnodes and thus helps to fulfill the pmax
constraint.
Concerning the survivability aspect, the combination of the bmax and the sec con-
straint seems reasonable. The bmax constraint decreases the probability of a failure
of a path component and the sec constraint ensures the satisfiability of certain com-
munication demands at any rate. Also the restrictions on the nodes (tmax, pmax)
can be imposed in this context.

3.2 Model

In this section we introduce some notation and our mathematical model for the de-
scribed problem. The constraints are classified in two subproblems.

Base model All demands have to be routed simultaneously over a single cycle-free
path from their origin to their destination (monorouting). In the target network,
sufficient capacity must be installed on the edges such that these can accommo-
date a feasible routing of the communication demands.

Additional constraints This part of the model is dedicated to the additional con-
straints. We derive inequalities for the sec, pmax, bmax and tmax constraints.
At first we also deduce inequalities for the symdem constraint, but we finally
integrate it into the data transformation, as well as the nomult requirements.

Remark 3.6 Due to the dependency of the capacity choice for a forward and the
associated backward arc, we deviate from the arc view. We consider only undirected
edges which can be equipped with linkdesigns providing directed capacities. It is only
necessary to make one choice per edge, while the various capacities per direction and
the multiplier are mapped to some linkdesigns. The result provides the amount of
directed edge capacity.

3.2.1 Notation and parameters

Notation 3.7 (Telecommunication network) We denote the considered telecom-
munication network by a graph G = (V,E), with V the set of nodes representing
locations. The edges e ∈ E represent the possible connections between the locations.

Notation 3.8 (Nodes) We denote the traffic limit of a node by the parameter node
capacity which is consumed by the demands routed over. Each node v ∈ V has the
parameters:

The network design problem 15

P−
v ∈ Z+ The amount of incoming ports.

P+
v ∈ Z+ The amount of outgoing ports.

Cv ∈ Z+ The provided capacity.
Sv ∈ {0, 1} The security status of a node is 1 if it is secure, 0 otherwise.

Notation 3.9 (Linkdesigns) The (finite) set of all linkdesigns which can be installed
on an edge {u, v} ∈ E is denoted by L{u,v}. Each edge can be equipped with at most
one linkdesign. In the elements of the linkdesign set we merge the choice of the capacity
and the associated multiplier. Therefore, for each edge and each base capacity of the
associated arc arise as many linkdesigns as integers can be found in the associated
multiplier range joint with the {0}-set. In that way we get two directed capacities per
edge which are implied by the base capacities of the associated arcs and the multiplier.
The transformation is analogously the same with the costs and the ports required.
Other available base capacities for this arc should be dealt with analogously and the
created linkdesigns should be added in the associated set L{u,v}.

At this point we already include the nomult constraint. If we take it into account,
the set of linkdesigns is restricted to the linkdesigns with a port consumption of 1 or
(when such one exists) the linkdesign with the corresponding multiplier lower bound
greater than 0.

For a linkdesign l ∈ L{u,v} corresponding to the edge {u, v} ∈ E, the following
parameters are given:

C l
uv ∈ Z+ The directed integer routing capacity from node u to node v.

C l
vu ∈ Z+ The directed integer routing capacity from node v to node u.

P l
uv ∈ Z+ The amount of ports required for the direction u to v

i.e. the number of inports consumed at v and the number of
outports consumed at u.

P l
vu ∈ Z+ The amount of ports required for the direction v to u.

i.e. the number of inports consumed at u and the number of
outports consumed at v.

Sl
{u,v} ∈ {0, 1} The security status of a linkdesign is 1 if it is secure, 0 otherwise.

W l
{u,v} ∈ Z+ The installation costs for linkdesign l on the edge {u, v}.

Remark 3.10 We have a parameter for the number of ports required for each direc-
tion. Actually the consumption of ports is equal for both directions, but the special
case that the capacity for one direction is 0 while the other is greater than 0 makes it
necessary to split the parameter.

Example 3.11 Recalling the example shown in Figure 3.1, consider the pair of arcs
between the nodes a and b. For Capa1(a, b) a multiplier range from 0 to 3 is given. We
assume that the base capacity value of Capa1(a, b) is α and the one of Capa1(b, a) is β, it
is secure and the base cost is ̟. Our transformation creates for each possible multiplier
a different linkdesign, so that we get 4 linkdesigns for the edge e = {a, b} out of the base

16 Model

capacity Capa1(a, b). The edge capacity regarding a certain direction is the product of
the base capacity of the associated arc with the concerned multiplier. The cost for the
linkdesign is the multiplier times the cost for Capa1(a, b). The concerned multiplier also
imposes the required ports (but the associated capacities must be regarded to ensure
that it is not 0). In Table 3.1 we present the linkdesigns created from Capa1(a, b) and
Capa1(b, a).

LD C l
ab C l

ba P l
ab P l

ba Sl
{a,b} W l

{a,b}

l0 0 0 0 0 1 0

l1 α β 1 1 1 ̟

l2 2α 2β 2 2 1 2̟

l3 3α 3β 3 3 1 3̟

Table 3.1: Generated linkdesigns

Due to the nomult constraint, the set of linkdesigns L{a,d} consists of only one
element: The generated linkdesign corresponding to the base capacities Capa1(a, d)
and Capa1(d, a) respectively, and the imposed multiplier 1.

Notation 3.12 (Commodities) In our model, all commodities consist of exactly one
demand. In order to handle the secure routing condition we introduce a secure value
for each commodity. This secure value is equal to the demand value when it has to
be routed securely and otherwise 0. We denote by K the set of commodities. For a
commodity k ∈ K the following parameters are specified:

ok ∈ V The node where the demand comes from (origin).
dk ∈ V The node to which the demand has to be routed to (destination).
Uk ∈ Z+ The amount of data that has to be routed from ok to dk.
Sk ∈ {0, 1} The security status of a commodity is 1 if it has to be routed securely,

0 otherwise.
US

k ∈ Z+ The amount of data that has to be routed from ok to dk securely,
US

k = Uk · Sk.
Mk ∈ Z+ The maximal number of hops, i.e. the allowed number of edges of

an ok-dk-path.

Remark 3.13 In literature on multicommodity network flow problems, the demands
are often aggregated with respect to their source (or destination) nodes. One com-
modity for each node with positive supply is defined [5]. The aggregated formulation
has a smaller amount of commodities compared to our approach, which often leads to
a significantly reduced size of the problem.
However, in our problem no such aggregation was possible since in the aggregated ver-
sion, no proper control of the fulfillment of the varying demand properties is possible.
Since the requirements on the demands are quite different (concerning the sec, bmax
and symdem constraints) bundling demands would be impossible.

The network design problem 17

3.2.2 Variables

We formulate the described problem with the following variables, where one variable
corresponds to the routing of commodities in the network and the other one to the
installation of linkdesigns on an edge of the network.

Commodity edge flow variables

The routing of the commodities in our network is modeled via directed binary com-
modity edge flow variables. For each edge {u, v} ∈ E and each commodity k ∈ K, the
binary variable fk

uv decides whether k is routed over {u, v} in the direction u to v or
not. Analogous for the variable fk

vu concerning the direction v to u. This yields for all
k ∈ K and {u, v} ∈ E

fk
uv =

{

1 if k is routed over e in the direction u to v

0 otherwise

fk
vu =

{

1 if k is routed over e in the direction v to u

0 otherwise

Linkdesign installation variables

For each edge e ∈ E and linkdesign l ∈ Le we introduce the binary variable xl
e indi-

cating if l is installed on e. Therefore for all e ∈ E and l ∈ Le

xl
e =

{

1 if l is installed on e

0 otherwise

Remark 3.14 Another alternative to modeling the choice of technology for the edges
would be the application of an integer variable for all available associated base capac-
ities: greater 0 iff the capacity is chosen and the value denoting the chosen multiplier.
This would mean a significant decrease of linkdesigns but the range for these variables
would be the union of {0} and the multiplier range. The case of a base capacity with a
lower bound of the corresponding multiplier range greater than 1 would be a problem.
The 1 would be prohibited while 0 and the integral lower bound would be feasible.
This gap would provoke problems in our further solution approaches.
The maximum multipliers in our data set are furthermore quite small (at most 5) and
so the disprofit of the greater amount of {0, 1}-variables is not that serious. On the
other hand, the binary range of the variables has a lot of advantages, as we will see
later.

18 Model

3.2.3 Inequalities

There exist various base constraints which have to be complied by a feasible routing
and linkdesign installation. We first model these conditions in the following subsection
and later introduce the inequalities that correspond to the additional constraints.

Inequalities for the base model

In this subsection we introduce the inequalities concerning the base model. We require
all demands to be routed over a single cycle-free path from their origin to their des-
tination. For each edge we can choose at most one linkdesign in a way such that the
provided capacity can accommodate a feasible routing of all commodities simultane-
ously.

Linkdesign installation constraint. In this inequality we model the constraint that
only one capacity can be chosen on each arc as stated in the given problem
description. Therefore each edge e ∈ E can only be equipped with at most one
linkdesign l ∈ Le.

∑

l∈Le

xl
e ≤ 1 ∀e ∈ E (3.1)

Flow balance constraint. To ensure that the demand between two nodes is satisfied
using a single path and to state that the flow balance is fulfilled we introduce
this constraint.

∑

{u,v}∈δ(v)

(fk
uv − fk

vu) =







−1 if v = ok

1 if v = dk

0 otherwise
∀v ∈ V, k ∈ K (3.2)

This constraint provides for each commodity k ∈ K a single ok-dk-path since the
origin node ok has a net outflow of 1, the destination node dk a net inflow of 1
and exploiting the fact that we use binary commodity edge flow variables. The
flow has no chance to get lost, because all other nodes have a net flow of 0. But
in this path can occur cycles, that is why we introduce the following constraint.

Subtour elimination constraint. To avoid cycles in our routing, we restrict for each
commodity k ∈ K and each subset W of V the number of edges in E(W) which
are used by this commodity.

∑

{u,v}∈E(W)

(fk
uv + fk

vu) ≤ |W | − 1 ∀W ⊆ V, k ∈ K (3.3)

These constraints prevent the occurrence of cycles, because a commodity k ∈ K
cannot be routed twice through a node v ∈ V .

The network design problem 19

Edge capacity constraints. In the ROCOCO problem the arc capacities must not
be exceeded. Consequentially, the directed capacity of an edge provided by the
installed linkdesign must not be overstepped.

∑

k∈K

Ukf
k
uv ≤

∑

l∈L{u,v}

C l
uvx

l
{u,v} ∀{u, v} ∈ E (3.4)

∑

k∈K

Ukf
k
vu ≤

∑

l∈L{u,v}

C l
vuxl

{u,v} ∀{u, v} ∈ E (3.5)

Inequalities for the additional constraints

In this subsection we incorporate the additional constraints in the mathematical model.
The nomult constraints have already been included. We express the requirements
of the pmax, tmax and bmax constraints by introducing new inequalities for the
model. The sec constraint is split into two parts: one concerning the edges and the
other considering the secure node throughput. The symdem constraint is integrated
by a commodity merge process and the adaptation of some of the preestablished model
constraints.

The next two inequalities include the pmax constraint in our model.

Inport constraints. Each node provides a certain number of inports which are con-
sumed by the linkdesigns installed on the incident edges and must not be ex-
hausted.

∑

{u,v}∈δ(v)

∑

l∈L{u,v}

P l
uvx

l
{u,v} ≤ P−

v ∀v ∈ V (3.6)

Outport constraints. Each node provides a certain number of outports which are
consumed by the linkdesigns installed on the incident edges and must not be
exhausted.

∑

{u,v}∈δ(v)

∑

l∈L{u,v}

P l
vuxl

{u,v} ≤ P+
v ∀v ∈ V (3.7)

The following type of inequalities integrates the tmax constraint in our model.

Node capacity constraints. The amount of data that is conducted through v ∈ V
is the sum of the values of the commodities that flow into v plus the commodities
that have their origin in v. This throughput must not exceed the node capacity.

∑

k∈K

∑

{u,v}∈δ(v)

Ukf
k
uv ≤ Cv −

∑

k∈K:v=o
k

Uk ∀v ∈ V (3.8)

20 Model

Remark 3.15 This constraint differs from the usually considered switching capacity
which gives a limit on the capacity of its incident edges and which is therefore normally
modeled via linkdesign installation variables (e.g. [12]). The considered tmax takes
into account the flow that is actually routed over the node and not only the flow that
could be routed potentially like the switching capacity.

For an easier integration of the sec constraint we split it in two parts. One type of
constraint focuses on the edges and the other type on the nodes.

Edge secure capacity constraints. If a secure demand k ∈ K with Sk = 1 is routed
over an edge e ∈ E it requires this edge to be equipped with a secure linkdesign
l ∈ Le with Sl

e = 1. We achieve this by introducing a secure capacity which is
only provided by secure linkdesigns and consumed by secure commodities. Over
an edge e ∈ E regarding a certain direction, only as much secure data can be
routed as directed secure capacity is provided. The amount of secure capacity is
determined by the installed linkdesigns and their secure status.

∑

k∈K

US
k fk

uv ≤
∑

l∈L{u,v}

Sl
{u,v}C

l
uvx

l
{u,v} ∀{u, v} ∈ E (3.9)

∑

k∈K

US
k fk

vu ≤
∑

l∈L{u,v}

Sl
{u,v}C

l
vuxl

{u,v} ∀{u, v} ∈ E (3.10)

Node secure capacity constraints. If a node v ∈ V is risky, a secure commodity
k ∈ K must not be routed over it. We ensure this constraint by prohibiting that a
secure commodity is routed over edges incident to v (except the case that v = ok

or v = dk).

fk
uv ≤ 1− Sk +































































1 if
u ∈ {ok, dk},
v ∈ {ok, dk}

Sv if
u ∈ {ok, dk},
v /∈ {ok, dk}

Su if
u /∈ {ok, dk},
v ∈ {ok, dk}

SuSv otherwise

∀{u, v} ∈ E, k ∈ K (3.11)

The network design problem 21

fk
vu ≤ 1− Sk +































































1 if
u ∈ {ok, dk},
v ∈ {ok, dk}

Sv if
u ∈ {ok, dk},
v /∈ {ok, dk}

Su if
u /∈ {ok, dk},
v ∈ {ok, dk}

SuSv otherwise

∀{u, v} ∈ E, k ∈ K (3.12)

The constraint is modeled in these inequalities. Let k ∈ K and e ∈ E. In case
of a risky commodity (Sk = 0) they hold in any case, as well as when the origin
and the destination of the commodity are equal to the endnodes of e. When the
commodity k is secure the potential choice of edge e for routing depends on the
security status of the endnodes. If one endnode is the origin or destination of k,
e can only be used to route k if the other node is secure. In the case of a secure
commodity where any of the endnodes of e is neither origin nor destination of it,
the edge is prohibited to use for routing k if one of the node is not secure.

This constraint has actually not to be included in the formulation, because prac-
tically (3.11) and (3.12) are used in terms of variable reduction.

Path length limitation constraint. The bmax constraint is represented by this
class of inequalities which claim that the number of edges over which a commodity
k ∈ K is routed must not exceed the predetermined limit.

∑

{u,v}∈E

(fk
uv + fk

vu) ≤Mk ∀k ∈ K (3.13)

In the next paragraph we describe the mechanism used to integrate the symmetrical
routing constraint symdem in the model.

Symmetry constraints. First we present some notation to simplify the discussion:
For k, k′ ∈ K :

• k, k′ are parallel if ok = ok′ and dk = dk′ .

• k, k′ are coupled if ok = dk′ and dk = ok′ .

• k, k′ are connected if k, k′ are parallel or coupled.

• k is isolated if no commodity is coupled with k.

We define commodity subsets, consisting of all commodities with the same origin
and destination nodes:

Kpq := {k ∈ K | ok = p, dk = q} ∀p, q ∈ V.

22 Model

The symdem constraint demands that two coupled commodities have to be
routed symmetrically. This means that if one commodity uses an edge e ∈
E in a certain direction, the other commodity must use the same edge but in
the opposite direction. This constraint also implies that parallel commodities
have to use the same edges in equal direction if at least one coupled commodity
exists. For simplification we assume from now on that there exist only parallel
commodities if, at the same time, also at least one coupled commodity exists for
them. Therefore we can formalize the requirements as follows:

fk
uv = fk′

vu ∀{u, v} ∈ E, k, k′ ∈ K : k, k′coupled (3.14)

fk
uv = fk′

uv ∀{u, v} ∈ E, k, k′ ∈ K : k, k′parallel (3.15)

fk
vu = fk′

vu ∀{u, v} ∈ E, k, k′ ∈ K : k, k′parallel (3.16)

We use the variable-reducing character of this constraint by modifying the data
and expanding a part of our model inequalities. Merging connected commodities
into a new commodity scales down our problem size.

In the following, we present the merging process concerning commodities respective
to two nodes p, q ∈ V . We merge all commodities from Kpq ∪Kqp in a new commodity
kpq. This commodity is uniquely identified by the node pair since it is finally the
only commodity with a relation to both nodes. All properties of the commodities are
assigned to the aggregation kpq, whereby we always pass on the strongest property.
Afterwards we present how the respective variables of the commodities k ∈ Kpq ∪ Kqp

can be merged into new variables for kpq. Finally we dwell on the changes of the
predeveloped model constraints becoming necessary as a result of the merging process.

Passing properties In the following we explain how the properties of the connected
commodities are passed on to the newly generated commodity. Let p, q ∈ V .

Origin/Destination The new commodity kpq represents the communication demand
between the nodes p and q. It is still directed with the origin p and the destination
q, such that

okpq
= p,

dkpq
= q.

Value The value of kpq indicates the amount of data which has to be routed from p
to q, hence it is the sum of the values of all commodities k ∈ Kpq.

Concerning the communication demand from q to p we introduce for each com-
modity k ∈ K a new parameter coupled value Uk. This parameter indicates
the amount of data that has to be routed from the destination node dk to the
origin node ok.

The network design problem 23

Considering the commodity kpq, this means that the coupled value is the sum of
the values of all commodities k ∈ Kqp. Now it follows that

Ukpq
=

∑

k∈Kpq

Uk,

Ukpq
=

∑

k∈Kqp

Uk.

Secure status All secure commodities have to be routed securely. So if at least one
secure commodity k ∈ Kpq ∪ Kqp with Sk = 1 exists, all commodities have to be
routed securely, and as a consequence also kpq. Because of this condition, the
secure value of kpq is derived as followed:

Skpq
= max

k∈Kpq∪Kqp

Sk

Secure value The secure value of kpq takes the amount of the value of kpq if kpq has
to be routed securely, otherwise 0.

To cope with the reverse direction we introduce for each commodity k ∈ K the

new parameter coupled secure value U
S
k , equal to the coupled value Uk if k

has to be routed securely, otherwise 0.

Therefore it follows that

US
kpq

= Ukpq
· Skpq

,

U
S
kpq

= Ukpq
· Skpq

.

Hoplimit Since all commodities k ∈ Kpq ∪ Kqp have to use the same edges and since
the path length limitation constraint has to be fulfilled for all k at the same time,
the used path must contain at most the same amount of edges as the minimal
hoplimit of all commodities:

Mkpq
= min

k∈Kpq∪Kqp

Mk

Example 3.16 The merging procedure concering three connected commodities into
one is presented in Table 3.2.

Merging variables The commodity kpq has to be routed from okpq
to dkpq

over the
same path as all commodities k ∈ Kpq. At the same time it has to use the same edges
as all commodities k ∈ Kqp, only in the opposite direction. This relation is formalized
as follows:

f
kpq
uv = fk

uv ∀{u, v} ∈ E, k ∈ Kpq (3.17)

f
kpq
vu = fk

vu ∀{u, v} ∈ E, k ∈ Kpq (3.18)

f
kpq
uv = fk

vu ∀{u, v} ∈ E, k ∈ Kqp (3.19)

24 Model

commodity ok dk Uk Uk Sk US
k U

S
k Mk

k1 p q 12 0 0 0 0 6

k2 p q 5 0 0 0 0 2

k3 q p 13 0 1 13 0 4

kpq p q 17 13 1 17 13 2

Table 3.2: Merging of connected commodities. The three connected commodities k1, k2

and k3 are merged in the new commodity kpq

Effects of the transformation on the model inequalities: After this trans-
formation, we consider which of our model constraints are affected by the changes.
Starting with the original commodities k ∈ Kold and assuming that the symmetric
routing constraints (3.14)–(3.16) are fulfilled, we argue why it is equivalent considering
only the new merged commodities k ∈ Knew according to the fulfillment of the model
constraints including minor modifications.

Let p, q ∈ V . If kpq ∈ Knew fulfills the flow balance constraints (3.2), these are
fulfilled by all commodities k ∈ Kpq∪Kqp ⊆ Kold, subject to being routed symmetrically.
This also holds for the subtour elimination constraints (3.3) and by construction of
Mkpq

and Skpq
also for the path length restriction (3.13) and node secure capacity

constraints (3.11), (3.12). We only have to concentrate on the node and edge capacity
constraints (3.4), (3.5) and (3.8)–(3.10). Now also the couple-(secure)-value has to be
integrated.

Adaptation of the edge capacity constraints: For the expansion of the edge
capacity constraints we consider the original commodity set Kold. The commodities
k ∈ Kold accomplish the symmetric routing constraints (3.14)–(3.16). We show how
the edge capacity constraints have to be expanded and modified such that we only
have to consider the new commodities k ∈ Knew generated by the merging process.

Let vi ∈ V, i = 1, ..., |V | and {u, v} ∈ E.

∑

k∈Kold

Ukf
k
uv =

|V |
∑

i=1

|V |
∑

j>i

(

∑

k∈Kvivj

Ukf
k
uv +

∑

k∈Kvjvi

Ukf
k
uv

)

=

|V |
∑

i=1

|V |
∑

j>i

(

Ukvivj
fk

uv + Ukvivj
fk

vu

)

=
∑

k∈Knew

Ukf
k
uv +

∑

k∈Knew

Ukf
k
vu

Applying this analogously for the other direction, edges and also the secure edge
capacity constraints, the modified capacity constraints for edges can be stated as fol-

The network design problem 25

lows:

∑

k∈K

Ukf
k
uv +

∑

k∈K

Ukf
k
vu ≤

∑

l∈L{u,v}

C l
uvx

l
{u,v} ∀{u, v} ∈ E (3.20)

∑

k∈K

Ukf
k
vu +

∑

k∈K

Ukf
k
uv ≤

∑

l∈L{u,v}

C l
vuxl

{u,v} ∀{u, v} ∈ E (3.21)

∑

k∈K

US
k fk

uv +
∑

k∈K

U
S
k fk

vu ≤
∑

l∈L{u,v}

Sl
{u,v}C

l
uvx

l
{u,v} ∀{u, v} ∈ E (3.22)

∑

k∈K

US
k fk

vu +
∑

k∈K

U
S
k fk

uv ≤
∑

l∈L{u,v}

Sl
{u,v}C

l
vuxl

{u,v} ∀{u, v} ∈ E (3.23)

Adaptation of the node capacity constraints: Concerning the capacity of a
node v ∈ V we now also have to consider the coupled value of the commodities that
pass through v. We consider once more the original commodities k ∈ Kold fulfilling
the symmetric routing constraints (3.14)–(3.16). We demonstrate that by use of the
coupled value these commodities can be replaced by the new commodities k ∈ Knew

generated by the merging process.

Let v, vi ∈ V, i = 1, ..., |V | with v = vi∗ , it follows that

∑

k∈Kold

∑

{u,v}∈δ(v)

Ukf
k
uv +

∑

k∈Kold
v=o

k

Uk

=

|V |
∑

i=1

|V |
∑

j>i

∑

{u,v}∈δ(v)

(

∑

k∈Kvivj

Ukf
k
uv +

∑

k∈Kvjvi

Ukf
k
uv

)

+

|V |
∑

i>i∗

∑

k∈Kvvi
o
k
=v

Uk +

|V |
∑

i<i∗

∑

k∈Kviv
o
k
=v

Uk

=

|V |
∑

i=1

|V |
∑

j>i

∑

{u,v}∈δ(v)

Ukvivj
fk

uv +

|V |
∑

i=1

|V |
∑

j>i

∑

{u,v}∈δ(v)

Ukvivj
fk

vu

+

|V |
∑

i>i∗

Ukvvi
+

|V |
∑

i<i∗

Ukviv

=
∑

k∈Knew

∑

{u,v}∈δ(v)

Ukf
k
uv +

∑

k∈Knew

∑

{u,v}∈δ(v)

Ukf
k
vu

+
∑

k∈Knew
v=o

k

Uk +
∑

k∈Knew
v=d

k

Uk.

26 Model

Therefore the modified node capacity constraints can be written:
∑

k∈K

∑

{u,v}∈δ(v)

Ukf
k
uv +

∑

k∈K:v=o
k

Uk +
∑

k∈K

∑

{u,v}∈δ(v)

Ukf
k
vu +

∑

k∈K:v=d
k

Uk ≤ Cv ∀v ∈ V

(3.24)

Taking into account the flow balance constraints (3.2) we can prove the following claim:

Claim 3.17 Let v ∈ V , it follows that
∑

k∈K

∑

{u,v}∈δ(v)

Ukf
k
vu +

∑

k∈K:v=d
k

Uk =
∑

k∈K

∑

{u,v}∈δ(v)

Ukf
k
uv +

∑

k∈K:v=o
k

Uk (3.25)

Proof.
∑

k∈K

∑

{u,v}∈δ(v)

Ukf
k
vu +

∑

k∈K:v=d
k

Uk

=
∑

k∈K
v 6=o

k
,v 6=d

k

Uk

∑

{u,v}∈δ(v)

fk
vu +

∑

k∈K
v=o

k

Uk

∑

{u,v}∈δ(v)

fk
vu

+
∑

k∈K
v=d

k

Uk

∑

{u,v}∈δ(v)

fk
vu +

∑

k∈K
v=d

k

Uk

∑

{u,v}∈δ(v)

(fk
uv − fk

vu)

=
∑

k∈K
v 6=o

k
,v 6=d

k

Uk(
∑

{u,v}∈δ(v)

fk
vu +

∑

{u,v}∈δ(v)

(fk
uv − fk

vu))

+
∑

k∈K
v=d

k

Uk(
∑

{u,v}∈δ(v)

fk
vu +

∑

{u,v}∈δ(v)

(fk
uv − fk

vu))

+
∑

k∈K
v=o

k

Uk

∑

{u,v}∈δ(v)

(fk
vu − fk

uv + fk
uv)

=
∑

k∈K
v 6=o

k
v, 6=d

k

Uk

∑

{u,v}∈δ(v)

fk
uv +

∑

k∈K
v=d

k

Uk

∑

{u,v}∈δ(v)

fk
uv

+
∑

k∈K
v=o

k

Uk

∑

{u,v}∈δ(v)

fk
uv +

∑

k∈K
v=o

k

Uk

∑

{u,v}∈δ(v)

(fk
vu − fk

uv)

=
∑

k∈K

∑

{u,v}∈δ(v)

Ukf
k
uv +

∑

k∈K:v=o
k

Uk

�

After this short observation, we can finally formulate the new modified node capacity
constraints. Combining (3.24) and (3.25) it follows:

∑

k∈K

∑

{u,v}∈δ(v)

(Uk + Uk)f
k
uv +

∑

k∈K:v=o
k

(Uk + Uk) ≤ Cv ∀v ∈ V. (3.26)

The network design problem 27

Remark 3.18 Note that, when the symdem-constraint is not considered, the couple-
(secure)-values are all 0, so that we have the same constraints as in (3.4),(3.5) and
(3.8)–(3.10).

Remark 3.19 At first sight the symdem-constraints (3.14)-(3.16) seem to promise
the possibility to halve the amount of directed edge flow variables by simply considering
the undirected routing case. This is also proposed in the existing literature concerning
the given problem [2]. This would only be reasonable in the case of symmetrical
homogeneous data, or more precisely, if for all nodes p, q ∈ V , all edges {u, v} ∈ E and
linkdesigns l ∈ L{u,v}

•
∑

k∈Kpq
Uk =

∑

k∈Kqp
Uk

• Mk1
= Mk2

∀k1, k2 ∈ Kpq ∪ Kqp

• Sk1
= Sk2

∀k1, k2 ∈ Kpq ∪ Kqp

• C l
uv = C l

vu

For our model it is impossible to apply this simplification to the undirected case. We
illustrate this by a short example:

Example 3.20 Let p1, p2, q1, q2 ∈ V , e = {u, v} ∈ E, Le = {l}. The commodities
k1 ∈ Kp1q1 and k2 ∈ Kp2q2 are isolated with values Uk1

= Uk2
= α. The linkdesign

l provides capacity α for both directions (C l
uv = C l

vu = α). We assume that e is
equipped with l.
In our model the directions in which the commodities are routed over e ascertain the
feasibility of this routing regarding the respective edge capacity constraint. If k1 and
k2 are routed in the same direction over e, it is not feasible, whereas if they are routed
in oppositional directions, it would be feasible. We can not cope with this difficulty
in an undirected model with edge flow variables, even though it would have meant an
easier reduction in terms of the problem size.

3.2.4 Objective function

Since the overall cost for two associated arcs has been bundled in the linkdesign pa-
rameter W l

e, the objective of the minimization of the overall costs can be formalized
as follows:

min
∑

e∈E

∑

l∈Le

W l
ex

l
e

28 The model

3.3 The model

min
∑

e∈E

∑

l∈Le

W l
ex

l
e

∑

l∈Le
xl

e ≤ 1 ∀e ∈ E

∑

{u,v}∈δ(v)(f
k
uv − fk

vu) =







−1 if v = ok

1 if v = dk

0 otherwise
∀v ∈ V, k ∈ K

∑

{u,v}∈E(S)(f
k
uv + fk

vu) ≤ |S| − 1 ∀S ⊆ V, k ∈ K

∑

k∈K Ukf
k
uv +

∑

k∈K Ukf
k
vu ≤

∑

l∈L{u,v}
C l

vuxl
{u,v} ∀{u, v} ∈ E

∑

k∈K Ukf
k
vu +

∑

k∈K Ukf
k
uv ≤

∑

l∈L{u,v}
C l

uvx
l
{u,v} ∀{u, v} ∈ E

∑

k∈K US
k fk

uv +
∑

k∈K U
S
k fk

vu ≤
∑

l∈L{u,v}
Sl
{u,v}C

l
vuxl

{u,v} ∀{u, v} ∈ E

∑

k∈K US
k fk

vu +
∑

k∈K U
S
k fk

uv ≤
∑

l∈L{u,v}
Sl
{u,v}C

l
uvx

l
{u,v} ∀{u, v} ∈ E

∑

k∈K

∑

{u,v}∈δ(v)(Uk + Uk)f
k
uv ≤ Cv −

∑

k∈K
v=o

k

(Uk + Uk) ∀v ∈ V

∑

{u,v}∈δ(v)

∑

l∈L{u,v}
P l

uvx
l
{u,v} ≤ P−

v ∀v ∈ V

∑

{u,v}∈δ(v)

∑

l∈L{u,v}
P l

vuxl
{u,v} ≤ P+

v ∀v ∈ V

∑

e={u,v}∈E(fk
uv + fk

vu) ≤ Mk ∀k ∈ K

fk
uv ∈ {0, 1} ∀{u, v} ∈ E, k ∈ K

fk
vu ∈ {0, 1} ∀{u, v} ∈ E, k ∈ K

xl
e ∈ {0, 1} ∀e ∈ E, l ∈ Le

We define the polyhedron associated with this integer linear program and its LP-
relaxation as

P := conv

{

(x, f) ∈ {0, 1}
P

e∈E
|Le| × {0, 1}2×|E|×|K|

∣

∣

∣

∣

(x, f) satisfies
(3.1)− (3.3), (3.6), (3.7),

(3.13), (3.20)− (3.26)

}

LP := conv

{

(x, f) ∈ [0, 1]
P

e∈E
|Le| × [0, 1]2×|E|×|K|

∣

∣

∣

∣

(x, f) satisfies
(3.1)− (3.3), (3.6), (3.7),

(3.13), (3.20)− (3.26)

}

Chapter 4

Classes of valid inequalities

In this chapter we present different types of valid inequalities. We give some examples
to show that in special cases they really cut off some fractional solution points and
which conditions have to be fulfilled such that some are even facet defining.

4.1 GUB cover inequalities

Anyone of our model inequalities can be represented as a knapsack inequality, which
is an inequality of the form

aT x =
∑

j∈J

ajxj ≤ b with x ∈ {0, 1}|J | (4.1)

In [9] it was shown that these inequalities can be used to derive valid inequalities.
These so called cover inequalities are subsets of the variables in the inequality such
that if all variables were set to 1, the inequality would be violated, but if any one
variable were excluded, the inequality would be satisfied. Inequalities of the form of
the sum of the variables in the cover must be less than or equal to the size of the
cover less one describe the relationship of the variables in the cover. These inequalities
have been extended to knapsacks with generalized upper bounds [18]. These so callled
GUB constraint for a set of binary variables is the sum of variables less than or equal
to one. If the variables in a GUB constraint are also members of a knapsack constraint,
then the minimal cover can be selected with the additional consideration that at most
one of the members of the GUB constraint can be one in a solution. This additional
restriction makes the GUB cover inequalities stronger (that is, more restrictive) than
ordinary cover inequalities.

In our model arise three types of GUBs, one are the linkdesign installation con-
straints (3.1) which consider the linkdesign installation variables:

∑

l∈Le

xl
e ≤ 1 ∀e ∈ E (4.2)

29

30 GUB cover inequalities

The other two classes of GUBs are deduced by the subtour elimination constraints
(3.3) and the third also by the flow balance equalities (3.2). Both consider sets of
commodity edge flow variables and we apply them alternately:

fk
uv + fk

vu ≤ 1 ∀k ∈ K, {u, v} ∈ E (4.3)
∑

{u,v}∈δ(v)

fk
uv ≤ 1 ∀k ∈ K, v ∈ V (4.4)

First we generally describe how the so called GUB cover inequalities are de-
duced.

4.1.1 Valid inequalities from knapsack and GUB

Consider the 0-1 knapsack set H = {x ∈ {0, 1}|J | |
∑

j∈J ajxj ≤ b}. Assuming that
all aj 66= 0 (erasing previously all xj with aj = 0), we can split J into two disjoint
subsets JP and JN , where P stands for positive and N for negative. JP consists of
the indices with the corresponding coefficient being positive, and for JN accordingly
negative. We can now rewrite H = {x ∈ {0, 1}|J | |

∑

j∈JP
ajxj −

∑

j∈JN
ajxj ≤ b}

with all coefficients aj > 0 (aj = |aj | ∀j ∈ J = JP ∪ JN). Using the presence of some
GUBs, these subsets JP and JN can be further split into subsets Gi tying together
all variables affected by one GUB. Note that we only apply GUBs that bind together
exclusively the variables of the respective uppersets and that these GUBs are pairwise
disjoint with each other. When some variable xj does not appear in a GUB we apply
the trivial GUB xj ≤ 1 since we only consider binary variables. We denote by IP and
IN the index sets for the used GUBs, such that:

JP =
⋃

i∈IP

Gi , JN =
⋃

i∈IN

Gi and Gi ∩Gj = ∅ ∀i, j ∈ I = IP ∪ IN

Now we consider the knapsack polytope with explicit GUB constraints

XGUB :=







x ∈ {0, 1}|J |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j∈JP

ajxj −
∑

j∈JN

ajxj ≤ b,
∑

j∈Gi

xj ≤ 1 ∀i ∈ I = IP ∪ IN







We say that C := CP ∪ CN is a GUB cover if

1. CP ⊆ JP and CN ⊆ JN

2. |CP ∩Gi| ≤ 1 ∀i ∈ IP and |CN ∩Gi| ≤ 1 ∀i ∈ IN

3.
∑

j∈CP
aj −

∑

j∈CN
aj > b

Classes of valid inequalities 31

With the GUB cover C, we associate the sets:

I+
P :={i ∈ IP | CP ∩Gi 66= ∅} (4.5)

I+
N :={i ∈ IN | CN ∩Gi 66= ∅} (4.6)

G+
i :={j ∈ Gi : aj ≥ al for l ∈ CP ∩Gi} ∀i ∈ I+

P (4.7)

G+
i :={j ∈ Gi : aj ≤ al for l ∈ CN ∩Gi} ∀i ∈ I+

N (4.8)

With these definitions, the following was derived in [18]:

Proposition 4.1 The inequality

∑

i∈I+
P

∑

j∈G
+
i

xj ≤ |CP | − 1 +
∑

i∈I+
N

∑

j /∈G
+
i

xj +
∑

i∈IN\I+
N

∑

j∈Gi

xj (4.9)

is valid for XGUB.

For the special case that there exist only positive coefficients in the knapsack inequality,
stronger inequalities were introduced. For the GUB cover C, let

E(C) := {k ∈ JP | ak ≥ aj ∀j ∈ C}\
⋃

i∈I+
P

G+
i . (4.10)

Proposition 4.2 The inequality

∑

i∈I+
P

∑

j∈G
+
i

xj +
∑

j∈E(C)

xj ≤ |CP | − 1 (4.11)

is valid for XGUB if JN = ∅.

We use this class of inequalities in the following variants:

4.1.2 Edge (secure) capacity constraints

Edge capacity constraints: For an edge {u, v} ∈ E we first concern the direction u
to v. In this case the underlying knapsacks aT x ≤ b are the inequalities (3.20),

∑

k∈K

Ukf
k
uv +

∑

k∈K

Ukf
k
vu −

∑

l∈L{u,v}

C l
uvx

l
{u,v} ≤ 0 ∀{u, v} ∈ E (4.12)

We apply the linkdesign GUB (4.2) and commodity edge flow variable GUB (4.3),
such that for the above constraints we have one negative and |K| positive GUBs.
The aj correspond to the capacity of the installable linkdesigns and the value
(coupled value) of a commodity routed over {u, v} in direction u to v (v to u),
respectively.

32 GUB cover inequalities

A GUB cover corresponds to the election of two commodity subsets Kuv ⊆ K
and Kvu ⊆ K (with Kuv ∩Kvu = ∅) and the choice of a particular linkdesign l̂
for the edge {u, v}. The commodities from Kuv (Kvu) are routed over {u, v} in
direction u to v (v to u). Let

K̂uv = Kuv ∪ {k ∈ Kvu | Uk ≥ Uk} (4.13)

K̂vu = Kvu ∪ {k ∈ Kuv | Uk ≥ Uk}. (4.14)

The resulting inequality,
∑

k∈K̂uv

fk
uv +

∑

k∈K̂vu

fk
vu −

∑

l∈L{u,v}:

Cl
uv>C

l̂{u,v}
uv

xl
{u,v} ≤ |Kuv|+ |Kvu| − 1 (4.15)

states that, choosing the cover commodities to be routed over the edge {u, v},
a linkdesign with higher directed capacity than the cover capacity has to be
installed.

An analogous inequality follows for the direction v to u.

Example 4.3 Consider an instance with three nodes V = {v1, v2, v3}, three
edges E =

{

{v1, v2}, {v1, v3}, {v2, v3}
}

and two commodities K = {k1, k2}. The
commodities have the following demand values: Uk1

= Uk2
= 3 and Uk1

= Uk2
=

0 respectively. For the edge {v2, v3} the linkdesign set consists of two linkdesigns
L{v2,v3} = {l1, l2} providing capacity for the direction v2 to v3 in amount of
Cv2v3

l1
= 5 and Cv2v3

l1
= 10 respectively.

After solving the LP-relaxation, the optimal solution results in fk1
v2v3

= fk2
v2v3

= 0.8

and xl1
{v2,v3}

= 1, fulfilling the corresponding edge capacity inequality. Regarding

the cover for the edge {v2, v3}, direction v2 to v3, represented by the commodities
k1 and k2 and the linkdesign l1, we obtain the inequality

fk1
v2v3

+ fk2
v2v3
− xl2

{v2,v3}
≤ 1. (4.16)

This GUB cover inequality cuts off the current non-integral solution.

Edge secure capacity constraints: In analogy to the edge capacity constraints
above, we derive GUB cover inequalities from the secure constraints (3.22) and
(3.23).

4.1.3 Port constraints

Inport constraints: In this case the underlying knapsacks aT x ≤ b are the inequali-
ties (3.6),

∑

{u,v}∈δ(v)

∑

l∈L{u,v}

P l
uvx

l
{u,v} ≤ P−

v ∀v ∈ V (4.17)

Classes of valid inequalities 33

Applying the linkdesign installation GUB (4.2) we obtain that we have |δ(v)|
positive GUBs and no negative GUB for these constraints. The aj correspond
to the inport consumption of the installable linkdesigns.

A GUB cover corresponds to the choice of a particular linkdesigns l̂{u,v} on each
edge {u, v} of a subset E′ ⊆ δ(v). We define the maximal inport consumption of
all edges and linkdesigns in the cover:

Pmax(C) := max
{u,v}∈E′

P
l̂{u,v}
uv (4.18)

The resulting inequality,

∑

{u,v}∈E′

∑

l∈L{u,v}:

Pl
uv≥P

l̂{u,v}
uv

xl
{u,v} +

∑

{u,v}∈δ(v)\E′

∑

l∈L{u,v}:

Pl
uv≥Pmax(C)

xl
{u,v} ≤ |E

′| − 1 (4.19)

states that at least at one edge in E′, a linkdesign with a lower inport consumption
than in the cover has to be installed.

Example 4.4 Consider the instance from Example 4.3. For v1 the number of
inports is P−

v1
= 5. The set of linkdesigns for the edges {v1, v2} and {v1, v3} are

the following:

L{v1,v2} = {l1, l2} with P l1
v2v1

= 3 and P l2
v2v1

= 4

L{v1,v3} = {l′} with P l′

v3v1
= 3.

Solving the LP-relaxation results in an optimal solution with xl2
{v1,v2}

= xl′

{v1,v3}
=

0.8 fulfilling the corresponding inport inequality. The cover concerning v1 consists
of the edges {v1, v2} and {v1, v3} and the linkdesigns l1, l′ respectively. The
implied inport GUB cover inequality

xl1
{v1,v2}

+ xl2
{v1,v2}

+ xl′

{v1,v3}
≤ 1 (4.20)

cuts off the current fractional solution.

Outport constraints: Analogous inequalities follow from the outport inequalities
(3.7).

4.1.4 Node capacity constraints

Node capacity constraints: In this case the underlying knapsacks aT x ≤ b are the
inequalities (3.8),

∑

k∈K

∑

e∈δ(v)
e={u,v}

(Uk + Uk)f
k
uv ≤ Cv −

∑

k∈K:v=o
k

(Uk + Uk) ∀v ∈ V (4.21)

34 Cutset inequalities

Utilizing the commodity edge flow variable GUB (4.4) it results that for the above
constraints we have no negative and |K| positive GUBs. The aj correspond to
the overall demand values Uk + Uk.

A GUB cover corresponds to the election of a commodity subset K ⊆ K and the
choice of a particular edge êk of δ(v) for each commodity k ∈ K, over which it
is routed into the node v. We define the maximal overall demand value for the
commodities in the cover:

Umax(C) := max
k∈K

(Uk + Uk) (4.22)

The resulting inequality,

∑

k∈K

∑

{u,v}∈δ(v)

fk
uv +

∑

k∈K\K:

U
k
+Uk≥Umax(C)

∑

{u,v}∈δ(v)

fk
uv ≤ |K| − 1 (4.23)

states that number of commodities of the cover (or commodities with even higher
overall demand values) which are routed over the node v must be less than the
number of commodities in the cover.

Example 4.5 Consider the instance from Example 4.3 with the there presented
commodities k1 and k2. The node v1 has a capacity of Cv1

= 5.
The optimal solution of the LP-relaxation contains the values fk1

v1v3
= fk2

v1v3
= 0.8,

fulfilling the node capacity constraint for v1. The GUB cover consists of the
commodity k1 with the edge {v1, v2} and k2 with {v1, v3} respectively. We obtain
the GUB cover inequality

∑

{u,v1}∈δ(v1)

fk1
uv1

+
∑

{u,v1}∈δ(v1)

fk2
uv1
≤ 1 (4.24)

cutting off the current fractional solution.

These GUB Cover inequalities are all valid for our feasibility space since the knap-
sack and GUB inequalities are all part of our model.

4.2 Cutset inequalities

In this section we present the types of inequalities which arise from the consideration
of cuts.

Classes of valid inequalities 35

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

W V \W

v1

v2

v3

v4

v5

ok dk Uk Uk US
k U

S
k

k1 v1 v3 100 0 0 0

k2 v3 v2 200 0 0 0

k3 v2 v4 20 00 20 00

k3 v5 v2 30 0 30 0

Figure 4.1: Cut traffic

Consider the node subset W ⊆ V . Commodities crossing the cut δ(W) impose certain
requirements on the capacity provided by some linkdesigns installed on the edges of
δ(W).
Using Figure 4.1, we present these conditions. The amount of traffic that has to be
routed from W to V \W is 120. Thus, a overall capacity of at least 120 must be
provided by the linkdesigns installed on the edges {v1, v3}, {v2, v3}, and {v2, v4} with
respect to the direction out of W .
Taking into account the single path condition, we state that the above commodities
k1,k2,k3, and k4 must cross the cut using at least one edge e ∈ δ(W). Considering the
commodities k1 and k2 with their relatively high data values, it follows that at least
one edge {v1, v3}, {v2, v3}, or {v2, v4} must be equipped with a linkdesign providing at
least a capacity of 100 w.r.t. the direction out of W , to route commodity k1. Another
edge e ∈ δ(W) must be equipped with a linkdesign providing at least a capacity of 200
w.r.t. the direction into the node subset W , such that commodity k2 can be routed
over the cut.

In the following we specify these requirements. At first we define useful denomina-
tions:

Definition 4.6 (Sourced commodities) Let W ⊆ V . A commodity is called W
sourced commodity for the node subset W , if its origin is in W and its destination in
V \W . Define

KW+ := {k ∈ K | ok ∈W,dk ∈ V \W}

the set of W sourced commodities.

Definition 4.7 (Targeted commodities) Let W ⊆ V . A commodity is called W
targeted commodity with respect to the node subset W , if its destination lays in W

36 Cutset inequalities

and its origin in V \W . Define

KW− := {k ∈ K | dk ∈W,ok ∈ V \W}

the set of W targeted commodities.

4.2.1 Cut traffic inequalities

This class of inequalities states that the directed (secure) capacity across a cut must
be at least as large as the (secure) demand data across the cut. First we define this
cut-crossing traffic in the following:

Definition 4.8 ((Secure) outbound traffic) Let W ⊆ V . We define

T+(W) :=
∑

k∈K
W+

Uk +
∑

k∈K
W−

Uk

respectively

T S+(W) :=
∑

k∈K
W+

US
k +

∑

k∈K
W−

U
S
k

to be the amount of (secure) outbound traffic of W .

Let W ⊆ V . Considering the normal data we obtain the following inequality
∑

{u,v}∈E:
u∈W,v∈V \W

∑

l∈L{u,v}

C l
uvx

l
{u,v} ≥ T+(W) (4.25)

Likewise, we can generate inequalities concerning the outbound traffic which has to be
routed securely. We obtain the inequality

∑

{u,v}∈E:
u∈W,v∈V \W

∑

l∈L{u,v}

Sl
{u,v}C

l
uvx

l
{u,v} ≥ T S+(W) (4.26)

Validity of (4.25) and (4.26) for the considered polyhedron P is obvious. We apply
the above inequalities (4.25) and (4.26) in terms of base knapsack inequalities and em-
ploy the same procedures as in Section 4.1. As GUB we use the linkdesign installation
constraints (3.1).

4.2.2 Particular commodity inequalities

Investigating the cut we can also deal with the single path routing constraint. All
commodities crossing the cut have to use at least one edge entirely, since the flow must
not be splitted. Considering remarkable commodities (in terms of (secure) amount
of demand value) this fact imposes the requirement that at least one edge must be
equipped with a linkdesign providing enough capacity for a remarkable commodity.
To simplify the argumentation, we first define the following:

Classes of valid inequalities 37

Definition 4.9 (Maximum (secure) outbound value) Concerning the node
subset W we define the largest (secure) single communication demand from W to
V \W Let W ⊆ V :

UW+

max := max{ max
k∈K

W+

Uk, max
k∈K

W−

Uk}

respectively

U
W+

S
max := max{ max

k∈K
W+

US
k , max

k∈K
W−

U
S
k}

the maximum (secure) outbound value of W .

Definition 4.10 (Maximum (secure) inbound value) Concerning the node
subset W we denote the biggest (secure) single communication demand from V \W
to W . Let W ⊆ V . Define

UW−

max := max{ max
k∈K

W−

Uk, max
k∈K

W+

Uk}

respectively

U
W−

S
max := max{ max

k∈K
W−

US
k , max

k∈K
W+

U
S
k}

the maximum (secure) inbound value of W .

Definition 4.11 ((Secure) outbound sufficient linkdesign) A linkdesign is
called (secure) outbound sufficient with respect to a node subset W , if it provides as
least as much (secure) capacity as the maximum (secure) outbound value of W . Let
W ⊆ V , {u, v} ∈ δ(W) with u ∈W,v ∈ V \W , and let

LW+

{u,v} := {l ∈ L{u,v} | C l
uv ≥ UW+

max}

respectively

L
W+

S

{u,v} := {l ∈ L{u,v} | Sl
{u,v}C

l
uv ≥ UW+

max}

be the set of (secure) outbound sufficient linkdesigns for the node subset W .

Definition 4.12 ((Secure) inbound sufficient linkdesign) A linkdesign is
called (secure) inbound sufficient with respect to a node subset W , if it provides as
least as much (secure) capacity as the maximum (secure) inbound value of W . Let
W ⊆ V , {u, v} ∈ δ(W) with u ∈W,v ∈ V \W , and let

LW−

{u,v} := {l ∈ L{u,v} | C l
uv ≥ UW+

max}

respectively

L
W−

S

{u,v} := {l ∈ L{u,v} | Sl
{u,v}C

l
uv ≥ UW+

max}

be the set of (secure) inbound sufficient linkdesigns for the node subset W .

38 Cutset inequalities

We derive the inequalities

∑

{u,v}∈δ(W)

∑

l∈LW+

{u,v}

xl
{u,v} ≥ 1 (4.27)

∑

{u,v}∈δ(W)

∑

l∈L
W

+
S

{u,v}

xl
{u,v} ≥ 1 (4.28)

∑

{u,v}∈δ(W)

∑

l∈LW−

{u,v}

xl
{u,v} ≥ 1 (4.29)

∑

{u,v}∈δ(W)

∑

l∈L
W

−
S

{u,v}

xl
{u,v} ≥ 1 (4.30)

Proposition 4.13 The above inequalities are valid for P.

Proof. Assume that p̂ = (x̂, f̂) does not satisfy the inequality (4.27), i.e. all edges in
δ(W) provide less capacity than UW+

max. On the other hand the commodity correspond-
ing to UW+

max has to cross the cut unsplitted, i.e. has to use one single edge. Hence the
edge capacity constraint is violated concerning this particular edge and therefore p̂ is
not feasible for P. Likewise for the other inequalities. �

The inequalities (4.27)–(4.30) can be combined. Consider the case that we have
four different commodities, each remarkable in its own way. Due to the availability
of linkdesigns, these four commodities may be forced to be routed over four different
edges of the cut. Let W ⊆ V and four commodities k1, k2, k3, k4 ∈ K, where k1 is the

corresponding commodity of UW+

max, k2 of U
W+

S
max, k3 of UW−

max, and k4 of U
W−

S
max. When

at the same time LW+

e ∩ L
W+

S
e ∩ LW−

e ∩ L
W−

S
e = ∅ ∀e ∈ δ(W) then we obtain the

inequality

∑

e∈δ(W)

∑

l∈LW+
e ∪L

W
+
S

e ∪LW−
e ∪L

W
−
S

e

xl
e ≥ 4 (4.31)

Example 4.14 We consider the node subset W ⊆ V from Figure 4.1 and suppose
that L{v1v3} = L{v2v3} = L{v2v4} = {l1, l2, l3, l4} with the properties presented in Table
4.1.

In this case all commodities k1, k2, k3, and k4 have to use different edges to cross
the cut. Thus each edge e ∈ δ(W) must be equipped with an other linkdesign l ∈
{l1, l2, l3, l4}.

Classes of valid inequalities 39

C l
uv C l

vu Sl
{u,v}

l1 200 0 0

l2 0 200 0

l3 50 0 1

l4 0 50 1

.

Table 4.1: Available linkdesigns for e ∈ δ(W)

4.3 Edge capacity inequalities

We now present a class of inequalities that are valid for our considered polyhedron.
First, we introduce some notation and definitions to simplify the discussion and prove
validity. Then we consider a relaxation of our problem and identify the members of
the class which define facets of the associated polyhedron.

4.3.1 Setup

Definition 4.15 (Arc-inclusive paths) Let a ∈ A an arc of the overlaying digraph
D(G) of G (as defined in Section 2.2) and s, t ∈ V . An s-t-path is called a-inclusive if
it contains a. Let

Pa−incl
st := {p path from s to t | a ∈ p}

be the set of a-inclusive s-t-paths.

Definition 4.16 (Arc-exclusive paths) Let a ∈ A be an arc of the overlaying
digraph D(G) of G and s, t ∈ V . An s-t-path is called a-exclusive if it does not contain
a. We define

Pa−excl
st := {p path from s to t | a 6∈ p}

as the set of a-exclusive s-t-paths.

Definition 4.17 (Edge-exclusive cycle) Let e ∈ E. A cycle C is called e-exclusive
if it is simple and does not contain e. Let

Ce−excl := {C simple cycle in G | e 6∈ C}

be the set of e-exclusive cycles.

Definition 4.18 (Oversized linkdesign) Let {u, v} ∈ E. A linkdesign is called
oversized if it provides enough capacity such that it cannot be exceeded by any routing
of the commodities k ∈ K, even when the routing contains cycles. Let

Lmax
{u,v} := {l ∈ L{u,v} |

∑

k∈K

(Uk + Uk) ≤ C l
uv,

∑

k∈K

(Uk + Uk) ≤ C l
vu}

40 Edge capacity inequalities

be the set of oversized linkdesigns for {u, v} ∈ E.

Definition 4.19 (Sufficient linkdesign) Let {u, v} ∈ E, Kuv,Kvu ⊆ K. A linkde-
sign l ∈ L{u,v} is called sufficient with respect to the commodity subsets Kuv and Kvu,
if it provides enough capacity that all commodities k ∈ Kuv can be routed from u to
v and all commodities k ∈ Kvu from v to u simultaneously. Accordingly we define

L+
KuvKvu

:= {l ∈ L{u,v} |
∑

k∈Kuv

Uk +
∑

k∈Kvu

Uk ≤ C l
uv,

∑

k∈Kuv

Uk +
∑

k∈Kvu

Uk ≤ C l
vu}

to be the set of sufficient linkdesigns for the commodity subsets Kuv and Kvu.

Definition 4.20 (Insufficient linkdesign) Let {u, v} ∈ E, Kuv,Kvu ⊆ K. A
linkdesign l ∈ L{u,v} is called insufficient with respect to the commodity subsets Kuv

and Kvu, if it is not sufficient. Accordingly we define

L−KuvKvu
:= L{u,v}\L

+
KuvKvu

to be the set of insufficient linkdesigns for the commodity subsets Kuv and Kvu.

Definition 4.21 (Large linkdesign) Let {u, v} ∈ E, Kuv,Kvu ⊆ K. A linkdesign
l ∈ L{u,v} is called large with respect to the commodity subsets Kuv and Kvu, if
it is sufficient and furthermore provides enough capacity such that all commodities
k ∈ K\(Kuv ∪ Kvu) can be routed over {u, v} in arbitrary directions simultaneously.
Accordingly we define

Llarge
KuvKvu

:= {l ∈ L{u,v} |
∑

k∈Kuv

Uk +
∑

k∈Kvu

Uk +
∑

k∈K\(Kuv∪Kvu)

max{Uk, Uk} ≤ C l
uv,

∑

k∈Kuv

Uk +
∑

k∈Kvu

Uk +
∑

k∈K\(Kuv∪Kvu)

max{Uk, Uk} ≤ C l
vu}

the set of large linkdesigns for the commodity subsets Kuv and Kvu.

Obviously, Lmax
{u,v} ⊆ L

large
KuvKvu

⊆ L+
KuvKvu

⊆ L{u,v} holds for each {u, v} ∈ E,
Kuv,Kvu ⊆ K.

Definition 4.22 (Close linkdesign) Let {u, v} ∈ E, Kuv,Kvu ⊆ K. A linkdesign
l ∈ L{u,v} is called uv-close with respect to the commodity subsets Kuv and Kvu, if
it is insufficient, but provides enough capacity such that as soon as any commodity
k∗ ∈ Kuv is not routed from u to v, all other commodities k ∈ Kuv\{k

∗} can be routed
from u to v, all commodities k ∈ Kvu from v to u, and in addition, all commodities

Classes of valid inequalities 41

k ∈ K\(Kuv ∪ Kvu) can be route over {u, v} in arbitrary directions simultaneously.
Accordingly we define

Luv−close
KuvKvu

:= {l ∈ L−KuvKvu
|

∑

k∈Kuv\{k∗}

Uk +
∑

k∈Kvu∪{k∗}

Uk

+
∑

k∈K\(Kuv∪Kvu)

max{Uk, Uk} ≤ C l
uv,

∑

k∈Kuv\{k∗}

Uk +
∑

k∈Kvu∪{k∗}

Uk

+
∑

k∈K\(Kuv∪Kvu)

max{Uk, Uk} ≤ C l
vu ∀k∗ ∈ Kuv}

to be the set of uv-close linkdesigns for the commodity subsets Kuv and Kvu.

Analogously we define Lvu−close
KuvKvu

, the set of vu-close linkdesigns for the commodity
subsets Kuv and Kvu. These linkdesigns are insufficient, but provide enough capacity
such that as soon as any commodity k∗ ∈ Kvu is not routed from v to u all other
commodities can be routed accordingly.

Example 4.23 It seems un-apparent that these uv-close linkdesigns can exist. There-
fore we present an example. Let G = (V,E) with {u, v} ∈ E and K = {k1, k2, k3, k4}
with the properties presented in Table 4.2. We choose Kuv = {k1, k2} and Kvu = {k3}.
It results that the linkdesign l∗ with the capacity values C l∗

uv = C l∗
vu = 80 is uv-close

and vu-close for the commodity subsets Kuv and Kvu.

Uk Uk

k1 30 0

k2 30 0

k3 10 30

k4 10 10

Table 4.2: Existing commodities

4.3.2 Inequality

We now introduce a class of inequalities that are valid for our considered polyhedron.
The inequalities were motivated by the fact that the routing of a set of commodities
over an edge e ∈ E forbids the installation of certain linkdesigns on e.

Proposition 4.24 Let {u, v} ∈ E, Kuv,Kvu ⊆ K with Kuv ∩Kvu = ∅,then
∑

k∈Kuv

fk
uv +

∑

k∈Kvu

fk
vu +

∑

l∈L−
KuvKvu

xl
{u,v} ≤ |Kuv|+ |Kvu| (4.32)

42 Edge capacity inequalities

is a valid inequality for P, stating that when we want to use an edge for the routing of
some commodities, it must be equipped with an adequate linkdesign.

Proof. Assume that an integer point p̂ = (x̂, f̂) ∈ P does not satisfy (4.32) for an
edge {u, v} ∈ E and the commodity subsets Kuv and Kvu ∈ K where Kuv ∩Kvu = ∅.
The only way to violate the inequality is to route all commodities k ∈ Kuv over {u, v}
in direction u to v, all commodities k ∈ Kvu over {u, v} in direction u to v, and equip at
the same time {u, v} with a linkdesign l̂ ∈ L−KuvKvu

, which is insufficient with respect
to Kuv and Kvu. This implies

f̂k
uv = 1 ∀k ∈ Kuv

f̂k
vu = 1 ∀k ∈ Kvu

x̂l̂
{u,v} = 1.

In this case, p̂ does not satisfy one of the edge capacity constraints (3.20) or (3.21)
concerning {u, v}:

∑

k∈K

Ukf̂
k
uv +

∑

k∈K

Ukf̂
k
vu ≥

∑

k∈Kuv

Uk +
∑

k∈Kvu

Uk > C l̂
uv =

∑

l∈L{u,v}

C l
uvx̂

l
{u,v}

or

∑

k∈K

Ukf̂
k
vu +

∑

k∈K

Ukf̂
k
uv ≥

∑

k∈Kvu

Uk +
∑

k∈Kuv

Uk > C l̂
vu =

∑

l∈L{u,v}

C l
vux̂l

{u,v}

so that p̂ /∈ P, which is a contradiction. �

4.3.3 Relaxation

Due to the fact that our problem with its high number of different constraints is quite
complicated, the determination of facets resulted to be a bold venture. Therefore, we
concentrate on a relaxation of our problem. We restrict ourselves to the problem of
finding a feasible routing for our commodity set K and a feasible linkdesign installation.
We do not consider any port, hoplimit, secure or node capacity constraints and do allow
cycles. We define the polyhedra associated with this integer linear program by

Pbase := conv

{

(x, f) ∈ {0, 1}
P

e∈E |Le| × {0, 1}2×|E|×|K|

∣

∣

∣

∣

(x, f) satisfies
(3.1), (3.2),

(3.20), (3.21)

}

(4.33)

Among the inequalities (4.32), some are facet-defining for this polyhedron. The fol-
lowing proposition identifies some of these:

Proposition 4.25 Let {u, v} ∈ E, Kuv,Kvu ⊆ K. If

Classes of valid inequalities 43

1. G = (V,E) is 3-connected (for every two nodes i, j ∈ V , there exist three node
disjoint paths from i to j)

2. Lmax
e 66= ∅ ∀e ∈ E

3. L{u,v} ⊆ (Luv−close
KuvKvu

∪ Lvu−close
KuvKvu

∪ Llarge
KuvKvu

)

4. Luv−close
KuvKvu

∩ Lvu−close
KuvKvu

66= ∅,

then (4.32) defines a facet of Pbase.

Proof. Validity of (4.32) for Pbase follows from Proposition 4.24 (since each point
in Pbase has to fulfill the edge capacity constraints). Let

F :=

{

(x, f) ∈ Pbase

∣

∣

∣

∣

∑

k∈Kuv

fk
uv+

∑

k∈Kvu

fk
vu+

∑

l∈L−
KuvKvu

xl
{u,v} = |Kuv|+|Kvu|

}

(4.34)

be the face of Pbase induced by (4.32). We prove that F is a facet of Pbase in three
steps: First, F 66= ∅ is shown by representing points in F . Second, we show that
any face containing F is either Pbase or F itself. Third, we show that Pbase 66= F by
representing a point in Pbase\F .

Claim 4.26 The face F is not empty

For each two nodes v1, v2 ∈ V there exits a v1-v2-path in the overlaying directed graph
D of G (as defined in Section 2.2). We construct a point p̃ by considering for each
commodity k ∈ K\(Kuv∪Kvu) a ok-dk-path and setting the respective commodity edge
flow variables to 1. For each commodity k ∈ Kuv we consider an (u, v)-inclusive ok-dk-
path and for all k ∈ Kvu an (v, u)-inclusive ok-dk-path, and fixate the corresponding
commodity edge flow variables to 1. Finally we equip all edges e ∈ E with an oversized
linkdesign l ∈ Lmax

e , so that we fulfill all edge capacity constraints and derive that
p̃ ∈ F .

Claim 4.27 Any inequality valid for Pbase representing F is a positive multiple of
(4.32) plus a linear combination of (3.2)

At first we group the points in F and access the similarities within these groups later.
Then we proof the claim by representing points in F and combining the flow balance
constraints.

There exist three different types of points in F :

• All commodities k ∈ Kuv are routed over the edge {u, v} in the direction from
u to v and all commodities k ∈ Kvu from v to u. In this case {u, v} is equipped

with a linkdesign l ∈ Llarge
KuvKvu

= L{u,v}\L
−
KuvKvu

.

44 Edge capacity inequalities

• Exactly one commodity k∗ ∈ Kuv is not routed from u to v, while the rest of the
commodities k ∈ Kuv\{k

∗} are routed over the edge {u, v} in the direction from
u to v and all commodities k ∈ Kvu from v to u. In this case {u, v} is equipped
with a uv-close linkdesign l ∈ Luv−close

KuvKvu
⊆ L−KuvKvu

.

• Exactly one commodity k∗ ∈ Kvu is not routed from v to u, while the rest of the
commodities k ∈ Kvu\{k

∗} are routed over the edge {u, v} in the direction from
v to u and all commodities k ∈ Kuv from u to v. In this case {u, v} is equipped
with a vu-close linkdesign l ∈ Lvu−close

KuvKvu
⊆ L−KuvKvu

.

We notice that the routing of any commodity k ∈ K\(Kuv∪Kvu) does not influence
the capacity on the edge {u, v}. In all three types of points of F any routing of the
commodities of K\(Kuv ∪ Kvu) neither consumes nor releases a notable amount of
capacity on {u, v} such that the routing of the commodities k ∈ Kuv ∪Kvu is affected.
Thus the routing of a commodity k ∈ K\(Kuv ∪ Kvu) is totally independent of the
capacity installed on the edge {u, v} as well as from the routing of any other commodity
over {u, v}.

Suppose there exists an equation of the form

αx + βf = π (4.35)

satisfied by all points of F , where α and β are vectors of an appropriate dimension
and π is a real number. We show that (4.35) is a positive multiple of (4.32) plus a
linear combination of the equal constraints of our polyhedral (i.e. the flow balance
constraints (3.2)), partially using a similar proof as presented in [15].

From the point p̃ ∈ F constructed above we can derive new points. Let e∗ ∈
E\{u, v}, we consider the set of commodities Kover e∗ which are routed over e∗ in the
routing employed in p̃. Since G is 3-connected there exist for each two nodes o, d ∈ V
two edge-disjoint o-d-paths in D, so that we can reroute all commodities k ∈ Kover e∗ in
the way that they do not use e∗ anymore. Since we use the same linkdesign installation
as in p̃ there exists enough capacity and we get a new point of F with a routing where
none of the commodities k ∈ K is using e∗. We can now generate new points of F by
equipping e∗ with none or an arbitrary linkdesign l ∈ Le∗ . Since the latter points all
satisfy (4.35) with equality it follows that αl

e∗ = 0 ∀l ∈ Le∗ and since the edge was
chosen arbitrarily we can conclude that

αl
e = 0 ∀e ∈ E\{u, v}, l ∈ Le.

Now we consider the remaining coefficients corresponding to the linkdesign instal-
lation variables of the edge {u, v}. As mentioned above, the points of F can be catego-
rized in three types. All points of a certain type have in common that the edge {u, v} is

equipped with a linkdesign of the corresponding linkdesign set (Llarge
KuvKvu

, Luv−close
KuvKvu

or

Lvu−close
KuvKvu

). Taking a point from F with a certain type, we can construct another point

Classes of valid inequalities 45

of the same type by equipping {u, v} with another linkdesign from the corresponding
linkdesign set. Since these two points fulfill (4.35) with equality and exploiting the
fact that Luv−close

KuvKvu
∩ Lvu−close

KuvKvu
66= ∅, it follows that

αl1
{u,v} = αl2

{u,v} ∀l1, l2 ∈ L
large
KuvKvu

αl1
{u,v} = αl2

{u,v} ∀l1, l2 ∈ L
uv−close
KuvKvu

∪ Lvu−close
KuvKvu

We now deal with the coefficients corresponding to the commodity edge flow vari-
ables of an arbitrary commodity ǩ ∈ K\(Kuv ∪Kvu).

We start once more from the point p̃ ∈ F from the beginning and an edge {i, j} ∈ E.
If the commodity ǩ is routed over {i, j} we modify p̃ by rerouting ǩ but employing the
same routing for the other commodities as well as the same link design installation.
Since G is 3-connected we can find a o

ǩ
-d

ǩ
-path which is not using {i, j}, such that

we obtain the new point p′. A new point p′′ of F is generated employing exactly the
same routing strategy for all commodities k ∈ K as in p′, except that commodity ǩ
is additionally routed over the edge {i, j} in the directions i to j and j to i. Since
both points p′ and p′′ satisfy the equality, αl

e = 0 ∀e ∈ E\{u, v} and routing of
commodities k ∈ K\(Kuv ∪ Kvu) does not notably affect the capacity of {u, v} it

follows that βǩ
ij + βǩ

ji = 0 ∀{i, j} ∈ E.

Next we show that for all cycles C in the overlaying digraph D of G it holds that
∑

(i,j)∈C βǩ
ij = 0. Since any cycle in the graph can be decomposed into a collection of

simple cycles (i.e. cycles that visit each node at most once) it follows that we only
have to prove this claim for simple cycles. If C is a 2-cycle the claim is already shown.
Let p be a simple path from o

ǩ
to d

ǩ
in the digraph D. If the number of nodes on the

path p that are also on the cycle C is less than or equal to one, then we use similar
arguments as before to show that

∑

(i,j)∈C βǩ
ij = 0. We consider a point in F using

path p for the routing of commodity ǩ and simply create a new point by conducting ǩ
additionally over the cycle C.
If the number of nodes on the path p that are also on the cycle C is greater than or
equal to 2, then define v1 as the first, and v2 to be the last node on the path that
is also on the cycle. As a result, path p can be decomposed into three parts p1, p2

and p3, where p1 is a path from o
ǩ

to v1, p2 is a path from v1 to v2, and p3 is a
path from v2 to d

ǩ
. Similarly, the cycle C can be decomposed into a path C1 from

v1 to v2 and a path C2 from v2 to v1. Given these definitions, we can construct two
new paths from o

ǩ
to d

ǩ
in the graph. The first path can be represented as p1, C1, p3

and the second path as p1, C
r
2 , p3, where Cr

2 is the reversed path of C2. Consider a
point in F using the first path for the routing of commodity ǩ. We can construct
now another point in F by employing the same routing strategy for all commodities
k ∈ K\{ǩ}, but using the second path for commodity ǩ. Since both points satisfy

the equality it follows that
∑

(i,j)∈C1
βǩ

ij −
∑

(i,j)∈Cr
2
βǩ

ij = 0. Exploiting the fact that

βǩ
ij = −βǩ

ji ∀{i, j} ∈ E, it follows that
∑

(i,j)∈C βǩ
ij =

∑

(i,j)∈C1
βǩ

ij +
∑

(i,j)∈C2
βǩ

ij = 0,

46 Edge capacity inequalities

which proves our intermediate claim. Since the commodity ǩ was chosen arbitrarily
from K\(Kuv ∪Kvu), we can conclude that

∑

(i,j)∈C

βk
ij = 0 ∀k ∈ K\(Kuv ∪Kvu), {i, j} ∈ E,C cycle

Next, for a commodity ǩ ∈ K\(Kuv ∪Kvu), for all q ∈ V and a path p from o
ǩ

to

q in the graph, let µǩ
q =

∑

(i,j)∈p
βǩ

ij . We claim that the value of µǩ
q is independent

of the selected path p. To verify this claim, let p1, p2 be two paths from o
ǩ

to q in
the graph, and let pr

1, p
r
2 be the reversed paths. Then p1 ∪ pr

2 forms a cycle, hence
∑

(i,j)∈p1∪pr
2
βǩ

ij = 0. Using βǩ
ij = −βǩ

ji it then follows that
∑

(i,j)∈p1
βǩ

ij =
∑

(i,j)∈p2
βǩ

ij ,

thus indeed, the value of µǩ
q is independent of the selected path from o

ǩ
to q.

If we multiply the flow balance equalities corresponding to the commodities of K\(Kuv∪
Kvu) by these multipliers and add them all up, we obtain the following expression:

∑

k∈K\(Kuv∪Kvu)

∑

i∈V

µk
i (

∑

{i,j}∈δ(i)

(fk
ji − fk

ij)) =

∑

k∈K\(Kuv∪Kvu)

∑

{i,j}∈E

((µk
i − µk

j)f
k
ji + (µk

j − µk
i)f

k
ij) =

∑

k∈K\(Kuv∪Kvu)

∑

{i,j}∈E

(βk
ijf

k
ij + βk

jif
k
ji)

This implies that the coefficients βk
ij corresponding to commodities k ∈ K\(Kuv ∪Kvu)

are derived from a linear combination of the model equalities (3.2).

Now we address ourselves to the remaining coefficients of the commodity edge flow
variables of the commodities k ∈ Kuv ∪ Kvu. Starting from the point p̃ ∈ F from
the beginning and an edge {v1, v2} ∈ E\{u, v}. Concerning a commodity ǩ ∈ Kuv

and exploiting the fact that the graph is 3-connected, we can find an (u, v)-inclusive
o
ǩ
-d

ǩ
-path p which does not use the edge {i, j}. We modify p̃ by rerouting ǩ using

the prementioned path p. We employ the same routing for the other commodities as
well as the same link design installation. A new point of F is generated employing
exactly the same routing strategy for all commodities k ∈ K, except that commodity
ǩ is additionally routed over the edge {i, j} in the directions i to j and j to i. Since

both points satisfy the equality and αl
e = 0 ∀e ∈ E\{u, v} it follows that βǩ

ij + βǩ
ji =

0 ∀{i, j} ∈ E\{u, v}, l ∈ L{u,v}. Since ǩ was chosen arbitrarily, and applying an
analogue argumentation for the commodities k ∈ Kvu, we can conclude :

βk
ij + βk

ji = 0 ∀k ∈ Kuv ∪Kvu, {i, j} ∈ E\{u, v}

Using a similar argumentation as before and exploiting the fact that G is 3-
connected, we can show that

∑

(i,j)∈C

βk
ij = 0 ∀k ∈ Kuv ∪Kvu, {i, j} ∈ E,C ∈ C{u,v}−excl.

Classes of valid inequalities 47

Now we consider a spanning tree T = (V,E′) of G using edges in E\{u, v}. We
choose a node vr ∈ V and direct the edges of T suitably such that we obtain the
directed tree T ′ = (V,A′) with the root node vr. For an arc (vr, vc) ∈ δ+(vr) ∩ A′

and a commodity k ∈ Kuv ∪Kvu we consider the respective variable fk
vrvc

. Since this
variable appears in the flow balance equality of vc and k, we can subtract a multiple
of this equality from (4.35) and assume for the respective coefficient βk

vrvc
= 0. We

can do this analogously traversing the tree from the root vr to its leaves, subtracting
successively for every arc a ∈ A′ multiples of the flow balance equalities respective to
its target and the commodity k.
For k ∈ Kuv ∪ Kvu appears each variable fk

ij with (i, j) ∈ A′ in two flow balance
equalities, one of the node i and the other of j. On our way from vr to the leaves of
T ′ we subtract at first a multiple of the flow balance equality of i. In the next step we
subtract the flow balance equality of j multiplied with (if necessary a negation of) the
current coefficient βk

ij of the variable fk
ij. Since we never pass the nodes i or j again on

the path to the leaves, the variable fk
ij will not be considered anymore. So we derive

βk
ij = 0 ∀(i, j) ∈ A′. Since βk

ij = −βk
ji for any {i, j} ∈ E\{u, v}, this implies that

βk
ij = 0 ∀(i, j) ∈ E′ and k ∈ Kuv ∪Kvu.

For {v1, v2} ∈ (E\{u, v})\E′ we can find the unique cycle C formed by {v1, v2} and
the edges in E′. Since C does not contain {u, v} it follows that

∑

(i,j)∈C βk
ij = 0 and

therefore βk
v1,v2

= 0. We can finally conclude that

βk
ij = βk

ji = 0 ∀k ∈ Kuv ∪Kvu, {i, j} ∈ E\{u, v}.

Once more making use of the point p̃ ∈ F presented in the beginning of the proof we
consider the commodity k∗ ∈ Kuv. Exploiting the fact that the graph is 3-connected,
we can find a (u, v)-inclusive ok∗-dk∗-path p and a (u, v)-inclusive cycle C, such that
both do not use the same edges in the same direction (p ∩ C = ∅). We can now
generate two new points in F from p̃ by employing the same linkdesign installation
and commodity routing, except that k∗ is routed in both cases over the path p and in
one of the new points additionally on the cycle C. Since these two new points fulfill
(4.35) with equality and βk∗

ij = 0 ∀(i, j) 6∈ {(u, v), (v, u)} it follows that βk∗

vu = 0.
Since k∗ was chosen arbitrarily, and applying the argumentation analogously to the
commodities in Kvu we conclude that

βk
vu = 0 ∀k ∈ Kuv

βk
uv = 0 ∀k ∈ Kvu.

We now address ourselves to the other types of points in F presented in the be-
ginning of the proof. We construct a point p̃uv of the second group by installing on
the edge {u, v} a uv−close linkdesign l ∈ Luv−close

KuvKvu
∩Lvu−close

KuvKvu
and equipping the other

48 Edge capacity inequalities

edges with a maximal linkdesign. One commodity k∗ ∈ Kuv will be routed over an
(u, v)-exclusive ok∗-dk∗-path, while the commodities k ∈ Kuv\{k

∗} are routed over
(u, v)-inclusive ok-dk-paths and all commodities k ∈ Kvu over (v, u)-inclusive ok-dk-
paths. The other commodities k ∈ K\(Kuv∪Kvu) can be routed arbitrarily since there
exists enough capacity in respect of every edge and direction.
We can now construct a new point in F by employing the same linkdesign installa-
tion and routing of commodities, except that we replace k∗ by another commodity
k′ ∈ Kuv. Commodity k′ is now routed over an (u, v)-inclusive ok∗-dk∗-path and k′

over an (u, v)-exclusive ok′-dk′-path. Since these two points fulfill (4.35) with equality
we can state βk∗

uv = βk′

uv.
A point in the third group can be generated from p̃uv by routing k∗ over an (u, v)-
inclusive ok∗-dk∗ -path and choosing one commodity k′′ ∈ Kvu not to be routed over
{u, v} in direction v to u. Since we employ in both points the same linkdesign instal-
lation and both fulfill (4.35) with equality it follows that βk∗

uv = βk′′

uv .
We can now conclude that

βk1
uv = βk2

vu ∀k1 ∈ Kuv, k2 ∈ Kvu.

Since p̃uv and p̃ are both points in F they both fulfill (4.35) with equality. The
difference between them is the fact that k∗ is or is not routed over {u, v} in direction

u to v and {u, v} is equipped with different linkdesigns l′ ∈ Luv−close
KuvKvu

or l′′ ∈ Llarge
KuvKvu

.

Since all other βk∗

ij are 0 we obtain that αl′

{u,v} = βk∗

uv + αl′′

{u,v}. Considering other
commodities in Kuv analogously we can conclude the following:

αl1
{u,v} = βk

uv + αl2
{u,v} ∀k ∈ Kuv, l1 ∈ L

uv−close
KuvKvu

, l2 ∈ L
large
KuvKvu

Defining the following auxiliary variables

β := βk
uv ∀k ∈ Kuv

α := αl
{u,v} ∀l ∈ Luv−close

KuvKvu

αmax := αl
{u,v} ∀l ∈ Llarge

KuvKvu
,

we can state the intermediate result as follows:

β

(

∑

k∈Kuv

fk
uv +

∑

k∈Kvu

fk
vu

)

+ α

(

∑

l∈L−
KuvKvu

xl
{u,v}

)

+ αmax

(

∑

l∈L+
KuvKvu

xl
{u,v}

)

≤ π,

(4.36)

β = α− αmax. (4.37)

We multiply the initial inequality (4.32) with β and add the linkdesign installation
inequality (3.1) multiplied with αmax. We obtain:

Classes of valid inequalities 49

β
(
∑

k∈Kuv
fk

uv +
∑

k∈Kvu
fk

vu

)

+(α− αmax)
∑

l∈L−
KuvKvu

xl
{u,v} ≤ β

(

|Kuv|+ |Kvu|
)

(I)

αmax
∑

l∈L+
{u,v}

xl
{u,v}

+αmax
∑

l∈L−
{u,v}

xl
{u,v} ≤ αmax (II)

β
(
∑

k∈Kuv
fk

uv +
∑

k∈Kvu
fk

vu

)

+αmax
∑

l∈L+
KuvKvu

xl
{u,v}

+α
∑

l∈L−
KuvKvu

xl
{u,v} ≤ β

(

|Kuv|+ |Kvu|
)

+ αmax. (I + II)

(4.38)
If αmax > 0, the inequality (4.38) (and thus (4.36)) would be weaker than the initial
inequality (4.32). Therefore αmax has to be 0 and

αl
{u,v} = 0 ∀l ∈ Llarge

KuvKvu
.

The above paragraph covers all relevant coefficients such that the Claim 4.27 is
proven.

Claim 4.28 F 66= Pbase

We can generate a point in Pbase\F easily by equipping all edges e ∈ E with a maximal

linkdesign l ∈ Llarge
KuvKvu

, routing all commodities k ∈ Kuv over (u, v)-exclusive ok-dk-
paths, all commodities k ∈ Kvu over (v, u)-exclusive ok-dk-paths and all k ∈ K\(Kuv ∪
Kvu) arbitrarily.

This completes the proof that (4.32) is in fact facet-defining. �

Remark 4.29 The assumption of 3-connectedness seems to be a very restrictive con-
dition since telecommunication networks are typically sparse. This is not the case in
the given data. All the networks of all considered problem instances are extremely
dense and the great majority even consist of complete graphs.

Remark 4.30 The condition L{u,v} ⊆ (Luv−close
KuvKvu

∪Lvu−close
KuvKvu

∪Llarge
KuvKvu

) is indeed very
restrictive; we apply a lifting approach to include linkdesigns which are not in this
union.

50 Edge capacity inequalities

Remark 4.31 The assumption Luv−close
KuvKvu

∩Lvu−close
KuvKvu

66= ∅ also results to be very restric-
tive, since it requires a certain composition for the commodity subsets Kuv and Kvu.
Defining ∆ :=

∑

k∈K\(Kuv∪Kvu) max{Uk, Uk}, the subsets must fulfill the following:
Either

∆ < Uk1
− Uk1

and ∆ < Uk2
− Uk2

∀k1 ∈ Kuv, k2 ∈ Kvu

or

∆ < Uk1
− Uk1

and ∆ < Uk2
− Uk2

∀k1 ∈ Kuv, k2 ∈ Kvu.

4.3.4 Lifting

In the latter section we have shown that the inequalities of the type (4.32) are facet-
defining for a relaxation PBase of our problem, in the case that some conditions are
fulfilled. Since these requirements are quite restrictive, we lift the inequality (4.32).
The next proposition from [11] is given here for readers unfamiliar with the lifting
procedure.

Proposition 4.32 Suppose S =
{

x ∈ {0, 1}n | Ax ≤ b
}

, Sδ =
{

x ∈ S | x1 =
δ for δ ∈ {0, 1}

}

, and
∑n

j=2 πjxj ≤ π0 is valid for S0. If S1 = ∅, then x1 ≤ 0 is valid

for S. If S1 6= ∅, then

α1x1 +

n
∑

j=2

πjxj ≤ π0 (4.39)

is valid for any α1 ≤ π0 − ξ where

ξ = max
n

∑

j=2

πjxj x ∈ S1 (4.40)

Moreover, if α1 = π0 − ξ and
∑n

j=2 πjxj ≤ π0 is facet-defining for conv(S0), then
(4.39) is facet-defining for conv(S).

Proposition 4.32 represents a lifting with respect to the variable x1. We call α1 the
lifting coefficient for x1.

In the following we show how the inequality (4.32) concerning an edge and the
two commodity subsets, has to be lifted, such that it is facet-defining even when the
corresponding set of linkdesigns contains also linkdesigns which are neither large nor

Classes of valid inequalities 51

uv- or vu-close. Let {u, v} ∈ E, Kuv,Kvu ⊆ K, we define:

Lres
KuvKvu

:=
{

l ∈ L{u,v}

∣

∣ l /∈ Luv−close
KuvKvu

∪ Lvu−close
KuvKvu

∪ Llarge
KuvKvu

}

(4.41)

Sres
base :=

{

(x, f) ∈ {0, 1}
P

e∈E |Le| × {0, 1}2×|E|×|K|

∣

∣

∣

∣

(x, f) satisfies
(3.1), (3.2),

(3.20), (3.21),
∑

l∈Lres
KuvKvu

x{u,v}l ≤ 0

}

. (4.42)

With assistance of the fixing of the variables corresponding to the linkdesigns l ∈
Lres

KuvKvu
, Proposition 4.25 implies that (4.32) is facet-defining for conv(Sres

base), if

1. G = (V,E) is 3-connected

2. Lmax
e 66= ∅ ∀e ∈ E

3. Luv−close
KuvKvu

∩ Lvu−close
KuvKvu

66= ∅.

We consider lifting the variable xľ
{u,v} corresponding to a linkdesign ľ ∈ Lres

KuvKvu

and define:

Sres
base(ľ) :=

{

(x, f) ∈ {0, 1}
P

e∈E |Le| × {0, 1}2×|E|×|K|

∣

∣

∣

∣

(x, f) satisfies
(3.1), (3.2),

(3.20), (3.21),
∑

l∈Lres
KuvKvu

\{ľ}

x{u,v}l ≤ 0

}

.

(4.43)

The lifting coefficient is αľ = |Kuv|+ |Kvu| − ξľ, where ξľ can be obtained as follows:

ξľ = max
(x,f)∈Sres

base
(ľ)

{

∑

k∈Kuv

fk
uv +

∑

k∈Kvu

fk
vu +

∑

l∈L−
KuvKvu

xl
{u,v}

∣

∣ xľ
{u,v} = 1

}

= max
(x,f)∈Sres

base
(ľ)

{

∑

k∈Kuv

fk
uv +

∑

k∈Kvu

fk
vu

∣

∣ xľ
{u,v} = 1

}

(4.44)

The value ξľ is the amount of commodities k ∈ Kuv and Kvu which can be routed
simultaneously over the edge {u, v} in direction u to v, v to u respectively, without
exceeding the directed capacities provided by the linkdesign ľ. More precisely:

ξľ = max
{

|Ǩuv|+ |Ǩvu|
∣

∣ Ǩuv ⊆ Kuv, Ǩvu ⊆ Kvu,
∑

k∈Ǩuv

Uk +
∑

k∈Ǩvu

Uk ≤ C ľ
uv,

∑

k∈Ǩuv

Uk +
∑

k∈Ǩvu

Uk ≤ C ľ
vu

}

. (4.45)

52 Edge capacity inequalities

Since all linkdesign installation variables L{u,v} are contained in one GUB (represented
by the corresponding linkdesign constraints (3.1)), we can calculate all lifting coeffi-
cients independent of the order. Hence (4.32) can be lifted by solving (4.45) for each
l ∈ Lres

KuvKvu
, such that

∑

k∈Kuv

fk
uv +

∑

k∈Kvu

fk
vu +

∑

l∈Lres
KuvKvu

αlx
l
{u,v} +

∑

l∈Luv−close
KuvKvu

∪Lvu−close
KuvKvu

xl
{u,v} ≤ |Kuv|+ |Kvu|

(4.46)

is facet-defining for PBase, if

1. G = (V,E) is 3-connected

2. Lmax
e 66= ∅ ∀e ∈ E

3. Luv−close
KuvKvu

∩ Lvu−close
KuvKvu

66= ∅.

Chapter 5

Algorithmic approach and
implementational aspects

This chapter describes the algorithmic procedure used to solve the problems of the given
benchmark suite. In the first part of this chapter we give an outline of the employed
branch-and-cut approach. Later, we present separation approaches for inequalities,
various preprocessing mechanisms and introduce a heuristic for finding feasible integral
solutions.

5.1 Branch-and-Cut

5.1.1 Overview

We may find a solution by examining all possible combinations exhaustively. However,
the number of combinations becomes explosively large. Thus a simple enumerative
method is not applicable to our problem. In order to cope with the vast solution
space, we have employed a branch-and-cut technique for effective exploration. This
technique is a generalization of branch-and-bound approach with application of cutting
planes.

At first we give a short survey of the generic branch-and-bound algorithm: Let N
be a variable index set and Z ⊆ N . Let c ∈ RN be an objective vector, and P ⊆ RN be
a polyhedron, e.g. a relaxation of some MIP. Let x, x ∈ RN . Consider the optimization
problem

min{cT x | x ∈ P,
x ≤ x ≤ x,
xi integer ∀i ∈ Z}.

(5.1)

The branch-and-bound algorithm solves this problem using a modified divide-and-
conquer approach. The following algorithm summarizes the whole procedure:

53

54 Branch-and-Cut

Algorithm 5.1 (Branch-and-bound)
Input : Bounded problem (5.1): min{cT x | x ∈ P, x ≤ x ≤ x, x ∈ RN , xi ∈ Z ∀i ∈ Z}
Output : Optimal solution for (5.1)

(1) T ← {(x′, x′)},A ← {(x′, x′)}, {(x′, x′)}, z∗ ← +∞
(2) while A 6= ∅ do
(2.1) Select a (x′, x′ ∈ A
(2.2) A ← A\{(x′, x′)}
(2.3) Solve relaxation min{cT x | x ∈ P, x′ ≤ x ≤ x′, x ∈ RN}.
(2.4) if there exists an optimal solution x′ with cT x < z∗ then
(2.4.1) if there exists an i ∈ Z such that x′

i
is fractional then

(2.4.1.1) Branch on i: Create two subproblems (x↓, x↓) and (x↑, x↑) that equal

(x, x) with the exception that x↓
i

= ⌊x′
i
⌋ and x↑

i
= ⌈x′

i
⌉.

(2.4.1.2) T ← T ∪ {(x↓, x↓), (x↑, x↑)}
(2.4.1.3) A ← A∪ {(x↓, x↓), (x↑, x↑)}
(2.4.2) else
(2.4.2.1) x′ is valid solution for the original problem (5.1).
(2.4.2.2) if cT x′ < z∗ then
(2.4.2.2.1) z∗ ← cT x′, x∗ ← x′

(3) if z∗ =∞ then
(3.1) return ’problem (5.1) has no solution’
(4) else
(4.1) return ’optimal solution x∗ with objective value z∗’

Algorithm 5.1 solves the relaxation of (5.1) obtained by dropping the integrality
constraints. If the solution contains variables that are fractional, albeit they are re-
quired to be integral in the original problem, it creates two subproblems such that the
current point is feasible for neither of the two, but any solution of the original problem
is applicable to one of them.
Since this technique is widely known, we do not go into further details. Rather some
facts which become important later in this work are discussed now:

• The problems (x′, x′) ∈ T have a tree-like structure, because each problem,
except for the initial one, has a unique parent problem from which it was created.
It is common to refer to elements of T as node in a tree, and to call the initial
problem the root node.

• The optimal solution value of a node’s relaxation is a lower bound for the accord-
ing MIP. The offspring problems of a node contain all integral (w.r.t. Z) points
of that node’s MIP. Hence, the greater of the two lower bounds can be used as
lower bound for the node itself. This way, bounds get propagated up to the root
node, whose lower bound is valid for the original problem and all nodes.

• If the optimal solution to a node’s problem relaxation is integer w.r.t. Z, (2.4.2)
gets executed and no child problems are generated, even if (x′ 6= x′). This is
correct because no child problem can have a fractional solution of better objective,
let alone integral ones. This reduces the size of T .

Algorithmic approach and implementational aspects 55

• The if -clause (2.4) could be omitted without breaking algorithm correctness. It
exploits the fact that cT x′ is a lower bound for all integral (w.r.t. Z) solutions
of the node’s local problem. Hence if cT x′ < z∗, the node can only contain an
optimal solution to (5.1) if the already known x∗ is optimal as well. This method
of removing (pruning) sub-trees is called bounding.

Branch-and-cut is a generalization of branch-and-bound where, after solving the
LP-relaxation and having not been successful in pruning the node on basis of the
LP solution, we try to find a violated inequality of a set of valid inequalities. The
problem of finding such an inequality is called the separation problem. Sometimes, the
separation problem is restricted to a certain class of inequalities, in which case we are
looking for a violated inequality of this class. If we are able to find such a inequality,
we can strengthen the relaxation and the LP is reoptimized. In that way we cut off
fractional solutions such that local and global lower bounds rise faster and integral
solutions found more quickly.

Figure 5.1 gives a survey on the used algorithm, where Z∗ denotes the best known
upper bound and ZLP the lower bound, obtained from the LP-relaxation.

There are two steps in the branch-and-bound part that leave some choices. In
step (2.1) of Algorithm 5.1, we have to select the next (sub)-problem from the list
of unsolved problems to work on next, denoted as node selection. In step (2.4.1.1)
we must decide how to split the problem into subproblems, referred to as variable
selection or branching. In the next two sections we describe the applied branch-and-
bound strategies.

5.1.2 Node selection

In the first usage of the node selection, we look for the subproblem with the worst
lower bound. We select this problem with the intent of improving the global lower
bound. After a certain number of branch-and-bound iterations, we change the strategy
and dive in the branch-and-bound tree, i.e. the “up“-node of the previous iteration is
chosen until no child nodes are generated for the chosen nodes. This phase is equivalent
to subsequently rounding up variables until the local problem is either feasible, or a
solution is found. This changeover is applied to find integer solution and hence improve
the upper bound.

5.1.3 Variable selection

In our implementation, we used three different strategies of variable selection, a generic
one and two newly developed ones, which utilize information about the relation of
certain variables.

56 Branch-and-Cut

STOP

Solve LP

START

Identify violated inequalities

Solution feasible ?

New inequalities ?

inequalities
Add new

yes

no

no

no

yes

yes

yesno

*

Z >= Z ?*
LP

set Z :=

 Branch on a binary

Update Z*

Prune the subtree

Take problem from

variable and add the two
new subproblems to

Is empty ?

Insert the problem in and
∞
A

A

A

A

Figure 5.1: Flowchart of the applied branch-and-cut algorithm

Algorithmic approach and implementational aspects 57

The generic branching rule is the fixation of the most fractional variable to 1 or
0 for the following two branches. The other two branching rules are branching over
the commodity edge flow variables primarily, considering the paths manifested in the
current solution. If no fractional commodity edge flow variables exist, we branch over
the linkdesign installation variables using the above generic branching rule. Given a
fractional solution (x̂, f̂), these rules can be applied as follows:

most fractional Branch on a variable x̂l
e or f̂k

uv that is closest to 0.5.

most splitted path We compute the node-commodity-pair where the flow is most
splitted. This means that we look for a node v ∈ V and a commodity k ∈ K
where the maximal number of edges are used to route the flow of k out of v:

max
v∈V, k∈K

∣

∣

∣

∣

∣

∣

{

{u, v} ∈ δ(v) | f̂k
vu > 0

}
∣

∣

∣

∣

∣

∣

From the set of outgoing variables of v and k we pick the greatest and fix it
to 0 respectively 1. If none of the paths is splitted, which means that there
exist no fractional commodity edge flow variables, we branch over the linkdesign
installation variables using the above most fractional branching rule.

least splitted path The only difference to the above most splitted path branching
rule is the choice of the node-commodity-pair. We look for a node v ∈ V and a
commodity k ∈ K where the splitted flow of k is routed out of v using the least
number of edges. We only consider commodity edge flow variables with values
less than 1 because we still want to detect splitted flows.

min
v∈V, k∈K

∣

∣

∣

∣

∣

∣

{

{u, v} ∈ δ(v) | 0 < f̂k
vu < 1

}
∣

∣

∣

∣

∣

∣

5.2 Separation

The separation problem can be stated as follows. Given a solution to the LP-relaxation
of a problem, decide whether the solution satisfies a given set of inequalities, and if
not, find one or more inequalities violated by the solution.
We separated the inequalities presented in Chapter 3. Note that if one of these inequal-
ities is violated, but is not identified, this slows down the solution process (the bound
could have been tightened), but the algorithm still produces an optimal solution.
Furthermore we did not include all of the model inequalities, in order to decrease
the size of the formulation (and thus the solving time of the LP-relaxation). These
inequalities are also separated.

5.2.1 Separation of the GUB cover inequalities

For the separation of the GUB cover inequalities presented in section 4.1 we apply the
separators proposed in [16].

58 Separation

5.2.2 Separation of the hoplimit constraints

Since the size of the problem formulation resulted in a major difficulty for large prob-
lem instances, we tried leaving out the hoplimit constraints (3.13) and separated the
respective inequalities. Two different techniques were applied:

Trivial separation We can find violated length restriction inequalities easily by
simply summing up the current values of all commodity edge flow variables of a com-
modity k ∈ K. If the sum is greater than the hoplimit Mk we just add the associated
inequality (3.13) to the formulation.

Separation using shortest paths We noticed that the support (the amount of
nonzero coefficients) of added inequalities influences the solving time of the resulting
LP-relaxation. So we identify for each commodity k ∈ K the path p over which it
is mostly routed, check the length of p and (in case of violation) add the inequal-
ity

∑

(u,v)∈p
fk

uv ≤ Mk. These inequalities are weaker than the model path length
constraints (3.13) used in the above paragraph, but at the same time the support is
smaller and they reliably exclude solutions with violated paths when the flow for a
commodity is determined to a large extent.

5.2.3 Separation of the subtour elimination constraints

Since the amount of subtour elimination constraints (3.3) is exponential in the num-
ber of nodes, we are separating these constraints. In this subsection we present two
approaches in order to handle this. The first separation procedure, according to an
idea presented in [17] in the context of the traveling salesman problem, utilizes the
consideration of a linear program. For the second approach we introduce the weaker
subtour elimination constraint, which can be separated applying simple combinatorial
techniques.

Let (x̃, f̃) be the optimal solution of the LP-relaxation without the subtour elimi-
nation constraints. For each k ∈ K we look for the most violated subtour elimination
inequality (3.3), which is equivalent to the maximization problem

ζk = max
W⊆V

{

∑

{u,v}∈E(W)

(f̃k
uv + f̃k

vu)− |W |
}

. (5.2)

If ζk ≤ −1 for every commodity k ∈ K, then all subtour elimination inequalities (3.3)
are fulfilled and (x̃, f̃) ∈ LP, the LP-relaxation of our problem defined in Section 3.3.
We first convert the maximization problem (5.2) into a linear integer program, and
then we observe that the LP-relaxation is integral. We represent the unknown set
W ⊆ V by defining variables for all v ∈ V as follows:

zv =

{

1 if v ∈W

0 otherwise.
(5.3)

Algorithmic approach and implementational aspects 59

With these variables, (5.2) is equivalent to

ζk = max
{

∑

{u,v}∈E

(

(f̃k
uv + f̃k

vu)zuzv

)

−
∑

v∈V

zv | zv ∈ {0, 1}
|V |

}

. (5.4)

We can eliminate the quadratic terms by introducing additional variables :

w{u,v} =

{

1 if zu = zv = 1

0 otherwise
∀{u, v} ∈ E (5.5)

Hence we can reformulate (5.4) as the following integer program:

Formulation 5.2 (Subtour-IP)

max
∑

{u,v}∈E

(

(f̃k
uv + f̃k

vu)w{u,v}

)

−
∑

v∈V

zv

w{u,v} ≤ zu ∀{u, v} ∈ E (5.6)

w{u,v} ≤ zv ∀{u, v} ∈ E (5.7)

w{u,v} ≥ zv + zu − 1 ∀{u, v} ∈ E (5.8)

w{u,v} ∈ {0, 1} ∀{u, v} ∈ E

zv ∈ {0, 1} ∀v ∈ V

Proposition 5.3 If f̃k
uv, f̃k

vu ≥ 0 for all {u, v} ∈ E, then the optimal solution of the
LP-relaxation of the Subtour-IP is integral.

Proof. From (5.6) and (5.7) it follows that w{u,v} ≤ min{zu, zv} ∀{u, v} ∈ E. The

Subtour-IP is a maximization problem and f̃k
uv and f̃k

vu ≥ 0 for all {u, v} ∈ E. Thus
there exists an optimal solution for the Subtour-IP with w{u,v} as large as possible
such that (with the assistance of (5.6) and (5.7)) w{u,v} = min{zu, zv}. Since zv ≤ 1,
for all v ∈ V , it holds that min{zu, zv} ≥ zv + zu − 1 such that the inequalities (5.8)
are fulfilled and can be omitted.
In each constraint of (5.6) and (5.7) there exist exactly two nonzero coefficients: one
with +1 and one with −1. From this it follows that the constraint matrix without
the conditions (5.8) is totally unimodular [14]. Hence solving the LP-relaxation of the
Subtour-IP without the constraints (5.8) will result in an integer optimal solution. �

From Proposition 5.3 it follows that it is possible to separate the subtour elimina-
tion constraints (3.3) by solving a linear program. Actually, these inequalities can be
separated in polynomial time. In spite of that it is too time consuming to set up a
linear program and solve it in every separation step. On the other hand it is possible

60 Separation

to separate weaker subtour elimination inequalities with simple combinatorial meth-
ods. The subtour elimination inequalities (3.3) exclude cycles on a node subset. The
inequalities

∑

a∈C

fk
a ≤ |C| − 1 ∀k ∈ K, C ⊆ A : C is a cycle (5.9)

exclude cycles from the solutions as well, but they are weaker than (3.3).

For any commodity k ∈ K, consider the overlaying directed graph Dk = (V,A) of
G (as defined in Section 2.2) with the arc weights x(u,v) = fk

uv and x(v,u) = fk
vu ∀e =

{u, v} ∈ E. In order to prohibit solutions with cycles we introduce the weaker subtour
elimination inequality:

∑

a∈C

xa ≤ |C| − 1 ∀C ⊆ A : C is a cycle (5.10)

When the above inequality is fulfilled, then there exist no cycles in the routing for the
commodity k ∈ K.

Separation of the weaker subtour elimination inequality:

Finding the most violated inequality is equivalent to the maximation problem

ζ = max
C cycle

{

∑

a∈C

xa − |C|
}

. (5.11)

All inequalities are fullfilled if ζ ≤ −1. Defining a new arc weight function y with
ya = 1− xa ∀a ∈ A, we can reformulate:

max
C cycle

{

∑

a∈C

xa − |C|
}

= max
C cycle

{

∑

a∈C

(1− ya)− |C|
}

= max
C cycle

∑

a∈C

(−ya).

Therefore (5.11) is equivalent to

min
C cycle

∑

a∈C

ya = −ζ. (5.12)

If minC cycle
∑

a∈C ya ≥ 1 (ζ ≤ −1) is fullfilled, then no violated inequality exists.
This can be verified by searching for a shortest cycle in Dk with arc weights ya = 1−xa.
When we detect such a cycle C for a commodity k ∈ K, we add the inequality

∑

{u,v}∈E(C)

(fk
uv + fk

vu) ≤ |C| − 1 (5.13)

to the formulation.

Remark 5.4 Since xa ∈ [0, 1] ∀a ∈ A, none of the ya is negative, and we can apply
a modified Floyd-Warshall algorithm in order to find a shortest cycle. This All-Pairs-
Shortest-Path algorithm can be extended to find the shortest v-v-path for all nodes
v ∈ V . We simply iterate in all three nested loops over all nodes.

Algorithmic approach and implementational aspects 61

5.3 Preprocessing

We apply a series of preprocessing steps in order to reduce our problem size. We take
advantage of natural observations of the problem as well as particular characteristics
of the structure of the used data. Our aim is, concerning particular problem instances,
to keep out irrelevant constraints and to prevent the consideration of unnecessary vari-
ables. We state the main ideas of these reductions and specify the relevancy concerning
the given data. To comprehend the assumptions the reader is referred to Chapter 6
and especially to Table 6.1 which contains the main information about the problem
instances of the whole benchmark suite.

5.3.1 Constraints reduction

Particularities of the given problem instances might result in excluding some con-
straints.

Nodes with many ports If the port limits for a node v ∈ V are very large we do
not have to include the corresponding pmax constraints (3.6) and (3.7) into the
formulation. These constraints can be totally ignored for a certain node v ∈ V
if the amount of its ports is very big, or more precisely if

min{P−
v , P+

v } ≥ |δ(v)|
∑

{u,v}∈δ(v)

max
l∈L{u,v}

{P l
uv, P

l
vu}

This case, in which the port amount of a node could never be exceeded, appears
for example in the problem instance A04 or A05.

Only secure commodities In problem instances where all commodities are secure,
all edge capacity constraints (3.20) and (3.21) are dominated by the correspond-
ing stronger secure edge capacity constraints (3.22) and (3.23). This is due to
the equality of the secure and insecure value of each commodity k ∈ K (Uk = US

k

and Uk = U
S
k) which yields

∑

k∈K

Ukf
k
uv +

∑

k∈K

Ukf
k
vu =

∑

k∈K

US
k fk

uv +
∑

k∈K

U
S
k fk

vu

≤
∑

l∈L{u,v}

Sl
{u,v}C

l
uvx

l
{u,v} ≤

∑

l∈L{u,v}

C l
uvx

l
{u,v} ∀{u, v} ∈ E (5.14)

respectively

∑

k∈K

Ukf
k
vu +

∑

k∈K

Ukf
k
uv =

∑

k∈K

US
k fk

vu +
∑

k∈K

U
S
k fk

uv

≤
∑

l∈L{u,v}

Sl
{u,v}C

l
vuxl

{u,v} ≤
∑

l∈L{u,v}

C l
vuxl

{u,v} ∀{u, v} ∈ E (5.15)

62 Preprocessing

The special case that all commodities have to be routed securely appears in the
instances C10 and C12.

No secure commodities If, on the other side, none of the commodities have to be
routed securely we do not consider the secure constraints, as well as in the case
where only secure linkdesigns exist.

High hoplimits If the hoplimit for a commodity k ∈ K is very large (Mk ≥ |V | − 1),
we do not consider the corresponding constraint (3.13).

High node capacity When the traffic limit of a node v ∈ V is very large (Cv ≥
∑

k∈K(Uk + Uk)), we do not consider the respective node capacity constraint
(3.8).

Nomult As a result of the generation of linkdesigns, we do not need any restrictive
conditions concerning an edge for the nomult case.

5.3.2 Reduction of the commodity edge flow variables

Some commodity edge flow variables can be erased or fixed in the preprocessing phase
if the data holds certain characteristics.

No cycles Since we do not want to allow cycles in our routing it is always prohibited
to route a commodity into its origin or out of its destination node. Hence for
each commodity k ∈ K and appropriate node v ∈ V the variables fk

uo
k

and fk
d

k
v

do not have to be generated.

Risky node exclusion Concerning the security constraint sec, various commodity
edge flow variables can be fixed or erased. Since a secure commodity must not be
routed over a risky node, certain variables can be set to 0 as described in (3.11)
and (3.12). We can not profit from this reduction in the larger instance since all
instances of the series B and C (except for C16) contain only secure nodes.

Small hoplimits We can also apply variable reduction exploiting the existence of
hoplimits. Actually, the hoplimit constraint should be perfectly suited for pre-
processing as a number of the commodity edge flow variables might be fixed to
0. Regarding a commodity k ∈ K with the hoplimit Mk we calculate all ok-dk-
paths with a length lower or equal to Mk (with respect to the overlaying directed
graph). Now all variables whose corresponding arc does not appear in any of
these paths can be fixed to 0.
Unfortunately, the graphs of the ROCOCO benchmark suite are very dense (there
are indeed only three instances (C10, C12 and C16) which are not complete),
such that in general two nodes are connected by an edge. Hence, as soon as
the hoplimit of a commodity k is greater 2 nearly each edge and direction (or
respectively arc) lies on a potential ok-dk-path. In the case when Mk = 2, all

Algorithmic approach and implementational aspects 63

variables fk
vu and fk

vu with u, v /∈ {ok, dk} can be erased or fixed to 0. This very
strict hop limit appears, for example, in the instances A06 and C20.

Symmetrical routing As described in Chapter 3, commodities that have to be
routed symmetrically can be merged together. In general the number of com-
modities and thus the number of commodity edge flow variables is halved. In
the problem instance C20, for example, the 404 commodities could be reduced
to 190.

Low node capacity The observation of the node capacities may result in the elimina-
tion of some variables. If for a commodity k ∈ K the amount of data max{Uk, Uk}
is greater than the node capacity Cv of some node v ∈ V , the commodity edge
flow variables corresponding to k and the edges e ∈ δ(v) in both directions can
be eliminated. This preprocessing approach has no effect on the given data since
the node capacity is at least as large as the commodity with the highest amount
of data.

5.3.3 Reduction of the linkdesign installation variables

When the data fulfills certain conditions, it is possible that the set Le of linkdesigns
of an edge e ∈ E and hence the number of linkdesign installation variables can be
reduced significantly.

High port consumption Concerning the port constraints pmax, all linkdesigns
with an extraordinary high port consumption can be excluded from the set of
linkdesigns. A linkdesign is dispensable if its minimal port consumption is greater
than the maximum of in and out ports of all nodes. Let {u, v}, l ∈ L{u,v}; we
can exclude l if

min{P l
uv, P

l
vu} > max

v∈V
{P−

v , P+
v }.

This simplification has been applied successfully for example in the problem
instance C11

No multiplier Restrictions of the base capacity multiplier, denoted by nomult, re-
duce the set of linkdesigns (as described in Chapter 3 concerning the data trans-
formation and generation of the linkdesigns) so that the corresponding linkdesign
installation variables are not even created.

Only secure commodities Using the secure parameters, it is also possible to reduce
the number of linkdesigns. When all commodities have to be routed securely,
there is no use for the application of risky linkdesigns. Concerning for example
the instance C12 this yields to halve the amount of linkdesigns corresponding to
an edge e ∈ E.

64 Heuristics

5.4 Heuristics

We applied a heuristic to find feasible integral solutions which, at the same time,
provide upper bounds in the branch-and-bound tree in order to enable fathoming of
branches.
The main idea of our heuristic approach is to determine a feasible routing which im-
poses certain capacity requirements for each edge. Based on these values, we solve an
IP on the linkdesign installation variables and achieve a feasible linkdesign configura-
tion. This IP can be solved with a MIP-solver in reasonable time, since it contains a
relative small number of variables and constraints.

Figure 5.2 gives a survey on the used algorithm. For each commodity k ∈ K we
determine a ok-dk-path pk in D = (V,A), the overlaying digraph of G (as defined
in Section 2.2), fulfilling certain restrictions. Each arc in A has a weight appointed
by the current commodity and len(pk) denotes the length of the path respective to
these weights, while |pk| denotes the number of arcs in pk. The set of paths (one
for each commodity) represents a routing, for which we calculate a feasible linkdesign
installation.

5.4.1 Determination of a feasible routing

In order to compute a feasible routing we primarily have to consider the flow balance
constraints (3.2), the subtour elimination constraints (3.3), the path length constraints
(3.13), the node capacity constraints (3.26), and the node secure capacity constraints
(3.11), (3.12). The charge concerning the fulfillment of the edge (secure) capacity con-
straints (3.20)–(3.23) will be passed over to the problem of finding a feasible linkdesign
installation for this routing.
Based on the (fractional) values of the commodity edge variable f̂ we generate a feasible
integer routing fulfilling the above constraints described as follows:

Determine a single path For each commodity k ∈ K we determine an ok-dk-path
pk in the overlaying digraph D = (V,A). This path can be found by searching
for a shortest ok-dk-path with respect to preassigned nonnegative arc weights.

These weights may be influenced by the current fractional routing denoted by f̂ .
Since pk is simple, the routing is feasible with respect to the flow balance and
the subtour elimination constraints.

Attending hoplimits Calculating the individual/specific paths concerning a com-
modity k ∈ K, we can easily verify whether the amount of the used arcs is
greater than the limitation Mk. If this happens we can try to find a shorter
ok − dk-path applying another weight function or finally terminate this heuris-
tic iteration unsuccessfully. If we continue we know that the routing is feasible
concerning the path length constraints.

Algorithmic approach and implementational aspects 65

START

STOP

yes

yes

yes

yes

no

no

no

no

no

yes

Insert all commodities k ∈ K in list L

Take k from L

Is L empty?

Initialize weights for the arcs of the over-

laying digraph D, prohibiting certain arcs

Determine a shortest ok-dk-path pk in D

|pk| ≤ Mk ?

Node capacity

exceeded ?

len(pk) < ∞ ?

Update weights?

Update weights

Find a feasible

linkdesign installation for

the calculated routing

(represented by the pk)

by solving a MIP

Figure 5.2: Flowchart of the applied heuristic algorithm

66 Heuristics

Attending node capacity Whenever we have calculated a feasible path for a com-
modity k ∈ K, we add, for each node v ∈ V on the path, the value of k to the
sum of the commodities which we already dealt with and which were also routed
over v. If the sum exceeds the node capacity Cv, we try to find another path for k
prohibiting the arcs incident to v (by setting the corresponding arc weights to the
maximal number). If this approach is not successful we can apply another weight
function or finally terminate the heuristic unsuccessfully. When we continue we
know that the node capacity constraints are fullfilled by the found routing.

Attending secure node capacity We now assert that the routing does not violate
the node secure capacity constraints. For a secure commodity k ∈ K, we prohibit
nodes that are not secure (and neither origin nor destination of k) by setting the
weight of the incident arcs to the maximal number). So when we determine a
shortest ok−dk-path with a length less than the maximal number, we know that
k is not routed over risky nodes, such that the routing is feasible concerning the
node secure capacity constraints.

After calculation of the feasible routing, we have for each commodity k ∈ K a set
of arcs Ak ⊆ A representing a cycle-free ok-dk-path. This corresponds to the fixed
variable assignment f̃ with

f̃k
uv =

{

1 if (u, v) ∈ Ak

0 otherwise
∀(u, v) ∈ A.

5.4.2 Determination of a feasible linkdesign installation

The mechanism described above provides us with a feasible routing represented by the
commodity edge variable assignment f̃ . In order to get a feasible linkdesign installation
for this routing, we have to consider the (secure) capacity constraints (3.20)–(3.23),
the linkdesign installation constraints (3.1) as well as the port constraints (3.6) and
(3.7). The optimal solution x̃ of the following IP provides us with an optimal linkdesign
installation concerning the given routing.

Formulation 5.5 (Linkdesign installation IP)

min
∑

e∈E

∑

l∈Le

W l
ex

l
e

Algorithmic approach and implementational aspects 67

∑

k∈K

Ukf̃
k
uv +

∑

k∈K

Ukf̃
k
vu ≤

∑

l∈L{u,v}
C l

uvx
l
{u,v} ∀{u, v} ∈ E (5.16)

∑

k∈K

Ukf̃
k
uv +

∑

k∈K

Ukf̃
k
vu ≤

∑

l∈L{u,v}
C l

vuxl
{u,v} ∀{u, v} ∈ E (5.17)

∑

k∈K

US
k f̃k

uv +
∑

k∈K

U
S
k f̃k

vu ≤
∑

l∈L{u,v}
Sl
{u,v}C

l
uvx

l
{u,v} ∀{u, v} ∈ E (5.18)

∑

k∈K

US
k f̃k

uv +
∑

k∈K

U
S
k f̃k

vu ≤
∑

l∈L{u,v}
Sl
{u,v}C

l
vuxl

{u,v} ∀{u, v} ∈ E (5.19)

∑

{u,v}∈δ(v)

∑

l∈L{u,v}

P l
uvx

l
{u,v} ≤ P−

v ∀v ∈ V (5.20)

∑

{u,v}∈δ(v)

∑

l∈L{u,v}

P l
vuxl

{u,v} ≤ P+
v ∀v ∈ V (5.21)

∑

l∈Le

xl
e ≤ 1 ∀e ∈ E (5.22)

xl
e ∈ {0, 1} ∀e ∈ E, l ∈ Le

Combining both partial solutions f̃ and x̃, the heuristic yields a feasible integral
solution p̃ = (x̃, f̃) to our problem.

5.4.3 Additional edge exclusion

Since our approach (due to the utilization of shortest path calculation) results in a
dense network, we run into some major problems when we are confronted with strict
port limits. The number of ports of a node imposes an upper bound of the number
of edges which can be equipped by some linkdesigns and therefore can be used by
some routing. Small port limits enforce sparse networks while the resulting routings
of our heuristic approach require dense networks. We coped with this problem by
adapting the weights of arcs and commodity after every iteration. (Arcs of) edges
which are already used by some commodities get very cheap as long as there is still
enough capacity left. Virgin edges (edges were nothing is routed until now) are quite
expensive. Every time we use an edge the first time we remove a port of its incident
nodes. If the ports of a node are exceeded we forbid the incident arcs (by setting their
weight to the maximal limit).

68 Heuristics

5.4.4 Heuristic parameters

We have two options to change the attitudes of our heuristic while determinating a
feasible routing. Different commodity sequences are imaginable as well as various arc
weight functions.

Order of commodities

The importance of the order of the commodities follows from the idea that the first
considered commodities can already establish the outline of the required linkdesign
installation. It seems reasonable that commodities with high needs (in terms of large
(secure) demand value or strict hoplimits) should first have the possibility to fulfill
their requirements.

demand value We order the commodities in a way such that the routing of the
commodities with a high demand value (Uk + Uk) is fixed first.

secure data amount The commodities are ordered such that at first the routing of

commodities with a big secure demand value (US
k + U

S
k) is determined.

hoplimit The order of the commodities is associated with the hoplimits, so that first
the commodities with a very small hoplimit are concerned.

Weights of arcs

To each commodity k ∈ K and each arc (u, v) ∈ A we can apply various arc weights
wk : A → R+. We can distinguish between two types of arc weight functions; static
functions which always provide the same weights and flexible functions influenced by
the current fractional solution. Since the static weight functions always provide the
same routing, we only apply them once in the root node of the branch-and-bound tree.
The heuristic implementation using the flexible weight functions is employed several
times. In any case we disable the arcs corresponding to the commodity edge flow
variables eliminated or fixed to zero before, by setting their weights to the maximal
number.

trivial distance We search a shortest path with respect to the number of arcs by
setting

wk
(u,v) = 1 ∀(u, v) ∈ A.

trivial costs The average installation costs of linkdesigns on an edge is integrated in
the weight generation of the respective arcs:

wk
(u,v) = (

∑

l∈L{u,v}

W l
{u,v}) / |L{u,v}| ∀(u, v) ∈ A.

Algorithmic approach and implementational aspects 69

current flow We use the current solution values of the commodity edge flow variables
by setting

wk
(u,v) = (1− f̂k

uv) ∀(u, v) ∈ A.

current pricy flow The current flow and the average costs of an edge are integrated
in the weight value of the respective arc:

wk
(u,v) =

(

(
∑

l∈L{u,v}

W l
{u,v}) / |L{u,v}|

)

· (1− f̂k
uv) ∀(u, v) ∈ A

Remark 5.6 Since the weights of the arcs will always be nonnegative, the shortest
paths in (5.4.1) can be determined efficiently using the DIJKSTRA algorithm.
We could have applied a hop-limited DIJKSTRA, so that we would not have had to
attend the corresponding constraints afterwards.

Chapter 6

Data and computational results

In this chapter we describe the problem instances contained in the ROCOCO bench-
mark suite and expose some structural characteristics of certain instances. Afterwards,
we present the impact of preprocessing and data transformation and the results apply-
ing certain algorithm options obtained by extensive tests using the given data. The
chapter concludes with a presentation of our computational results for every problem
instance and combination and a comparison with the the corresponding best published
results.
Concerning the smaller problem instances, our implementation provided exactly the
same optimal solution values as the ones published, which indicates that our approach
models the given problem description properly. For some instances and combinations
we were even able to obtain better upper bounds than the ones found until now. But
in general the gap between the obtained upper and lower bounds resulted to be quite
large due to the restrictive time limit.

6.1 Data set

The applied benchmark suite consists of three series, each including 7 instances where-
upon 6 parameters are included in any combination. This yields 1344 problem in-
stances. Series A contains the smallest instances, from 4 to 10 nodes, while the series
B and C include larger graphs up to 25 nodes. What seems remarkable is the fact
that the graphs of all problem instances are extremely dense; nearly all (except C10,
C12 and C16) are even complete. There exist instances with multiple commodities
having the same origin and destination (in Section 3.2 referred to as parallel), e.g. in
the instance C16. There are as well instances with commodities which are isolated, as
defined in Section 3.2. In every instance there appears at least one commodity which
has to be routed securely and there also always exist both, secure and risky linkde-
signs. Table 6.1 shows also the occurrence of unidirected linkdesigns in instance C11
(i.e. linkdesigns providing a capacity greater 0 for one direction and no capacity for the
other). It can also be noticed that the number of ports of the nodes in the instances of

70

Data and computational results 71

the series B and C are quite small, and that therefore the port constraint proves to be
quite restrictive. In C10, for instance, all nodes have two inports and two outports so
that at each node, at most two incident edges can be equipped with a linkdesign. This
imposes that the resulting capacity network is either a chain or a single loop. Except
for C20, in every instance all commodities have the same hoplimit.

6.2 Computational results

In this section we present a listing of our results on the ROCOCO benchmark suite.
We present the influence of the preprocessing and data generation endeavors in order
to minimize the size of the problem. Additionally, we used the data sets for further
analysis of certain settings for algorithm and heuristic. Our implementation was run
on all 27 instances of the benchmark suite, and each combination of the additional
constraints was considered. For upper bounds, we made a comparison with the best
solutions published until now.

The possible 64 combinations are identified by a six-bit vector, whereby the first
digit indicates if the security constraint sec is considered. The second bit corresponds
to the consideration of the nomult constraint, while the third states if the symmetrical
routing constraint symdem was taken into account. The forth and fifth bit indicate
the consideration of the hoplimit constraints bmax and the port constraints pmax
respectively. The last digit corresponds to the consideration of the node capacity
constraints tmax. For example, “011000“ indicates that only the second constraint
nomult and the third constraint symdem were taken into account. The order is
presented in Table 6.2.

We implemented our algorithm on top of the network dimensioning tool DISCNET
[4]. The data structures and algorithms are implemented in C++, using the C++
library and partially LEDA [3]. We used CPLEX 8.0 [10] to solve the LPs in the
branch-and-bound tree and the MIPs in the heuristic. All results were obtained within
a 10-minute time limit on an Intel(R) Xeon(TM) CPU 3.06GHz running the Linux
operating system.

6.2.1 Downsizing results

In this subsection we present the results towards downsizing the problems. We consider
the consequences of our endeavors concerning the reduction of variables as well as the
constraint reduction. Considering the combination where all additional constraints are
taken into account (i.e. the combination 111111), we start with the initial problem size
corresponding to a naive formulation of the problem. Then we document the impact
of our more sophisticated model and the consequential data transformation on the
number of variables/constraints and finally the influence of preprocessing.

7
2

C
o
m

p
u
ta

ti
o
n
a
l
re

su
lt
s

Network Commodities Linkdesigns LP numbers

No. |V | |V S | CV PV |E| |K| |KS | |Kp| |Kc| |Ki| UK MK |L| |LS | |Lu| CL PL |V ars| |Constr|

A04 4 2 256 2-256 6 12 2 0 6 0 4-65 2 5 4 0 64-256 1 - 3 180 66-180

A05 5 3 256 2-256 10 20 2 0 10 0 3-65 2 5 4 0 64-256 1 - 3 460 130-395

A06 6 3 512 2-256 15 26 2 0 13 0 4-65 2 6 5 0 64-512 1 - 3 885 201-680

A07 7 4 512 2-256 21 36 2 0 18 0 4-65 3 6 5 0 64-512 1 - 3 1659 315-1191

A08 8 5 512 2-256 28 40 4 0 20 0 2-66 3 6 5 0 64-512 1 - 3 2436 404-1672

A09 9 6 512 2-256 36 50 4 0 25 0 2-66 3 6 5 0 64-512 1 - 3 3852 558-2543

A10 10 7 512 2-256 45 62 6 0 31 0 2-66 3 6 5 0 64-512 1 - 3 5895 755-3772

B10 10 10 4096 2-4 45 87 34 0 45 3 14-198 4 25 20 0 128-9600 1 - 5 9000 1005-5037

B11 11 11 4096 4 55 108 39 0 55 2 10-197 4 25 20 0 128-9600 1 - 5 13310 1353-7489

B12 12 12 4096 6 66 108 59 0 63 18 64-249 4 25 20 0 128-9600 1 - 5 15972 1494-7776

B15 15 15 4096 6 105 184 98 0 104 24 20-128 4 25 20 0 128-9600 1 - 5 41370 3075-20419

B16 16 16 4096 6 120 211 87 0 116 21 10-100 4 25 20 0 128-9600 1 - 5 53760 3736-27155

B20 20 20 8192 6 190 366 217 0 190 14 5-128 4 25 20 0 128-9600 1 - 5 144020 7890-75766

B25 25 25 8192 6 300 462 303 0 284 106 16-64 4 25 20 0 128-9600 1 - 5 285000 12450-120687

C10 10 10 85000 2 41 66 66 0 33 0 148-11660 5 6 3 0 2048-102000 1 - 3 5699 783-3708

C11 11 11 4096 4 55 108 39 0 55 2 10-197 4 20 15 10 1024-10240 1 - 5 13035 1353-7489

C12 12 12 272000 6 62 132 132 0 66 0 1732-19427 4 10 5 0 2048-170000 1 - 5 17050 1770-10308

C15 15 15 4096 6 105 184 98 0 104 24 20-128 4 10 5 0 1024-10240 1 - 5 39795 3075-19921

C16 16 10 136000 6 115 186 66 0 93 0 148-11660 5 6 3 0 2048-102000 1 - 3 43585 3321-25290

C20 20 20 8192 6 190 404 38 76 190 14 3-128 2-6 10 5 0 1024-10240 1 - 5 155610 8650-105444

C25 25 25 8192 6 300 462 303 0 284 106 16-64 4 10 5 0 1024-10240 1 - 5 280500 12450-120687

Table 6.1: The ROCOCO data

Network : Commodities : Linkdesigns :

|V | the number of nodes |K| the number of commodities |L| the number of linkdesigns

|V S | the number of secure nodes |KS | the number of secure commodities |LS| the number of secure linkdesigns

CV traffic/capacity range of the nodes |Kp| the number parallel commodities |Lu| the number of unidirected linkdesigns

PV port range of the nodes |Kc| the number of connected commodity-sets CL the capacity range of the linkdesigns

|E| the number of edges |Ki| the number of isolated commodities PL the port consumption range of the linkdesigns

UK the data range of the commodities

MK the hoplimit range of the commodities

Initial LP: (corresponding to a naive formulation)

|V ars| the number of variables in the initial LP

|Constr| the number of constraints in the initial LP

for all combinations

Data and computational results 73

sec nomult symdem bmax pmax tmax

{0, 1} {0, 1} {0, 1} {0, 1} {0, 1} {0, 1}

Table 6.2: Combination of additional constraints

Downsizing was a really important ambition for us. At first the LP-formulation of the
problem was so large, that for the big problem instances (B15−B25 and C15−C25)
no solutions could be obtained since the solving time of the LP-relaxation overstepped
the time limit. Not until we applied preprocessing and elaborate data transformation
did we achieve a breakthrough.

Reduction of variables

We present the average reduction of variables per series, which arise due to the data
transformation and certain preprocessing procedures as introduced in Section 5.3.2 and
Section 5.3.3. The first two reduction steps correspond to the transformation of the
problem from a naive formulation to our more sophisticated one. In Table 6.1 it can
be seen that the merging process for the symmetrical routing presented in the end of
Section 3.2.3 resulted for all instances in the greatest reduction. Also the restriction of
the linkdesign sets as a result of the nomult constraint had major reduction effects.
The greatest impact of the corresponding linkdesign elimination was achieved on the
instances of series B where for all edges the set of linkdesigns were reduced from
25 to 5 linkdesigns. The average effect of the latter preprocessing mechanisms on the
instances of the series B and C was (except for the nocycle procedure) quite poor. In the
instances of these two series there exist only commodities with a hoplimit greater than 2
(except for C20) and only secure nodes (except for C16), such that the corresponding
preprocessing procedures (small hoplimits respectively risky node exclusion) hardly
influence the number of variables. The only secure commodities mechanism effects
only the number of variables for the instances C10 and C12 since they are the only
instances in which all commodities have to be routed securely.
For the instances of series A we were most successful. After the transformation and
preprocessing, we were only confronted with 34% of the initial variables. But also the
influence on the number of variables for the instances of series B and C was worthwhile
since we were only confronted with 46%, or 43% respectively of the initial variables.
Note that the order of the applied variable reducing strategies influences the respective
impact. The mechanisms may effect/delete the same variables.

Reduction of constraints

As in the latter subsection the first two reduction steps correspond to the transforma-
tion of the problem from a naive formulation to our more sophisticated one. In Table

74 Computational results

 30

 40

 50

 60

 70

 80

 90

 100

nomult sym. routing no cycle risky node excl. only sec com. small hoplimit

N
um

be
r

of
 v

ar
ia

bl
es

Applied variable-reducing strategies

"seriesA"
"seriesB"
"seriesC"

Figure 6.1: Reduction of variables. Influence on the average number of variables per
series concerning the combination 111111.

6.2 we can see the effects of the exclusion of constraints thru separation (see Section
5.2.2), as well as the further preprocessing on the number of constraints.
Like above the symmetrical routing resulted in the major reduction. As a consequence
of the merging mechanism the corresponding inequalities (3.14)–(3.16) became irrele-
vant, and at the same time the number of hoplimit (3.13) and flow balance inequal-
ities (3.2) were reduced, since their amount depends on the number of commodities.
Compared to this major effect the impact of the remaining presented preprocessing
mechanisms (presented in Section 5.3.1) seems marginal. Only in the instances of se-
ries A there exist nodes with an extremely high number of ports and C10 and C12
are the only instances with only secure commodities. The results of the separation of
the hoplimit constraints, thus their omission, were relatively slight, even though there
were always excluded as many inequalities as merged commodities were present.
Concluding, the number of constraints could be significantly reduced, such that after
the application of our mechanisms in general only 10% of the initial constraints for the
instances of the series B and C, or 23% for the series A respectively, were present.

6.2.2 Branching rule comparison

We tested the branching rules introduced in Section 5.1.3 using four problem instances
of series A and six of the series B and C. Our implementation ran on all possible com-
binations 000000 − 111111 for each of these 16 instances.
Table 6.3 gives an overview of the results for the different branching rules. We sum-
marized the results of all combinations for each problem instance consisting of the

Data and computational results 75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

nomult sym. routing separation only sec com. nodes with many ports

N
um

be
r

of
 c

on
st

ra
in

ts

Applied constraint-reducing strategies

"seriesA"
"seriesB"
"seriesC"

Figure 6.2: Reduction of constraints. Influence on the average number of constraints
per series concerning the combination 111111.

average gap ⊘GAP (the value 100(upper bound − lower bound)/(lower bound)) and
the number of combinations #nU where our implementation did not find any feasible
integer solution within the time limit of 10 minutes. We applied the heuristic presented
in Section 5.4 (with the additional edge exclusion, the highest secure amount as sort
criteria and the pricy flow as arc weights) and the trivial separation to include the ho-
plimit constraints (see Section 5.2.2). Testing the generic most fractional branching
rule and the two edge variable brancher developed, most splitted and least splitted,
the following observations seem appropriate:

• In the small and medium problem instances (except for A10) our edge variable
brancher resulted in better solutions than the generic most fractional branching
rule.

• No great difference between edge variable brancher concerning most/least splitted
flow can be noticed. In general the least splitted flow strategy tends to be slightly
more efficient.

• For the large instances B16, B20, C16 and C20, we could obtain better results
applying the most fractional branching rule than by using the other variable
selection strategies. It seems that the overhead caused by the more sophisticated
edge variable brancher consumes too much time, such that it is impossible to
regain the lost time taking advantage of the benefit of these techniques.

76 Computational results

most fractional most splitted least splitted

⊘GAP #nU ⊘GAP #nU ⊘GAP # nU

A07
7.15 0 3.07 0 2.88 0

000000 - 111111

A08
19.39 0 12.41 0 11.8 0

000000 - 111111

A09
37.59 0 25.16 0 23.91 1

000000 - 111111

A10
43.92 0 32.2 7 31.0 5

000000 - 111111

B10
81.19 21 57.48 20 61.26 19

000000 - 111111

B11
102.08 18 71.14 16 70.86 16

000000 - 111111

B12
91.78 18 80.06 14 74.23 15

000000 - 111111

B15
230.9 1 239.45 0 247.3 0

000000 - 111111

B16
308.63 3 349.06 1 351.74 1

000000 - 111111

B20
287.74 9 314.92 8 315.17 8

000000 - 111111

C10
50.59 26 34.07 21 33.73 20

000000 - 111111

C11
153.2 12 109.2 12 105.95 11

000000 - 111111

C12
47.57 26 40.17 24 39.42 24

000000 - 111111

C15
430.89 0 506.55 1 507.82 1

000000 - 111111

C16
151.55 1 166.99 5 192.69 4

000000 - 111111

C20
1067.97 5 1474.17 5 1482.06 5

000000 - 111111

Table 6.3: Branching rule comparison. Results of running three branching rules from
Section 5.1.3 on 16 · 64 data sets.

Data and computational results 77

6.2.3 Hoplimit inclusion

We tested three different strategies taking into account the hoplimit constraints: The
two separation approaches presented in Section 5.2.2 were run against the inclusion of
the corresponding inequalities into the LP-formulation. For each series we have chosen
three problem instances and ran our implementation on all combinations taking into
account the hoplimit constraints. We applied the generic most fractional variable
selection strategy and the same heuristic settings as in the branching rule test runs.

As it can be seen in Table 6.4, the inclusion of inequalities into the LP-formulation
performed best for the most tested instance. Only for the instance C10 more solutions
could be found applying the hoplimit inequality separators. In this instance all com-
modities have the same, relatively large hoplimit of 5. For comparison: In the similar
instances A10 and B10 the commodities have hoplimits of 3 or 4, respectively. So we
propose an application of the separation approaches when large hoplimits are present.
For problem instances with small hoplimits (like the ones in the given benchmark),
the inclusion of the hoplimit constraints resulted more appropriate. It appears that
the advantage of a faster solving of the LP-relaxation is exhausted by the separation
routines.

6.2.4 Heuristic modes

In Section 5.4.4 we presented two different possibilities to vary the attitudes of the
applied heuristic. Various settings were tested together with the application of the
additional edge exclusion. Our implementation was applied on the secure combinations
100000 − 111111 for 3 problem instances per problem series.

We only implemented and tested the first two sort criteria (highest amount vs.
highest secure amount) for ordering the set of commodities. The third criterion
would only have made sense for exploiting the existence of different hoplimits. Since
this occurs only in one instance we concentrated on the other two sort criteria.
Two ways of generating edge weights were compared. The current flow which uses
the current solution values of the commodity edge flow variables, and the current
pricy flow which is additionally influenced by the standardized costs of the edge. We
also analyzed the influence of the edge exclusion, which is applied in the case of low
port limits for the nodes.
Table 6.5 gives an overview of the results for the different heuristic settings. As in
Table 6.3 the results consists of the average gap ⊘GAP and #nU. We tested all secure
combinations applying trivial separation to include the hoplimit constraints and the
generic most fractional variable selection strategy.

The following observations seem appropriate:

• The edge exclusion was indispensable since it leads to more feasible integral
solutions and, in general, to smaller gaps

78 Computational results

Inclusion Separation Separation

into formulation trivial using shortest path

⊘GAP #nU ⊘GAP #nU ⊘GAP # nU

A07
2.99 0 3.19 0 2.96 0

000100 - 111111

A09
22.71 1 24.87 2 28.13 2

000100 - 111111

A10
27.72 4 37.26 4 34.82 7

000100 - 111111

B10
59.43 10 66.92 12 63.15 11

000100 - 111111

B15
202.17 0 269.82 1 268.75 1

000100 - 111111

B20
296.27 4 296.67 4 298.0 5

000100 - 111111

C10
33.86 12 33.4 10 35.09 10

000100 - 111111

C12
31.72 14 34.4 14 34.38 15

000100 - 111111

C16
165.38 4 210.13 5 213.55 4

000100 - 111111

Table 6.4: Hoplimit integration comparison. Results of running three different hoplimit
constraint integration approaches from Section 5.2.2 on all combinations taking into
account the hoplimit constraints, each time for three instances per series.

Data and computational results 79

• The differences between the obtained gaps for the two sort criteria and also the
two arc weight functions seemed marginal. Hence we uprated the number of
integer solutions found. Under this criterion, the combination of the current flow
as arc weight and the highest amount as sort criteria resulted to be the most
advisable together with the application of the additional edge exclusion.

6.2.5 Results

Our implementation was run on all 27 instances of the ROCOCO benchmark suite.
All 64 combinations were tested employing the 10-minutes timelimit. Using the results
of the previous test series, we applied the most auspicious heuristic settings (with the
additional edge exclusion, the highest amount as sort criteria and the current flow as
arc weights) and included the hoplimit inequalities into the LP-formulation. For the
small and medium instances we employed the developed edge variable brancher (least
splitted) and for the large instances the generic most fractional branching strategy. The
following tables Table 6.6 - Table 6.12 show the achieved results. For every problem
instance and constraint combination, we present the obtained lower bound LB and
the best feasible integer solutions UB found. We compare these values with the best
so far published upper bounds Ilog-UB listed aside.
Considering the results, the following conclusions can be made:

• The given external upper bounds exactly meet our optimal solution in the in-
stances A04−A06 (and in some combinations for the instance A07). In 19 com-
binations, applied together with the problem instance C16, we achieved better
upper bounds (even though the gap is still high). Also in a combination with
the instance B15 and in one with B16 we could identify better solutions. In all
other cases the external upper bounds lay in the range imposed by our obtained
lower and upper bounds.

• The problem instances B15, B16, B20, C15, C16, C20 and C20 are very large.
Since the resulting LP is out of scale, the solution time for the LP-relaxation
critically approximates the 10-minute time limit. Therefore the remaining time
frame is too tight, so that only poor benefit can be drawn from our extensive
endeavors. This fact is revealed in the relatively large gaps between the obtained
lower and upper bounds.

• For the instances B25 and C25 we obtained no upper bounds since the solving-
time of the LP-relaxation overstepped the time limit, such that the heuristic
could not be applied.

• In many combinations for the instances B10 and C10 no integer solution could be
found. Since in both instances appear nodes with only 2 inports and 2 outports,
our heuristic failed in the combinations considering the pmax constraint.

8
0

C
o
m

p
u
ta

ti
o
n
a
l
re

su
lt
s

highest amount highest secure amount

edge exclusion no edge exclusion edge exclusion no edge exclusion

flow pricy flow flow pricy flow flow pricy flow flow pricy flow

⊘GAP #nU ⊘GAP #nU ⊘GAP #nU ⊘GAP #nU ⊘GAP #nU ⊘GAP #nU ⊘GAP #nU ⊘GAP #nU

A07
8.26 0 7.85 0 8.36 0 7.87 0 7.57 0 7.12 0 7.94 0 7.77 0

100000 - 111111

A08
15.81 0 15.59 0 18.56 0 17.36 0 15.88 0 15.56 0 18.40 0 17.58 0

100000 - 111111

A10
44.99 0 41.24 2 47.54 8 64.02 6 43.88 1 45.81 1 63.37 5 82.27 6

100000 - 111111

B10
70.94 16 69.55 16 68.20 16 72.73 16 68.50 16 69.67 16 73.04 16 71.85 16

100000 - 111111

B12
86.17 9 91.03 10 87.99 11 91.03 11 88.56 9 88.93 10 87.84 11 89.83 11

100000 - 111111

B15
190.25 1 186.25 1 170.73 12 172.37 12 191.17 1 194.51 2 167.10 12 171.99 13

100000 - 111111

C11
183.30 12 188.86 12 182.01 12 186.37 12 177.69 12 185.65 12 181.35 12 186.53 12

100000 - 111111

C15
409.68 0 405.00 0 432.26 13 428.23 13 405.85 0 405.83 0 435.91 13 428.03 13

100000 - 111111

C16
182.07 2 186.00 2 126.02 13 124.19 13 178.93 2 169.92 2 133.69 12 127.95 12

100000 - 111111

Table 6.5: Heuristic approach comparison. Results of running 4 heuristic parameter settings with/without an advanced edge
exclusion presented in Section 5.4.4 on all secure combinations for 9 problem instances.

Data and computational results 81

• In the instance C12 we had problems finding integer solutions for the combina-
tions taking into account the nomult constraint. In this instance the mentioned
constraint cause a reduction of the linkdesign sets, such that for all edges only
two linkdesigns are available. One of these linkdesigns provides only an extremely
small amount of capacity (it exists only one commodity out of 132 with a data
value less its capacity). The other linkdesign provides much more capacity, but
at the same time, it is also much more expensive. The heuristic had problems
dealing with this special characteristic. Hence in many combinations no integer
solutions could be found for C12.

82 Computational results

Instance: A04 A05 A06

Comb: LB UB Ilog-UB LB UB Ilog-UB LB UB Ilog-UB

000000 22267.0 22267 22267 30744.0 30744 30744 37716.0 37716 37716

000001 25300.0 25300 25300 32758.0 32758 32758 37716.0 37716 37716

000010 22267.0 22267 22267 31386.0 31386 31386 37970.0 37970 37970

000011 25300.0 25300 25300 32758.0 32758 32758 37970.0 37970 37970

000100 23286.0 23286 23286 31353.0 31353 31353 40789.0 40789 40789

000101 25300.0 25300 25300 34105.0 34105 34105 40804.0 40804 40804

000110 25300.0 25300 25300 31386.0 31386 31386 40789.0 40789 40789

000111 25300.0 25300 25300 39136.0 39136 39136 41349.0 41349 41349

001000 22267.0 22267 22267 30744.0 30744 30744 37716.0 37716 37716

001001 25300.0 25300 25300 32758.0 32758 32758 37716.0 37716 37716

001010 22267.0 22267 22267 31386.0 31386 31386 37970.0 37970 37970

001011 25300.0 25300 25300 32758.0 32758 32758 37970.0 37970 37970

001100 23286.0 23286 23286 31353.0 31353 31353 40789.0 40789 40789

001101 25300.0 25300 25300 34105.0 34105 34105 40804.0 40804 40804

001110 25300.0 25300 25300 31386.0 31386 31386 40789.0 40789 40789

001111 25300.0 25300 25300 39136.0 39136 39136 41349.0 41349 41349

010000 22267.0 22267 22267 30744.0 30744 30744 37716.0 37716 37716

010001 25300.0 25300 25300 32758.0 32758 32758 37716.0 37716 37716

010010 22267.0 22267 22267 31386.0 31386 31386 37970.0 37970 37970

010011 25300.0 25300 25300 32758.0 32758 32758 37970.0 37970 37970

010100 23286.0 23286 23286 31353.0 31353 31353 40789.0 40789 40789

010101 25300.0 25300 25300 34105.0 34105 34105 40804.0 40804 40804

010110 25300.0 25300 25300 31386.0 31386 31386 40789.0 40789 40789

010111 25300.0 25300 25300 39136.0 39136 39136 41349.0 41349 41349

011000 22267.0 22267 22267 30744.0 30744 30744 37716.0 37716 37716

011001 25300.0 25300 25300 32758.0 32758 32758 37716.0 37716 37716

011010 22267.0 22267 22267 31386.0 31386 31386 37970.0 37970 37970

011011 25300.0 25300 25300 32758.0 32758 32758 37970.0 37970 37970

011100 23286.0 23286 23286 31353.0 31353 31353 40789.0 40789 40789

011101 25300.0 25300 25300 34105.0 34105 34105 40804.0 40804 40804

011110 25300.0 25300 25300 31386.0 31386 31386 40789.0 40789 40789

011111 25300.0 25300 25300 39136.0 39136 39136 41349.0 41349 41349

100000 25114.0 25114 25114 33295.0 33295 33295 38963.0 38963 38963

100001 26293.0 26293 26293 33751.0 33751 33751 38963.0 38963 38963

100010 26133.0 26133 26133 33372.0 33372 33372 39343.0 39343 39343

100011 28988.0 28988 28988 43684.0 43684 43684 39343.0 39343 39343

100100 26293.0 26293 26293 33372.0 33372 33372 41782.0 41782 41782

100101 26293.0 26293 26293 35098.0 35098 35098 41797.0 41797 41797

100110 27087.0 27087 27087 33372.0 33372 33372 41782.0 41782 41782

100111 28988.0 28988 28988 46300.0 46300 46300 43184.0 43184 43184

101000 25114.0 25114 25114 33295.0 33295 33295 38963.0 38963 38963

101001 26293.0 26293 26293 33751.0 33751 33751 38963.0 38963 38963

101010 26133.0 26133 26133 33372.0 33372 33372 40258.0 40258 40258

101011 28988.0 28988 28988 43684.0 43684 43684 40258.0 40258 40258

101100 26293.0 26293 26293 33372.0 33372 33372 41782.0 41782 41782

101101 26293.0 26293 26293 35098.0 35098 35098 41797.0 41797 41797

101110 27087.0 27087 27087 33372.0 33372 33372 41782.0 41782 41782

101111 28988.0 28988 28988 46300.0 46300 46300 43184.0 43184 43184

110000 35047.0 35047 35047 43114.0 43114 43114 47615.0 47615 47615

110001 36226.0 36226 36226 43684.0 43684 43684 47615.0 47615 47615

110010 35047.0 35047 35047 43114.0 43114 43114 48193.0 48193 48193

110011 36226.0 36226 36226 43684.0 43684 43684 48193.0 48193 48193

110100 36226.0 36226 36226 43852.0 43852 43852 50980.0 50980 50980

110101 36226.0 36226 36226 45031.0 45031 45031 50980.0 50980 50980

110110 36226.0 36226 36226 43852.0 43852 43852 51715.0 51715 51715

110111 36226.0 36226 36226 50062.0 50062 50062 52563.0 52563 52563

111000 35047.0 35047 35047 43114.0 43114 43114 47615.0 47615 47615

111001 36226.0 36226 36226 43684.0 43684 43684 47615.0 47615 47615

111010 35047.0 35047 35047 43114.0 43114 43114 48193.0 48193 48193

111011 36226.0 36226 36226 43684.0 43684 43684 48193.0 48193 48193

111100 36226.0 36226 36226 43852.0 43852 43852 50980.0 50980 50980

111101 36226.0 36226 36226 45031.0 45031 45031 50980.0 50980 50980

111110 36226.0 36226 36226 43852.0 43852 43852 51715.0 51715 51715

111111 36226.0 36226 36226 50062.0 50062 50062 52563.0 52563 52563

TOTAL 1782558.0 1782558 1782558 2351778.0 2351778 2351778 2708264.0 2708264 2708264

Table 6.6: Results for instances A04, A05 and A06. The implementation was run on
all 64 combinations for every instance. In every instance the optimal solution could be
found. These values are identical to the external given upper bounds.

Data and computational results 83

Instance: A07 A08 A09

Comb: LB UB Ilog-UB LB UB Ilog-UB LB UB Ilog-UB

000000 46429.548 49093 47728 53175.965 62713 56576 65150.363 76956 70885

000001 46418.496 48500 47728 53652.759 62482 58195 65216.398 81746 71377

000010 47070.224 48643 48643 53635.708 64218 58025 66471.1 96757 73839

000011 47092.263 48643 48643 53961.491 61608 60804 66518.871 97778 75347

000100 46541.233 50450 48643 53371.244 60455 57185 65127.555 85318 71635

000101 46533.076 49795 48643 53480.096 60863 58195 65084.734 75747 71635

000110 47149.181 48643 48643 53739.592 63933 58372 66364.732 105964 75083

000111 47137.797 49876 48643 53882.898 63562 61608 66433.873 107199 76744

001000 47044.652 47728 47728 53704.389 56576 56576 66112.323 75133 70885

001001 47116.025 47728 47728 54145.794 60907 58195 66333.272 73953 71635

001010 47850.902 48818 48818 53973.551 60991 58025 67524.218 81917 73839

001011 47836.44 49376 48818 54248.265 61608 61172 67758.388 82786 75347

001100 47084.411 49430 48818 53866.751 58430 57185 66003.021 78545 71635

001101 47056.703 48818 48818 54066.047 61240 58195 66212.364 79336 71635

001110 47877.653 48818 48818 54262.525 59365 58372 67531.649 85369 75083

001111 47821.011 48818 48818 54412.656 62086 61608 67621.808 86223 76943

010000 46597.772 47728 47728 53741.181 60391 56576 65550.337 77679 70885

010001 46588.212 48500 47728 54142.405 61614 58195 65457.155 78043 71377

010010 47245.143 50051 48643 54067.474 58372 58025 66815.065 77713 73839

010011 47307.23 48643 48643 54411.455 67480 60804 66966.342 98507 75347

010100 46753.005 48643 48643 53556.313 58372 57185 65212.596 88651 71635

010101 46533.853 49051 48643 53694.875 63916 58195 65218.981 86253 71635

010110 47505.646 48818 48643 53834.679 60433 58372 66600.525 120266 75083

010111 47523.767 49898 48643 54164.867 68847 61608 66806.631 114553 76744

011000 47440.083 47728 47728 54587.931 58930 56576 66474.797 75425 70885

011001 47728.0 47728 47728 55115.224 60254 58195 66896.139 75046 71635

011010 48683.759 48818 48818 55386.571 59916 58025 68053.934 87663 73839

011011 48262.383 48818 48818 55569.692 63783 61172 68440.204 87956 75347

011100 47721.319 48818 48818 54979.189 57185 57185 66425.431 78476 71635

011101 47737.487 48818 48818 55202.016 60622 58195 66727.598 76442 71635

011110 48551.967 48818 48818 55222.397 58372 58372 68033.191 86921 75083

011111 48818.0 48818 48818 55954.423 62921 61608 68315.914 82224 76943

100000 47832.533 49811 49636 56277.72 58562 58562 67830.38 77672 72871

100001 47818.451 50392 49636 56816.659 62786 61106 68359.203 84725 73363

100010 49663.613 51268 50853 60949.655 68630 65504 70192.213 94073 79549

100011 49458.478 52399 50853 61012.843 72544 69678 70381.4 102149 82197

100100 47868.643 51417 49636 56146.023 62991 59171 67919.422 85270 73621

100101 47852.739 51589 49636 56580.439 62608 61106 68341.467 84481 73621

100110 49781.69 51146 50853 60541.807 73309 65504 70157.744 93742 79838

100111 49818.874 51146 50853 60399.954 73290 70694 70345.077 99693 82208

101000 48464.167 49811 49811 56556.23 58562 58562 68631.128 76509 72871

101001 48390.278 50450 49811 57145.426 63286 61106 69394.0 78121 73363

101010 50284.08 51268 50853 61837.503 68630 65504 71683.936 84238 79549

101011 50276.277 51268 50853 61675.826 72392 69678 72212.998 88623 82197

101100 48519.799 49811 49811 56659.907 60425 59171 68754.593 79208 73621

101101 48429.288 50821 49811 57043.515 62608 61106 69374.211 77798 73621

101110 50525.882 51146 50853 61419.02 71729 65504 71781.321 90438 79838

101111 50662.131 51146 50853 61806.09 73905 70694 72147.872 93137 82208

110000 57095.837 59308 58101 65940.393 69349 68630 77464.489 92331 81931

110001 57138.809 59592 58101 68378.911 76240 72686 80461.413 86514 85623

110010 57970.2 58413 58413 66261.017 68630 68630 77756.91 86734 82351

110011 58380.069 59106 58413 69581.133 77495 74942 80357.568 110518 91065

110100 57187.121 58588 58101 66213.139 73401 70245 77432.98 93597 82890

110101 57090.535 60497 58101 68162.978 78884 74476 79932.857 98992 85623

110110 58588.0 58588 58588 66297.039 72424 70245 77819.968 96410 83108

110111 58429.554 59467 59106 69237.526 78559 75303 81647.747 112118 92648

111000 58036.375 58311 58101 66865.026 68630 68630 78187.663 82901 81931

111001 58043.607 58899 58101 69329.842 74150 72686 81575.848 88167 85623

111010 58588.0 58588 58588 67068.82 68630 68630 78696.698 84342 82351

111011 59012.0 59012 59012 70865.48 74972 74942 83860.812 97815 91065

111100 58013.834 58101 58101 67099.492 70747 70245 78380.696 85126 82890

111101 58059.166 58101 58101 69439.228 76392 74476 81592.06 90522 86043

111110 58588.0 58588 58588 67197.01 70605 70245 78757.373 85371 83108

111111 59106.0 59106 59106 71105.311 78047 75303 84160.308 103287 93062

TOTAL 3230031.271 3320027 3290590 3767121.385 4205857 4049540 4525051.864 5647167 4952942

Table 6.7: Results for instances A07, A08 and A09. The implementation was run on
all 64 combinations for every instance. An optimal solution could be found for some
combinations concerning the instance A07. In the rest the external given upper bounds
are situated in our lower bound upper bound range.

84 Computational results

Instance: A10 B10 B11

Comb: LB UB Ilog-UB LB UB Ilog-UB LB UB Ilog-UB

000000 75092.999 104341 82306 14919.499 20570 19390 24732.746 41369 32246

000001 75095.785 109118 83112 14873.945 21265 21012 24509.971 42362 39522

000010 75477.077 108678 82511 15011.515 22473 19390 24689.588 36331 32943

000011 75371.488 108824 86324 14992.953 27549 21090 24584.978 44438 39522

000100 75079.363 100340 83136 14794.282 22914 19390 24043.417 47205 32246

000101 75000.507 111523 84433 14715.403 26906 22163 22767.652 48952 39522

000110 75409.931 104397 83695 14964.038 — 19390 23550.701 39964 33169

000111 75327.88 143311 86324 14383.967 — 22163 24360.083 50974 39522

001000 75374.001 98844 82306 15359.208 23844 19413 25417.289 38473 32312

001001 75382.241 105641 83112 15358.72 23521 21012 25480.462 43030 39682

001010 75698.364 106869 82511 15486.751 21850 19707 25458.984 40847 32943

001011 75716.752 104741 86342 15471.158 24686 21265 25436.231 44026 39682

001100 75375.286 97800 83136 15343.621 23736 19413 25412.736 46826 32312

001101 75216.06 99949 84433 15338.225 27716 22306 25387.551 54222 39948

001110 75703.552 108576 83695 15466.342 — 19787 25492.434 — 33472

001111 75660.072 111791 86384 15430.624 28228 22345 25479.081 52968 39948

010000 75430.939 103586 82306 14680.924 21614 19390 25180.483 38133 32246

010001 75198.703 104998 83112 14830.036 23438 21090 25082.069 44806 39522

010010 75775.952 111766 82511 14813.237 22101 19390 25162.602 35062 32943

010011 75714.233 108657 86324 14641.769 24209 21090 25083.586 43925 39522

010100 75321.055 109023 83695 14243.003 23178 19390 24705.849 40859 32246

010101 75241.669 109876 84757 14026.965 55523 22163 23170.568 51392 39522

010110 75715.213 118644 83695 14213.514 21465 19390 24132.872 33894 33169

010111 75656.973 115252 86324 15030.723 — 22163 23066.577 — 39522

011000 76291.939 91436 82306 15194.494 20400 19449 25631.551 38120 32312

011001 76279.746 99343 83112 15127.377 22932 21265 25624.628 40545 39948

011010 76740.61 110459 82511 15250.135 20570 19707 25631.985 36078 32943

011011 76816.051 100743 86342 15072.923 22519 21265 25541.145 42636 39948

011100 76076.563 99228 83695 15263.683 24701 19449 25606.287 38918 32855

011101 76111.249 98838 84757 15307.041 23781 22580 25505.738 56546 39948

011110 76668.214 103596 83695 15287.353 22843 19787 25501.532 — 33472

011111 76695.987 100124 86384 15204.949 24501 22580 25049.222 — 39948

100000 78311.77 104821 85435 19392.013 31193 22938 32599.196 53182 41461

100001 78187.344 106554 86582 19277.975 33259 23356 32522.741 57917 42444

100010 79731.629 112599 92428 19549.898 — 22938 32637.312 — 41461

100011 79527.273 111431 96305 19545.958 — 23411 32540.445 — 42444

100100 78260.864 107693 87027 19263.262 31478 23330 32573.515 55278 41627

100101 78218.15 110314 87905 19279.075 31891 23356 32105.132 59847 42444

100110 79782.111 105720 93016 19533.62 — 23330 32508.909 — 41627

100111 79446.195 264894 97396 19537.043 — 23411 32530.949 — 42444

101000 78604.598 101867 85435 20006.302 28163 23385 33991.69 51719 41461

101001 78444.024 112443 87436 20020.522 29470 24113 34075.557 51699 43012

101010 80008.428 111415 92554 20181.676 — 23658 34060.345 — 41461

101011 79872.463 118243 96305 20224.661 — 24223 34120.289 — 43012

101100 78515.695 108291 87027 20020.783 28111 23813 33994.969 52699 42247

101101 78502.763 101896 87905 19968.225 29934 24372 33845.724 50662 43580

101110 80005.751 102606 93016 20227.271 — 23813 33658.191 — 43317

101111 79782.374 131923 97396 20242.006 — 24412 34144.502 — 43580

110000 90978.401 115175 100141 19638.346 30997 22938 33012.411 49187 41461

110001 91151.892 135085 105144 19607.944 27351 23356 32876.626 59241 42444

110010 91068.875 116609 100141 19689.414 — 22938 33005.595 52338 41461

110011 91074.009 150149 109073 19658.136 — 23902 32928.27 — 42444

110100 91072.596 124144 101289 19617.554 39510 23330 32893.258 73366 41627

110101 91321.228 132835 105659 19623.004 26696 23356 32611.364 87950 42444

110110 90996.641 148596 101289 19646.317 — 23330 32900.51 — 41627

110111 90679.513 165083 109754 19553.963 — 24068 32841.095 — 42444

111000 91880.662 113153 100141 20314.36 28277 23658 34218.916 49771 41461

111001 92335.252 121701 105144 20350.128 29485 24113 34098.757 49796 43012

111010 91893.055 107851 100141 20396.878 — 23658 34149.769 49249 41461

111011 92261.176 119701 109754 20387.78 27662 24223 34267.307 47650 43012

111100 91898.819 122699 101289 20215.142 34354 23813 34245.832 53734 42247

111101 92215.761 127116 105659 19866.979 36800 24372 33861.359 51745 43580

111110 91790.349 131172 101289 20333.134 — 23813 34064.428 — 43317

111111 92150.723 161077 109754 20332.922 — 24472 34199.273 51978 43580

TOTAL 5151686.838 7415168 5808115 1115600.668 — 1416583 1864564.834 — 2514301

Table 6.8: Results for instances A10, B10 and B11. The implementation was run on
all 64 combinations for every instance. In all instances the external given upper bounds
are situated in our lower bound upper bound range.

Data and computational results 85

Instance: B12 B15 B16

Comb: LB UB Ilog-UB LB UB Ilog-UB LB UB Ilog-UB

000000 19995.476 29168 24681 12313.854 33248 26126 11206.359 65402 28335

000001 19799.097 39219 36644 12296.277 39617 33966 11095.792 65427 30193

000010 19847.58 28493 24878 12313.486 33807 26337 11194.959 65898 28335

000011 19877.379 — 36708 12171.657 52466 33966 11055.97 71155 31962

000100 19688.324 30955 24970 12310.746 55484 26939 11207.665 60574 28496

000101 20092.506 39506 36936 12296.277 57343 35775 11129.273 66357 35682

000110 19801.004 37504 24970 12317.144 64885 27800 11194.959 70344 30193

000111 20276.998 40753 36936 12152.607 67451 35775 11051.98 68607 35682

001000 20424.501 27958 25036 12874.965 28542 26126 11579.317 37261 28335

001001 21149.994 39959 37094 12806.18 39172 33966 11565.579 46951 31962

001010 20431.125 26362 25036 12873.46 38864 26978 11571.995 47303 28335

001011 21128.72 38241 37094 12703.729 37151 33966 11551.524 59362 31962

001100 20402.485 33134 25036 13372.93 55070 28866 11575.226 56416 29308

001101 21140.131 41023 37212 12710.553 51162 36003 11571.995 58458 35682

001110 20440.497 28415 25036 12851.572 56106 29259 11573.624 42065 30193

001111 21156.741 41129 37212 12720.574 56112 36003 11460.492 67648 35682

010000 20091.456 28665 24731 12407.929 51432 26126 11564.828 70250 28586

010001 20427.207 38859 36644 12324.267 51944 33966 11129.273 73328 31872

010010 20250.174 27961 24878 12510.544 28341 27518 11564.828 63202 28656

010011 20200.458 39106 36708 12205.793 54176 33966 11181.508 65898 31962

010100 20159.993 53168 24970 12386.631 64687 27800 11514.623 70250 29483

010101 20216.426 39047 37212 12324.267 60602 36522 11099.234 76718 36074

010110 20128.987 — 24970 12407.929 62185 27800 11564.828 71172 31428

010111 20054.891 38201 37212 12324.267 67290 36664 11129.273 70828 36074

011000 20620.755 28810 25036 15171.659 28644 26126 12574.999 30891 28586

011001 21125.664 39471 37094 14844.029 35850 33966 12497.765 31701 31962

011010 20620.784 26527 25036 15189.089 27158 28809 12536.092 30169 28656

011011 21097.479 40882 37094 13324.785 35593 33966 12472.294 32832 31962

011100 20558.417 36023 25036 13118.238 39071 28866 12233.743 49494 31212

011101 20951.661 39711 37212 13103.235 66757 36701 11935.82 65650 36074

011110 20583.003 — 25036 14818.459 55859 32458 11935.82 71179 31428

011111 21197.704 37892 37212 14354.903 54236 36701 12233.743 71179 36074

100000 26778.641 46321 34697 18618.146 52893 32797 16601.026 69422 34401

100001 26960.427 49320 37438 18587.063 51342 35823 16326.25 67473 35528

100010 27096.288 — 34729 18622.79 64303 33067 16588.115 69316 34401

100011 26746.013 — 37815 18586.142 65263 36110 16326.25 68150 35528

100100 26746.857 46944 34697 18691.753 46039 32797 16597.637 69422 35889

100101 26909.985 48124 38017 18429.519 58051 36522 16468.466 69290 36498

100110 26826.713 — 35202 18618.146 65964 33067 16579.91 68957 36544

100111 26085.096 54223 38168 18581.498 61511 36664 16509.74 — 36544

101000 29089.965 40306 35202 19606.127 45747 34387 17671.42 47927 35207

101001 29264.052 42711 38017 19600.994 43857 35823 16090.77 45504 35528

101010 29053.473 — 35202 19671.425 57350 34662 16154.413 58470 35207

101011 29309.091 47929 38147 19599.59 54721 36247 16154.413 72915 35528

101100 29067.414 41954 35202 19603.244 48095 34387 16090.77 55250 35972

101101 29268.588 41359 38017 19543.275 46714 37403 17071.002 50691 36498

101110 29007.843 49905 35202 19606.127 61398 34927 16230.814 70264 36544

101111 29106.371 42871 38168 19590.656 60299 37403 16154.413 71580 36544

110000 27011.974 67449 34729 18714.368 69370 33023 16739.927 79436 34401

110001 26869.815 73124 37815 18752.797 75042 35823 16518.44 75790 35528

110010 26881.4 — 34729 18787.694 58272 33067 16739.927 66040 34401

110011 26591.289 45477 37815 18737.293 65623 36110 16549.812 68439 35528

110100 26689.91 69136 34868 18786.112 69202 33023 16661.023 79436 35889

110101 26550.489 72144 38911 18733.822 71098 36522 16488.629 78772 36544

110110 26465.435 — 35202 18758.3 65964 33067 16694.255 68957 36544

110111 26614.56 — 38911 18775.073 67785 36664 16549.812 68249 36544

111000 29203.323 68660 35202 19943.633 38168 34642 17834.97 40366 35510

111001 29381.657 41855 38147 20815.554 62244 35823 18025.851 37408 35528

111010 29223.01 — 35202 21238.38 38096 34662 17834.97 59387 35510

111011 29355.476 — 38147 20672.169 37742 36247 17245.072 39236 35528

111100 29217.623 64716 35202 19872.551 64149 34927 17890.953 64221 36544

111101 29439.263 43302 39720 20891.536 69553 38007 17536.851 61643 36544

111110 29187.214 — 35202 21179.091 58428 34927 17834.97 67671 36544

111111 29315.671 — 40441 20954.028 62040 38007 17713.758 71000 36544

TOTAL 1549252.543 — 2165723 1035070.931 3406628 2132433 909230.009 — 2156418

Table 6.9: Results for instances B12, B15 and B16. The implementation was run on
all 64 combinations for every instance.In the instance B15 we achieved a better upper
bound concerning the combination 011010. In the instance B16 we could identify a bet-
ter upper bound for the combination 011001. In the other instances and combinations,
the external given upper bounds are situated in our lower bound upper bound range.

86 Computational results

Instance: B20 B25 C10

Comb: LB UB Ilog-UB LB UB Ilog-UB LB UB Ilog-UB

000000 21245.583 106600 47180 24865.103 — 74051 10398.147 11675 11472

000001 21245.583 106600 47180 24865.103 — 74051 10982.051 14485 13388

000010 21245.583 120541 47465 24865.103 — 74051 12376.412 16334 16194

000011 21245.583 118326 47639 24865.103 — 74051 13010.948 — 18448

000100 21245.583 106600 49770 24865.103 — 80281 10293.747 12270 11472

000101 21245.583 106600 51625 24865.103 — 85721 10874.154 15263 13388

000110 21245.583 — 49770 24865.103 — 90916 12017.998 — 16194

000111 21245.583 — 51625 24865.103 — 90916 12335.761 — 18925

001000 21855.158 103948 47180 25082.308 — 74051 10428.978 11912 11465

001001 21855.158 103948 47180 25082.308 — 74051 11200.251 14098 13388

001010 21855.158 115086 47639 25082.308 — 74051 12909.566 16587 16194

001011 21855.158 113348 47639 25082.308 — 74051 13825.834 — 18925

001100 21855.158 103441 50317 25082.308 — 87244 10447.256 11645 11483

001101 21855.158 103441 53374 25082.308 — 87244 11263.987 15059 13388

001110 21855.158 110078 50514 25082.308 — 92278 12940.713 20449 16194

001111 21855.158 110078 53602 25082.308 — 92278 13846.861 — 21560

010000 21245.583 111184 47180 24865.103 — 74051 11465.957 17373 14141

010001 21245.583 111184 47180 24865.103 — 74051 12096.498 19228 16043

010010 21245.583 117225 47465 24865.103 — 74051 13210.033 — 16194

010011 21245.583 116695 47639 24865.103 — 74051 13970.733 — 18448

010100 21245.583 111184 49770 24865.103 — 80281 11501.616 14973 14141

010101 21245.583 111184 51625 24865.103 — 85721 12013.898 17953 16043

010110 21245.583 — 49770 24865.103 — 92124 13341.438 — 16194

010111 21245.583 — 51625 24865.103 — 92124 14031.767 — 18925

011000 22057.543 120466 47180 25148.987 — 74051 11706.79 15139 14141

011001 21855.158 120466 47180 25148.987 — 74051 12510.421 17212 16085

011010 22081.431 115086 47639 25107.781 — 74051 14193.801 17314 16194

011011 21855.158 113348 47639 25107.781 — 74051 14466.228 — 18925

011100 21937.53 119959 50376 25107.781 — 87244 11722.196 15264 14141

011101 21855.158 120466 53374 25148.987 — 87244 12527.024 17491 16164

011110 22057.543 110078 51125 25107.781 — 93840 14325.729 19339 16194

011111 21855.158 110078 53602 25107.781 — 93840 14602.132 — 21560

100000 35631.138 109583 67370 41017.034 — 90297 12227.56 16647 15157

100001 35631.138 109132 67370 41017.034 — 90297 12185.061 17926 16664

100010 35631.138 — 68233 41017.034 — 92077 12666.657 17894 16194

100011 35631.138 — 68233 41017.034 — 92077 13283.854 — 18448

100100 35631.138 109132 67574 41017.034 — 98439 12084.579 15494 15157

100101 35631.138 109132 67574 41017.034 — 103893 11651.743 20216 16664

100110 35631.138 116721 71881 41017.034 — 98439 12561.78 — 16194

100111 35631.138 116721 72884 41017.034 — 105268 12950.89 — 18925

101000 36993.179 103056 67574 41933.815 — 90297 12549.585 16396 15157

101001 36993.179 103056 67574 41933.815 — 90297 12613.21 18304 16664

101010 36993.179 113768 69119 41933.815 — 92077 13452.852 16628 16194

101011 36993.179 113768 69119 41933.815 — 92077 14037.853 20114 18925

101100 36993.179 103056 67574 41933.815 — 98439 12590.487 16322 15157

101101 36993.179 103056 67574 41933.815 — 103893 12677.734 18171 17015

101110 36993.179 110436 73982 41933.815 — 98439 13432.278 16556 16194

101111 36993.179 110436 74372 41933.815 — 106396 13868.179 — 21560

110000 35631.138 120988 67370 41017.034 — 90297 12276.721 15919 15157

110001 35631.138 120988 67370 41017.034 — 90297 12721.835 18952 16664

110010 35631.138 — 68233 41017.034 — 92077 13483.561 16194 16194

110011 35631.138 — 68233 41017.034 — 92077 14411.624 — 18448

110100 35631.138 120988 67574 41017.034 — 98439 12275.212 17507 15157

110101 35631.138 120988 67574 41017.034 — 103893 12779.126 18420 16664

110110 35631.138 116721 71881 41017.034 — 98439 13652.857 — 16194

110111 35631.138 116721 72884 41017.034 — 105268 13879.94 — 18925

111000 36993.179 119101 67574 41962.425 — 90297 12718.958 15919 15157

111001 36993.179 119101 67574 41962.425 — 90297 13479.674 18956 16664

111010 36993.179 113768 69119 41962.425 — 92077 14500.453 16194 16194

111011 36993.179 113768 69119 41962.425 — 92077 15634.18 — 18925

111100 36993.179 119101 67574 41962.425 — 98439 12779.648 15499 15157

111101 36993.179 119101 67574 41962.425 — 103893 13418.02 17531 17015

111110 36993.179 110436 73982 41962.425 — 98439 14682.532 16536 16194

111111 36993.179 110436 76937 41962.425 — 106396 15779.27 — 21560

TOTAL 1852314.343 — 3798647 2126928.442 — 5689516 820146.838 — 1046149

Table 6.10: Results for instances B20, B25 and C10. The implementation was run
on all 64 combinations for every instance. In all instances the external given upper
bounds are situated in our lower bound upper bound range. In the instance B25 we
obtained no upper bounds since the solving-time of the LP-relaxation overstepped our
time limit.

Data and computational results 87

Instance: C11 C12 C15

Comb: LB UB Ilog-UB LB UB Ilog-UB LB UB Ilog-UB

000000 15766.287 23913 20889 30711.879 43582 35334 17599.665 56850 39347

000001 15649.138 28634 25641 30729.697 42964 35373 17428.125 111678 50491

000010 15721.777 24848 21428 30740.302 52806 35480 17599.713 114951 39347

000011 15609.039 31026 25641 30730.012 — 35480 17451.851 139597 50491

000100 14600.493 24395 20889 30701.603 41210 35334 17597.224 60059 42086

000101 14127.848 27850 25641 30526.886 44970 35373 17533.874 182879 54042

000110 15136.679 25435 21685 30706.013 — 35480 17589.153 158968 42378

000111 14548.701 34504 25641 30679.124 — 35480 17430.969 152975 54654

001000 16035.232 22655 20889 31110.932 41250 35334 18361.316 61884 39347

001001 16402.051 29565 25991 31111.363 40778 35835 18212.493 99194 51108

001010 16271.685 21727 21428 31125.565 49280 35880 18401.786 57528 39347

001011 16157.905 32383 26085 31129.743 49267 35880 18361.029 128510 51108

001100 16261.012 28343 20889 31108.933 41280 35334 18361.316 113151 42631

001101 16280.557 30011 26341 31101.255 42201 35880 18340.855 137915 54042

001110 16303.241 25338 21685 31111.35 45008 35880 18380.286 144495 43328

001111 16256.317 32831 26341 31100.704 — 35880 18251.522 142216 55796

010000 15852.657 24059 20889 30947.689 — 35480 17812.716 47436 39347

010001 15643.608 29227 25641 30909.855 — 35480 17595.214 73415 50491

010010 15651.183 23002 21428 30963.198 42516 35480 17783.952 48450 39347

010011 15671.104 30278 25641 30892.693 41769 35480 17579.968 72975 50491

010100 15179.538 23512 20889 30676.854 — 35480 17639.586 273805 42086

010101 14463.395 29432 25641 30469.436 — 35480 17619.336 71647 54042

010110 14930.167 25630 21685 30717.193 39046 35480 17639.586 124847 42378

010111 14363.316 32445 25641 30396.015 40454 35480 17671.723 143608 54654

011000 16104.933 23136 20889 31319.902 — 35835 21401.021 46493 39347

011001 16328.097 30665 25991 31298.706 — 35835 20635.778 68654 51108

011010 16121.225 22425 21428 31283.627 40985 35909 21293.72 47692 39347

011011 16303.618 29376 26085 31307.243 39302 36742 20491.941 71331 51108

011100 16069.693 25336 20889 31314.226 — 35909 20987.133 60603 42631

011101 16403.271 31925 26528 31290.481 — 36238 20251.616 154987 54042

011110 15994.096 28468 21685 31299.84 40649 35909 20367.978 98284 43679

011111 16377.795 31703 26528 31293.523 42292 36857 20373.53 106285 55796

100000 21524.023 41945 29468 30908.82 43756 35512 30217.923 97310 54638

100001 21065.776 42693 29530 30914.458 44465 35880 29991.403 169694 60531

100010 21509.88 — 29577 30915.447 — 35880 30262.853 144023 56688

100011 21346.636 — 29577 30912.288 — 35880 30014.558 143231 60531

100100 21683.772 62490 29530 30745.884 43085 35593 30196.512 174186 54638

100101 21372.017 53039 29530 30719.075 47248 35880 29767.427 189087 60531

100110 21583.586 — 29577 30740.461 — 35880 30261.988 154356 56688

100111 21060.62 — 29577 30719.476 — 35880 30030.079 147944 60531

101000 22997.951 42772 29468 31260.105 42313 35880 32086.238 115732 55022

101001 22735.643 42662 29577 31265.268 40874 35880 31751.85 158515 60531

101010 23146.494 — 29577 31252.294 52948 35880 31765.444 121698 57090

101011 23141.455 — 29577 31249.265 49448 35880 32094.208 126964 60531

101100 23016.172 43524 29577 31239.125 42191 35880 31751.882 178806 55022

101101 23233.525 43932 29577 31235.081 44117 35880 31839.74 157858 60531

101110 23164.923 — 29577 31225.315 42380 35880 32186.267 146161 57090

101111 23105.816 36884 29577 31251.797 48464 35880 32164.584 140618 60531

110000 21711.565 101300 29577 30954.871 — 35909 30309.81 93993 54638

110001 21131.305 44665 29577 30913.109 — 35933 30309.81 94705 60531

110010 21385.067 39383 29577 30947.249 39059 35909 30309.81 88716 56688

110011 20991.058 49459 29577 30892.06 42653 36604 30309.81 94705 60531

110100 21477.922 45067 29577 30663.005 — 35909 30248.063 308164 54638

110101 20751.852 114975 29577 30423.093 — 36238 30210.972 308461 60531

110110 21553.612 — 29577 30671.944 41202 35909 30244.933 154356 56688

110111 21125.161 47113 29577 30408.018 41264 36857 30248.063 154356 60531

111000 23087.41 41610 29577 31319.936 — 35909 34029.275 81210 55022

111001 22733.92 99347 29577 31347.77 — 35933 33414.061 96785 60531

111010 23063.378 37683 29577 31318.681 40147 35909 34029.275 86651 57480

111011 22947.672 — 29577 31333.254 40350 36857 33539.322 82046 60531

111100 23182.129 92149 29577 31318.329 — 35909 34002.6 271354 55022

111101 23156.913 38324 29577 31274.67 — 36238 33414.061 291057 60531

111110 23023.702 — 29577 31294.798 42175 35909 33920.081 162267 57480

111111 23030.076 — 29577 31287.386 40082 36857 33367.292 142846 60531

TOTAL 1212626.689 — 1700687 1983728.174 — 2294525 1602336.169 8251217 3362465

Table 6.11: Results for instances C11, C12 and C15. The implementation was run
on all 64 combinations for every instance. In all instances the external given upper
bounds are situated in our lower bound upper bound range.

88 Computational results

Instance: C16 C20 C25

Comb: LB UB Ilog-UB LB UB Ilog-UB LB UB Ilog-UB

000000 12195.029 28313 26289 30264.927 650420 68831 23247.521 — 70994

000001 12170.665 25744 26289 30264.927 669547 69564 23247.521 — 70994

000010 12176.177 40550 26482 30264.927 238627 68831 23247.521 — 72271

000011 12174.139 40550 26754 30264.927 234785 70526 23247.521 — 72271

000100 12175.682 28117 26289 30264.927 660834 71705 23247.521 — 81267

000101 12170.733 25744 26289 30264.927 660834 76999 23247.521 — 85278

000110 12174.776 49162 26482 30264.927 241290 73658 23247.521 — 87710

000111 12174.776 47913 26754 30264.927 243122 78376 23247.521 — 88232

001000 13182.539 25449 26289 31332.591 118870 68831 23451.233 — 73161

001001 13015.877 25918 26289 31315.902 234947 70526 23451.233 — 73508

001010 13174.672 28874 26545 31603.236 238833 68831 23451.233 — 73508

001011 13003.574 30552 26769 31603.236 241513 70526 23451.233 — 73508

001100 13187.133 25449 26289 31499.549 148581 71968 23451.233 — 86598

001101 13015.877 25918 26289 31315.902 299554 76999 23451.233 — 95008

001110 13173.811 26721 26566 31603.236 243609 73658 23451.233 — 96768

001111 12994.547 30988 26769 31603.236 238833 78851 23451.233 — 96768

010000 12231.569 25622 27054 30465.041 700156 68831 23268.697 — 73161

010001 12175.293 35317 27191 30465.041 700156 69564 23268.697 — 75486

010010 12231.569 25016 27243 30465.041 234635 68831 23247.521 — 73990

010011 12171.137 27019 27267 30465.041 236990 70593 23247.521 — 75486

010100 12171.137 62524 27098 30465.041 700156 71722 23247.521 — 83268

010101 12171.137 34746 27265 30465.041 700156 77338 23268.697 — 88016

010110 12171.137 31010 27258 30441.054 244260 73900 23247.521 — 87710

010111 12171.137 31038 27267 30465.041 248278 78851 23247.521 — 88232

011000 13223.411 28028 27081 31587.979 587420 68831 23552.609 — 73161

011001 13114.439 27532 27191 31587.979 89320 70593 23509.59 — 75605

011010 13240.523 24775 27243 31587.979 95617 68831 23473.686 — 75332

011011 13071.18 28852 27267 31587.979 129679 70593 23473.686 — 75605

011100 13197.372 — 27098 31587.979 307957 72764 23509.59 — 88688

011101 13092.1 28485 27265 31587.979 253468 78851 23509.59 — 95008

011110 13213.766 30164 27258 31587.979 243609 74253 23473.686 — 96768

011111 13059.283 30894 27267 31587.979 115818 78851 23473.686 — 96768

100000 12588.934 30047 26445 30986.232 665844 95842 43438.097 — 100569

100001 12527.841 26483 26670 30986.232 665844 96948 43438.097 — 100569

100010 12601.262 56445 26872 30977.462 — 95842 43438.097 — 110945

100011 12527.841 27678 27010 30977.462 — 96948 43438.097 — 112726

100100 12583.611 28961 26670 30986.232 665844 97979 43438.097 — 108517

100101 12517.96 27522 26670 30986.232 665844 99098 43438.097 — 113323

100110 12586.717 54024 26888 30986.232 249775 97979 43438.097 — 115888

100111 12549.338 60518 27010 30986.232 251448 100055 43438.097 — 115888

101000 14508.66 24710 26445 34605.267 179541 95842 44662.061 — 100569

101001 14337.572 27024 26670 34605.267 233636 98173 44662.061 — 100569

101010 14509.414 26702 26872 34784.757 238622 95842 44662.061 — 111147

101011 14232.443 26353 27010 34784.757 239346 99414 44662.061 — 114915

101100 14486.785 29333 26670 34784.757 189567 97979 44662.061 — 113323

101101 14337.572 27960 26670 34621.956 204223 99098 44662.061 — 113323

101110 14499.008 44848 26888 34890.751 240478 97979 44662.061 — 115888

101111 14204.111 27914 27010 34890.007 240478 100976 44662.061 — 115888

110000 12580.537 59029 27135 30986.691 784186 95842 43438.097 — 100569

110001 12549.182 30002 27254 31175.761 669755 96948 43438.097 — 100569

110010 12672.413 22148 27243 30986.691 — 95842 43438.097 — 111147

110011 12549.182 34245 27267 31175.761 — 96948 43438.097 — 112726

110100 12580.537 59029 27267 31175.761 669755 100323 43497.628 — 108517

110101 12549.182 39707 27267 31175.761 669755 100323 43497.628 — 113323

110110 12580.537 33098 27267 31175.761 251221 101313 43497.628 — 115888

110111 12549.182 35247 27267 31175.761 — 101313 43497.628 — 115888

111000 14654.615 22729 27243 34873.187 583326 95842 44704.017 — 100569

111001 14508.116 27557 27254 34873.187 420250 98173 44704.017 — 100569

111010 14745.154 25082 27243 34873.187 202346 95842 44704.017 — 111147

111011 14542.634 26971 27267 34873.187 239346 101313 44704.017 — 114915

111100 14747.503 25416 27267 34873.187 583326 100323 44704.017 — 113323

111101 14534.614 32509 27267 34873.187 415263 100323 44704.017 — 113323

111110 14637.785 22969 27267 34873.187 205734 101313 44704.017 — 115888

111111 14488.57 31900 27267 34873.187 212660 101313 44704.017 — 115888

TOTAL 837935.009 — 1723258 2044249.756 — 5471165 2157786.151 — 6148424

Table 6.12: Results for instances C16, C20 and C25. The implementation was run on
all 64 combinations for every instance. In 19 combinations of the instance C16 we are
able to identify better upper bounds. In all the other instances the external given upper
bounds are situated in our lower bound upper bound range. In the instance C25 we
obtained no upper bounds since the solving-time of the LP-relaxation overstepped our
time limit.

Chapter 7

Conclusion

In this thesis, a sophisticated model for the problem considered in the ROCOCO
project has been developed. It is the first model published which includes all additional
constraints such that any combination can be handled by parameterization. We have
examined the associated polyhedra and have introduced a number of valid inequalities.
We have been able to show that some of these are even facet-defining for a relaxation of
the problem. These inequalities have been used as cutting planes in the applied branch-
and-cut algorithm. The algorithm has been briefly explained and some strategies for
obtaining better solutions have been introduced together with separation approaches.
A detailed description to the applied preprocessing steps has been given which resulted
to be very effective. We have presented a newly developed and implemented heuristic
which reliably identifies integer solutions for the problem. This heuristic splits the
network design problem into two subproblems (Determination of a feasible routing
/ Calculation of a appropriate linkdesign installation) and solves them successively.
We have evaluated different algorithm strategies and have measured the effects of the
applied preprocessing and elaborate data transformation using the given benchmark
suite.

We have found optimal solutions for the small instances with exactly the same
values as the best published results. This indicates that the developed model properly
represents the initial problem description. For the larger problem instances the gap
between the upper and lower bound turned out to be quite large, but for some instances
we have been even able to identify better integer results than the best published ones.

Altogether, we have proposed a framework that successfully provides good solutions
for the tested small and medium problem instances. The main problem has turned out
to be the fact that the networks of the given problem instances are extremely dense. For
the largest instances, the number of variables is much larger than what can be handled
by any state of the art solver within the assumed 10-minutes time limit. Hence more
preprocessing or ultimately a path based model with column generation approach may
be worth considering. Further improvement could be achieved by increasing the benefit
of the given grouping of variables (e.g. GUB-branching) and also more tests for the
enhancement of the branch-and-cut algorithm seem appropriate.

89

List of Tables

3.1 Generated linkdesigns . 16

3.2 Merging of connected commodities . 24

4.1 Available linkdesigns for e ∈ δ(W) . 39

4.2 Existing commodities . 41

6.1 The ROCOCO data . 72

6.2 Combination of additional constraints 73

6.3 Branching rule comparison . 76

6.4 Comparison of hoplimit integration . 78

6.5 Heuristic approach comparison . 80

6.6 Results for instances A04, A05 and A06 82

6.7 Results for instances A07, A08 and A09 83

6.8 Results for instances A10, B10 and B11 84

6.9 Results for instances B12, B15 and B16 85

6.10 Results for instances B20, B25 and C10 86

6.11 Results for instances C11, C12 and C15 87

6.12 Results for instances C16, C20 and C25 88

90

List of Figures

3.1 Example of network with capacity installation. 11

4.1 Cut traffic . 35

5.1 Flowchart of the applied branch-and-cut algorithm 56

5.2 Flowchart of the applied heuristic algorithm 65

6.1 Reduction of variables . 74

6.2 Reduction of constraints . 75

91

Bibliography

[1] Network Time Protocol (NTP) project. Information available at http://www.

ntp.org.

[2] E. Danna C. LePape. A. Chabrier. Solving a network design problem. Technical
Report 02-005, ILOG, 2002.

[3] Algorithmic Solutions Software GmbH, Schützenstr. 3-5, D- 66123 Saarbrücken,
Germany. Leda—Library of Efficient Data types and Algorithms, 1998–2003.
Information available at http://www.algorithmic-solutions.com.

[4] atesio GmbH, Rubensstr. 126, D-12157 Berlin, Germany. discnet, 2000–2003.
Information available at http://www.atesio.de.

[5] D. Bienstock and O. Gunluk. Capacitated network design - polyhedral structure
and computation.

[6] J.C. Régin C. Le Pape, L. Perron and Paul Shaw. Robust and parallel solving of
a network design problem, 2002.

[7] Alain Chabrier. Heuristic branch-and-price-and-cut to solve a network design
problem, 2003.

[8] V. Chvátal. Linear programming. A series of books in the mathematical sciences.
New York - San Francisco: W. H. Freeman and Company, 1983.

[9] H. Crowder, E. Johnson, and M. Padberg. Solving large-scale 0-1 linear program-
ming problems, 1983.

[10] ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451,
USA. ILOG CPLEX 8.0 Reference Manual, 2002. Information available at http:
//www.cplex.com.

[11] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley
& Sons, Inc., 1988.

[12] S. Orlowski. Local and global restoration of node and link failures in telecommu-
nication networks. Master’s thesis, TU Berlin, 2003.

92

[13] Claude Le Pape Laurent Perron Raphal Bernhard, Jaques Chambon and
Jean Charles Régin. Résolution d’un problème de conception de réseau avec par-
allel solver, 2002.

[14] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience Se-
ries in Discrete Mathematics. A Wiley-Interscience Publication. Chichester: John
Wiley & Sons Ltd., 1986.

[15] C. P. M. van Hoesel, A. M. C. A. Koster, R. L. M. J. van de Leensel, and M. W. P.
Savelsbergh. Polyhedral results for the edge capacity polytope. Mathematical
Programming, series A, 92(2):335–358, 2002.

[16] R. Wessäly. Dimensioning survivable capacitated networks. PhD thesis, TU Berlin,
2000.

[17] L. A. Wolsey. Integer Programming. Wiley-Interscience Series in Discrete Math-
ematics and Optimization. New York: WileyInterscience, 1998.

[18] L.A. Wolsey. Valid inequalities for 0–1 knapsack and MIPs with generalized upper
bound constraints. Discrete Applied Mathematics, 29:251–261, 1990.

German Summary,
Zusammenfassung

In der vorliegenden Diplomarbeit untersuchen wir die Optimierung von ausfallsicheren
Telekommunikationsnetzen. Motiviert wurde diese Arbeit durch eine Problemstellung,
welche im Kontext des ROCOCO-Projekts bearbeitet wurde und zum Ziel hatte ro-
buste Algorithmen zu entwickeln. Als robust werden Algorithmen bezeichnet, welche
nicht nur gute Ergebnisse für Probleminstanzen verschiedener Grösse und Charakter-
istik liefern, sondern auch weiterhin gut arbeiten wenn Bedingungen hinzugefügt oder
entfernt werden.
Ausgehend von einer textuellen Problembeschreibung entwickeln wir ein umfassendes
Modell. Es handelt sich um das nach unserer Kenntnis erste Modell, durch das
sich jede beliebige Kombination der betrachteten Bedingungen abbilden lässt. Das
durch das Model induzierte Polyeder wird untersucht und gültige Ungleichungen wer-
den vorgestellt. Wir zeigen, dass einige dieser Ungleichungen facettendefinierend für
eine Relaxierung unseres Problems sind. Die ermittelten Ungleichungen werden als
Schnittebenen in einem Branch-and-Cut-Algorithmus verwendet, welcher als zentraler
Algorithmus eingesetzt wird. Auf diesen Algorithmus wird genauer eingegegangen,
und es werden Strategien eingeführt, durch die die Lösbarkeit verbessert werden kann.
Weiterhin werden umfangreiche Preprocessing-Prozeduren und eine neu entwickelte
und implementierte Heuristik vorgestellt.
Wir haben unsere Implementation an der für das ROCOCO-Project entwickelten
Benchmarksuite getestet, was ausführlich beschrieben wird. Desweiteren werden für
alle Datensätze und Kombinationen von Bedingung die erreichten Ergebnisse mit den
besten verfügbaren Lösungen verglichen. Es wird gezeigt, dass wir in den kleineren
Probleminstanzen exakt dieselben Optimallösungen erreichen und für einige Instanzen
sogar ganzzahlige Lösungen erhalten, die besser als die bis jetzt veröffentlichten Lösun-
gen sind.

94

Statutory Declaration,
Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt die selbständige
und eigenhändige Anfertigung dieser Diplomarbeit.

(Ulrich Menne)

95

