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Zusammenfassung

Diese Dissertation befa�t sich mit ganzzahligen Programmen mit ��	
Systemen� Set�Packing�
 Partitioning� und Covering�Probleme� Die
drei Teile der Dissertation behandeln polyedrische
 algorithmische und
angewandte Aspekte derartiger Modelle�
Teil 	 diskutiert polyedrische Aspekte� Den Auftakt bildet ei�
ne Literatur�ubersicht in Kapitel 	� In Kapitel � untersuchen wir
Set�Packing�Relaxierungen von kombinatorischen Optimierungspro�
blemen �uber Azyklische Digraphen und Lineare Ordnungen
 Schnitte
und Multischnitte
 �Uberdeckungen von Mengen und �uber Packungen
von Mengen� Familien von Ungleichungen f�ur geeignete Set�Packing�
Relaxierungen sowie deren zugeh�orige Separierungsalgorithmen sind
auf diese Probleme �ubertragbar�
Teil � ist algorithmischen und rechnerischen Aspekten gewidmet�
Wir dokumentieren in Kapitel � die wesentlichen Bestandteile ei�
nes Branch�And�Cut Algorithmus zur L�osung von Set�Partitioning�
Problemen� Der Algorithmus implementiert einige der theoretischen
Ergebnisse aus Teil �� Rechenergebnisse f�ur Standardtestprobleme der
Literatur werden berichtet�
Teil � ist angewandt� Wir untersuchen die Eignung von Set�
Partitioning�Methoden zur Optimierung des Berliner Behinderten�
fahrdienstes Telebus
 der mit einer Flotte von 	�� Fahrzeugen t�aglich
etwa 	���� Fahrw�unsche bedient� Der Branch�And�Cut Algorith�
mus aus Teil � ist ein Bestandteil eines Systems zur Fahrzeugein�
satzplanung
 das seit dem �� Juni 	

� in Betrieb ist� Dieses Sy�
stem erm�oglichte Verbesserungen im Service und gleichzeitig erhebli�
che Kosteneinsparungen�

Schl�usselbegri�e� Ganzzahlige Programmierung
 Polyedrische
Kombinatorik
 Schnittebenen
 Branch�And�Cut
 Anrufsammeltaxi�
systeme
 Fahrzeugeinsatzplanung
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Abstract

This thesis is about integer programs with ��	 constraint systems� Set
packing
 partitioning
 and covering problems� The three parts of the
thesis investigate polyhedral
 algorithmic
 and application aspects of
such models�
Part 	 discusses polyhedral aspects� Chapter 	 is a prelude that sur�
veys results on integer ��	 programs from the literature� In Chapter �
we investigate set packing relaxations of combinatorial optimization
problems associated with acyclic digraphs and linear orderings
 cuts
and multicuts
 multiple knapsacks
 set coverings
 and node packings
themselves� Families of inequalities that are valid for such a relaxation
and the associated separation routines carry over to the problems un�
der investigation�
Part � is devoted to algorithmic and computational aspects� We docu�
ment in Chapter � the main features of a branch�and�cut algorithm for
the solution of set partitioning problems� The algorithm implements
some of the results of the theoretical investigations of the preceding
part� Computational experience for a standard test set from the liter�
ature is reported�
Part � deals with an application� We consider in Chapter � set par�
titioning methods for the optimization of Berlin�s Telebus for handi�
capped people that services 	
��� requests per day with a �eet of 	��
mini busses� Our branch�and�cut algorithm of Part � is one module of
a scheduling system that is in use since June �
 	

� and resulted in
improved service and signi�cant cost savings�

Keywords� Integer Programming
 Polyhedral Combinatorics

Cutting Planes
 Branch�and�Cut
 Vehicle Scheduling
 Dial�A�Ride
Systems
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Preface

Aspects of set packing
 partitioning
 and covering is the title of this
thesis
 and it was chosen deliberately� The idea of the thesis is to try
to bend the bow from theory via algorithms to a practical application

but the red thread is not always pursued conclusively� This resulted in
three parts that correspond to the three parts of the bow and belong
together
 but that can also stand for themselves� This self�containment
is re�ected in separate indices and reference lists�
There is no explanation of notation or basic concepts of optimization�
Instead
 I have tried to resort to standards and in particular to the
book Gr�otschel
 Lov�asz � Schrijver �	
���
 Geometric Algorithms and
Combinatorial Optimization
 Springer Verlag
 Berlin�
It is perhaps also useful to explain the system of emphasis that is at
the bottom of the writing� Namely
 emphasized words exhibit either
the topic of the current paragraph and�or they mark contents of the
various indices
 or they sometimes just stress a thing�
I am grateful to the Senate of Berlin�s Departments for Science
 Re�
search
 and Culture and for Social A�airs that supported the Tele�
bus project and to Fridolin Klostermeier and Christian K�uttner for
their cooperation in this project� I am indebted to the Konrad�Zuse�
Zentrum for its hospitality and for its support in the publication of
this thesis�
I would like to thank my supervisor Martin Gr�otschel for his example
not only as a mathematician and especially for his patience� I also
thank Andreas Schulz and Akiyoshi Shioura who have kindly pointed
out a number of errors in an earlier version of this thesis� My friends
Norbert Ascheuer
 Bob Bixby
 and Alexander Martin have helped me
with many discussions on aspects of this thesis and I want to express
my gratitude for this� A special thanks goes to Andreas L�obel for
his friendship and support� My last special thanks goes to my friend
Robert Weismantel� I simply want to say that without him not only
this thesis would not be as it is�
I hope that whoever reads this can pro�t a little from these notes �
and perhaps even enjoy them�

Berlin
 August 	

� Ralf Bornd�orfer
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Chapter �

Integer ��� Programs

Summary� This chapter tries to survey some of the main results of the literature for integer
programming problems associated with set packings
 set partitionings
 and set coverings�
Blocking and anti�blocking theory
 the �eld of perfect
 ideal
 and balanced matrices
 and the
results about the facial structure of set packing and set covering polyhedra�

��� Two Classical Theorems of K�onig �Introduction�

K�onig�s book Theorie der endlichen und unendlichen Graphen of 	
�� is the �rst systematic
treatment of the mathematical discipline of graph theory�� Two hundred years after Euler�s
famous primer� on the bridges of K�onigsberg gave birth to this area of discrete mathematics

it was K�onig�s aim to establish his subject as �a branch of combinatorics and abstract set
theory��� In this spirit
 he investigated structural properties of general and of special classes of
graphs� Among the latter
 bipartite graphs are the subject of two of his most famous theorems

the K�onig�Egerv�ary and the edge coloring theorem� In his own words�
 these results read as
follows�

�Sachs ������� page 	�
 of K�onig ������� K�onig ���	�� himself made an e
ort to compile all previous
references on graph theory�

�Euler attributes the notion of graph theory or geometria situs� as he called it� to Leibniz and gives some
references in this direction� see Euler ���	��� page ��� of K�onig �������

�K�onig ���	��� preface� page �� �Second one can perceive it �the theory of graphs� � abstracting from its
continuos�geometric content � as a branch of combinatorics and abstract set theory� This book wants to
emphasize this second point of view � � � ���

�Translation by the author�
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����� Theorem �K�onig�Egerv�ary Theorem� K�onig �������	

For any bipartite graph is the minimum number of nodes that drain the edges of the graph
equal to the maximum number of edges that pairwise do not possess a common endpoint�

Here� we say that the nodes A�� A�� � � � � A� hhdrainii the edges of a graph if every edge of the
graph ends in one of the points A�� A�� � � � � A� �

����
 Theorem �Edge Coloring Theorem� K�onig �������	

If at most g edges come together in every node of a �nite bipartite graph G� one can subdivide
all edges of the graph into g classes in such a way that every two edges� that come together
in a node� belong to di�erent classes�

K�onig�s theorems can be seen as combinatorial min�max theorems
 and they are among the
earliest known results of this type� Min�max theorems state a duality relation between two
optimization problems
 one a minimization and the other a maximization problem
 hence
the name� In the K�onig�Egerv�ary case
 these optimization problems are the minimum node
covering problem and the maximum matching problem in a bipartite graph� the theorem states
that the optimum solutions
 the minimum covers and the maximum matchings
 are of equal
size� The edge coloring theorem involves also two optimization problems� The �trivial� task
to compute the maximum degree in a bipartite graph is related to the problem to determine
the minimum number of colors in an edge coloring� The relation is again that the best such
values are equal� See the top of page � for an illustration of the two K�onig theorems�

Min�max results are important from an optimization point of view
 because they provide
simple certi�cates of optimality� For example
 to disperse any doubt whether some given
cover is minimal
 one can exhibit a matching of the same size� The technique works also the
other way round
 or it can be used to prove lower or upper bounds on the size of a minimal
cover or maximum matching
 respectively� And
 most important of all
 optimality criteria are
the �rst step to design combinatorial optimization algorithms�
It goes without saying that the relevance of his theorems was more than clear to K�onig�

and he devoted two entire sections of his book� to their consequences� K�onig showed
 for
instance
 that the popular �but fortunately rarely applied� marriage theorem can be derived
in this way� He noticed also that the two theorems themselves are related and proved that
the edge coloring theorem follows from the K�onig�Egerv�ary theorem	� Reading his book one
has the impression that K�onig looked at the �rst as a weaker result than the latter
 and
we could �nd no evidence that he considered the reverse implication� But we know today
that exactly this is also true� It is one of the consequences of Fulkerson �	
�	 �s powerful
anti�blocking theory
 developed about �� years later
 that the K�onig�Egerv�ary and the edge
coloring theorem are equivalent� This means that for bipartite graphs not only node covering
and matching are dual problems as well as edge coloring is dual to degree computation
 but

going one step further
 these two min�max relations form again a dual pair of equivalent
companion theorems
 as Fulkerson called it�

�See also K�onig ���	��� Theorem XIV �	��
� page �
� of K�onig �������
�See K�onig ���	��� Theorem XI ��� page ��� of K�onig �������
�K�onig ���	��� page ��� of K�onig ������� �Theorem �XIV� �	 is an important theorem that can be applied

to problems of very di
erent nature � � � �� �Applications follow��� Page ��� of K�onig ������� �Theorem �XI� �	
�that is equivalent to the edge coloring Theorem XI ��� can be applied to various combinatorial problems � � � ��

�Applications follow��
�K�onig ���	��� XI x � �edge coloring� and XIV x 	 �K�onig�Egerv�ary�� See �in both cases� also the preceeding

paragraphs�
	K�onig ���	��� page ��� of K�onig �������
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Let�s go through an application of anti�blocking theory to the K�onig�Egerv�ary�edge coloring
setting now to see how this theory works� The anti�blocking relation deals with integer
programs of a certain �packing� type
 and we start by formulating a weighted generalization
of the matching problem in this way
 the bipartite matching problem �BMP�� Taking A as the
node�edge incidence matrix of the bipartite graph of interest �a row for each node
 a column
for each edge�
 this BMP can be formulated as the weighted packing problem

�BMP� max wTx Ax � �� x � �� x binary�

Here
 � is a vector of all ones of compatible dimension
 w is a vector of nonnegative integer
weights
 and taking w �! � is to look for a matching of maximum cardinality� The �packing
structure� in �BMP� is that the constraint system is ��	 and of the form Ax � �� x � ��
Note that �matching� is a synonym for �edge packing�
 hence the name�
Now we apply a sequence of transformations to this program� Removing the integrality
stipulations
 taking the dual
 and requiring the dual variables to be integral again

max wTx
Ax � �
x � �
x integral

� max wTx
Ax � �
x � �

! min yT�
yTA � wT

yT � �T

� min yT�
yTA � wT

yT � �T

yT integral


�	�	�

we arrive at another integer program on the right� This program is the weighted bipartite
node covering problem �BCP� of edges by nodes

�BCP� min yT� yTA � wT� yT� �T� yT integral�

�BCP� is an example of a weighted covering problem
 which means in general that the con�
straint system is of the form yTA � wT� yT � � with a ��	 matrix A and arbitrary integer
weights w on the right�hand side�
But the BCP is
 for w ! �
 exactly the node covering problem of the K�onig�Egerv�ary theorem"
This relation allows us to paraphrase Theorem 	�	�	 in integer programming terminology as
follows� For w ! �
 the optimum objective values of the packing problem �BMP� and of the
associated covering problem �BCP� are equal�
The key point for all that follows now is that this equality does not only hold for w ! �
 but
for any integral vector w� In other words
 a weighted generalization of the K�onig�Egerv�ary
theorem as above holds
 and this is equivalent to saying that the constraint system of the
packing program �BMP� is totally dual integral �TDI�� This situation �a TDI packing system
Ax � �� x � � with ��	 matrix A� is the habitat of anti�blocking theory and whenever we can
establish it
 the anti�blocking machinery automatically gives us a second companion packing
program
 again with TDI constraint system and associated min�max theorem" In the K�onig�
Egerv�ary case
 the companion theorem will turn out to be a weighted generalization of the
edge coloring theorem for bipartite graphs�
The companion program is constructed as follows� We �rst set up the ��	 incidence matrix B
of all solutions of the packing program
 i�e�
 in our case of all matchings versus edges �a row
for each matching
 a column for each edge�� This matrix is called the anti�blocker of A� it
serves as the constraint matrix of the companion packing program and its associated dual

max wTx
Bx � �
x � �
x integral

� max wTx
Bx � �
x � �

! min yT�
yTB � wT

yT � �T

� min yT�
yTB � wT

yT � �T

yT integral�

�	���
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The main result of anti�blocking theory is that
 if the original packing program had a TDI
constraint system
 the companion packing program has again a TDI constraint system� This
means that all inequalities in the sequence �	��� hold with equality for all integral weights w

and this is the companion min�max theorem�
What does the companion theorem say in the K�onig�Egerv�ary case for w ! �# The solutions
of the left integer program in �	��� are edge sets that intersect every matching at most once�
Sets of edges that emanate from an individual node have this property
 and a minute�s thought
shows that these are all possible solutions� w ! � means to look for a largest such set
 i�e�

to compute the maximum node degree� this is one half of the edge coloring theorem� The
second integer program on the right of �	��� provides the second half
 because it asks for a
minimum cover of edges by matchings� But as the matchings are exactly the feasible color
classes for edge colorings
 the integer program on the right asks for a minimum edge coloring�
And arbitrary weights give rise to a weighted generalization of the edge coloring theorem�
We can thus say that the weighted version of the K�onig�Egerv�ary theorem implies
 by virtue of
anti�blocking theory
 the validity of a companion theorem which is a weighted generalization
of the edge coloring theorem� One can work out that it is possible to reverse this reasoning
such that these two theorems form an equivalent pair� And one �nally obtains the two K�onig
theorems by setting w �! �� The reader will have noticed that
 in contrast to what we have
claimed on page �
 this anti�blocking argument does not prove the equivalence of the two
unweighted K�onig theorems
 that both only follow from their �equivalent� weighted relatives�
Well � sometimes it�s clearer to lie a little"

$

Our discussion of K�onig�s considerations was already in terms of weighted versions of his
theorems
 and further generalizations take us directly to today�s areas of research on integer
��	 programming problems�
The �rst question that comes up is whether TDI results with dual pairs of min�max theorems
also hold for other ��	 matrices than the incidence matrices of bipartite graphs# This question
leads to perfect graph theory
 where Lov�asz �	
�	 has shown that dual min�max theorems
on stable sets and clique coverings on the one hand and cliques and node colorings on the
other hold exactly for perfect matrices
 the clique matrices of perfect graphs� This famous
result
 that was conjectured by Berge �	
�	 and is known as the perfect graph theorem
 does
not imply that the four optimization problems that we have just mentioned can be solved in
time that is polynomial in the input length of the perfect graph and the objective
 because
the associated clique matrix and its anti�blocker can be exponentially large� But exactly this
is nevertheless possible" Fundamental algorithmic results of Gr�otschel
 Lov�asz � Schrijver
�	
�� 
 often termed the polynomial time equivalence of separation and optimization
 and
techniques of semide�nite programming were the key innovations for this breakthrough�
Another appealing topic on perfect graphs and their clique matrices are recognition problems�
An important result in this area
 which follows from results of Padberg �	
��b
 	
�� but was
�rst stated and proved �in a di�erent way� by Gr�otschel
 Lov�asz � Schrijver �	
�� 
 is that
the recognition of perfect graphs is in co�NP � This question
 as well as the unsolved problem
whether one can certify in polynomial time that a given graph is perfect or
 weaker
 whether
a given ��	 matrix is perfect
 is intimately related to a stronger and also unresolved version
of Berge�s conjecture� This strong perfect graph conjecture states that a graph is perfect if
and only if it does not contain an odd hole or its complement� it is known to hold for several
subclasses of perfect graphs�
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Another direction of research considers general ��	 matrices that do not correspond to clique
matrices of perfect graphs� The LP relaxations of the packing �and the dual covering� prob�
lems associated to such matrices are not integral
 much less TDI
 and min�max theorems do
not hold in general� To solve such packing problems with LP techniques
 additional inequal�
ities are needed� One branch of research
 pioneered by Padberg �	
��a 
 is concerned with
�nding not only any feasible
 but in a sense best possible facet de�ning inequalities and to
develop computationally useful procedures to �nd them� For special classes of ��	 matrices it
is sometimes not only possible to determine some facets
 but to obtain a complete description

i�e�
 a list of all facet de�ning inequalities� In such cases
 there is a chance that it is possible
to develop polynomial LP based or combinatorial optimization algorithms for the four opti�
mization problems that come up in packing� Maximum stable set
 minimum clique covering

maximum clique
 and minimum coloring� And in very rare instances
 complete descriptions
give even rise to TDI systems with associated min�max theorems�
Analogous problems as in the packing case
 but much less complete results exist for set
covering problems� One obtains the four optimization problems of this area by simply reversing
all inequalities in the four packing analogues� But this �technique� does not carry over to all
theorems and proofs" It is in particular not true that every covering min�max theorem has an
equivalent companion theorem
 and the connection to graph theory is much weaker than in
the packing case� The well behaved ��	 matrices are called ideal
 but there are no algorithmic
results as for perfect matrices� The study of facet de�ning inequalities for the nonideal case
seems to be more di%cult as well and little is known here
 but comparable �even though more
di%cult� results exist for the recognition of ideal matrices�
Finally
 one can look at the equality constrained partitioning case
 that leads to the con�
sideration of a certain class of balanced matrices� These matrices give rise to partitioning
programs with integer LP relaxations
 but the balanced matrices are only a subclass of all
matrices with this property� A spectacular result in this area is the recent solution of the
recognition problem by Conforti
 Cornu�ejols � Rao �	

	 � There are no investigations to
determine further inequalities for programs with unbalanced matrices
 because this question
reduces to the packing and covering case�

$

The following eight sections of this chapter give a more detailed survey on results for the set
packing
 the set partitioning
 and the set covering problem� Section 	�� gives basic de�nitions
and references to survey articles� Section 	�� describes the fundamental connections of set
packing to graph theory and of set covering to independence systems� Blocking and anti�
blocking theory is visited a �rst time in Section 	��� This topic extends to Section 	��
 where
we discuss perfect and ideal matrices and the associated famous min�max results
 the perfect
graph theorem with its many variants and the width�length and max �ow�min cut properties
of ideal matrices� Section 	�� is about the recognition of perfect and ideal matrices and

closely related
 their characterization in terms of forbidden minors� Balanced matrices are
treated in a separate Section 	��� The last two sections survey polyhedral results� Section 	��
deals with the set packing polytope
 and Section 	�
 with the set covering polytope�
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��� The Set Packing� Partitioning� and Covering Problem

Let A be an m� n ��	 matrix and w an integer n�vector of weights� The set packing �SSP�

the set partitioning �SPP�
 and the set covering problem �SCP� are the integer ��� programs


�SSP� max wTx
Ax � �
x � �
x � f�� 	gn

�SPP� min wTx
Ax ! �
x � �
x � f�� 	gn

�SCP� min wTx
Ax � �
x � �
x � f�� 	gn�

Associated to these three programs are six polyhedra�

PI�A� �! convfx � f�� 	gn � Ax � �g P �A� �! convfx � Rn� � Ax � �g

P�
I �A� �! convfx � f�� 	gn � Ax ! �g P��A� �! convfx � Rn� � Ax ! �g

QI�A� �! convfx � f�� 	gn � Ax � �g Q�A� �! convfx � Rn� � Ax � �g�

The set packing polytope PI�A�
 the set partitioning polytope P�
I �A�
 and the set covering

polytope QI�A� are de�ned as the convex hull of the set of feasible solutions of �SSP�
 �SPP�

and �SCP�
 respectively
 the polyhedra P �A�
 P��A�
 and Q�A� denote fractional relaxations
�fractional set packing polytope etc��� The fundamental theorem of linear programming
 that
guarantees the existence of an optimal basic �vertex� solution
 allows to state the three integer
programs above as linear programs over the respective integer polytope�

�SSP� max wTx
x � PI�A�

�SPP� min wTx
x � P�

I �A�
�SCP� min wTx

x � QI�A��

Let us quickly point out some technicalities� �i� Empty columns or rows in the constraint
matrix A are either redundant
 lead to unboundedness
 or to infeasibility
 and we can assume
without loss of generality that A does not contain such columns or rows� �ii� If A does not
contain empty rows or columns
 PI�A� and QI�A� are always nonempty
 but P�

I �A� ! �
is possible� �iii� By de�nition
 P�

I �A� ! PI�A� � QI�A�
 i�e�
 it is enough to study PI�A�
and QI�A� to know P�

I �A�� �iv� The set covering polytope QI�A�
 as we have de�ned it
 is
bounded
 but the relaxation Q�A� is not� This �trick� is convenient for duality arguments and
does not give away information because all vertices of Q�A� lie within the unit cube� �v� The
two packing polytopes PI�A� and P �A� are down monotone
 the covering polyhedra QI�A�
and Q�A� are �in slightly di�erent senses� up monotone� �vi� These observations can be used
to assume w�l�o�g� that set packing or covering problems have a nonnegative �or positive�
objective
 and so for set partitioning problems as well by adding appropriate multiples of rows
to the objective� �vii� Similar techniques allow transformations between the three integer ��	
programs
 see Gar�nkel � Nemhauser �	
�� and Balas � Padberg �	
�� for details�
All three integer ��	 programs have interpretations in terms of hypergraphs that show their
combinatorial signi�cance and explain their names� Namely
 look at A as the edge�node
incidence matrix of a hypergraph A �on the groundset f	� � � � � ng of columns of A� with node
weights wj � Then the packing problem asks for a maximum weight set of nodes that intersects
all edges of A at most once
 a maximum packing
 the covering case is about a minimum weight
set that intersects each edge at least once
 a minimum cover or �old fashioned� transversal

while in the last case a best partition of the groundset has to be determined�


We distinguish ���� integer programs� with ��� variables and �integer ��� programs� with ��� matrices�
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We suggest the following survey articles on integer ��	 programs� Fulkerson �	
�	 �blocking
and anti�blocking theory�
 Gar�nkel � Nemhauser �	
��
 Chapter � �set partitioning
 set
covering�
 Balas � Padberg �	
�� �applications
 set packing
 set partitioning
 set packing
polytope
 algorithms�
 Padberg �	
��
 	
�
 �set packing polytope�
 Schrijver �	
�
 �blocking
and anti�blocking
 perfection
 balancedness
 total unimodularity
 extensions�
 Lov�asz �	
�� 
�perfect graphs�
 Gr�otschel
 Lov�asz � Schrijver �	
�� �set packing polytope
 perfect graphs�

Ceria
 Nobili � Sassano �	

� �set covering�
 Conforti et al� �	

� and Conforti
 Cornu�ejols

Kapoor � Vu&skovi�c �	

� �perfect
 ideal
 and balanced ��	 and �� � 	 matrices�
 Schrijver
�	
��
 Chapter 
 � �� �textbook�
 and �nally Balinski �	
�� as a �historical� article�

��� Relations to Stable Sets and Independence Systems

We discuss in this section two insights that are the foundations for the combinatorial study
of the set packing and the set covering problem� The correspondence between set packings
and stable sets
 that builds the bridge from packing ��	 integer programs to graph theory

and the relation of set covering to independence systems�

x� ' x� � 	
x� ' x� ' x� � 	

x� ' x� ' x� � 	
x� ' x� � 	

x � f�� 	g�
x�

x�

x�

x�

x�

x�

x�

x�

x�

x�

x�

x�

x�

x�

x�

x�

Figure 	�	� Constructing a Column Intersection Graph�

We start with set packing� Edmonds �	
��
 last two sentences on page �
� came up with
the idea to associate to a set packing problem �SSP� the following con	ict or column inter�
section graph G�A�� The nodes of G�A� are the column� indice�s of A
 and there is an edge
between two column� node�s i and j if they intersect
 i�e�
 Ai� 	 Aj� 
! �
 see Figure 	�	� The
construction has the property that the incidence vectors of stable sets in G�A�
 i�e�
 sets of
pairwise nonadjacent nodes
 are exactly the feasible solutions of the packing program �SSP��
This means that the set packing program �SSP� is simply an integer programming formulation
of the stable set problem �SSP� on the associated con�ict graph G�A� with node weights wj �
For this reason
 we will occasionally also denote PI�A� by PI�G�A���
Two consequences of this equivalence are� �i� Two ��	 matrices A and A� give rise to the
same set packing problem if and only if their intersection graphs coincide� �ii� Every row of A
is the incidence vector of a clique in G�A�
 i�e�
 a set of pairwise adjacent nodes� In particular

G�A� ! G�A�� if A� is the clique�node incidence matrix of all cliques in G�A�
 or of a set
of cliques such that each edge is contained in some clique
 or of all maximum cliques with
respect to set inclusion
 see Padberg �	
��a � Note that the last matrix contains a maximum
of clique information without any redundancies�
Set covering is known to be equivalent to optimization over independence systems
 see
 e�g�

Laurent �	
�
 or Nobili � Sassano �	
�
 
 by the a%ne transformation y �! �� x�
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min wT��� y�

A��� y� � �

��� y� � �

��� y� � �

��� y� � f�� 	gn

! wT�� �ISP� max wTy

�i� Ay � �A� I��

�ii� y � �

�iii� y � �

�iv� y � f�� 	gn�

To see that the program on the right is an optimization problem over an independence system

we have to construct a suitable independence system� To do this
 note �rst that one can
delete from �ISP� any row that strictly contains some other row� A ��	 matrix without such
redundant rows is called proper �Fulkerson �	
�	 �� Assuming w�l�o�g� that A is proper
 we
can take its rows as the incidence vectors of the circuits of an independence system I�A� on
the groundset of column� indice�s of A� Then the right�hand side �A� I�i�� ! j suppAi�j � 	
of every constraint i in �ISP� equals the rank of the circuit suppAi� and �ISP� is an integer
programming formulation of the problem to �nd an independent set of maximum weight with
respect to w in I�A��

We remark that there is also a graph theoretic formulation of the set covering problem in
terms of a bipartite row�column incidence graph that has been proposed
 e�g�
 by Sassano
�	
�
 and Cornu�ejols � Sassano �	
�
 �

Thinking again about the relation of set packing and set covering in terms of stable sets and
independence systems
 one makes the following observations� �i� The stable sets in a graph
form an independence system
 i�e�
 set packing is a special case of set covering with additional
structure� �ii� This argument holds for almost any other combinatorial optimization problem
as well� we mention here in particular the generalized set packing problem and the generalized
set covering problem
 that arise from their standard relatives by allowing for an arbitrary
uniform right�hand side
 see Sekiguchi �	
�� � �iii� Not every independence system can be
obtained from stable sets of some appropriately constructed graph
 see Nemhauser � Trotter
�	
��
 Theorem ��	 or Padberg �	
��b
 Remark ��	� for details�

��	 Blocking and Anti
Blocking Pairs

The theory of blocking and anti�blocking pairs of matrices and polyhedra
 developed in Fulk�
erson �	
��
 	
�	
 	
�� 
 provides a framework for the study of packing and covering problems
that explains why packing and covering theorems occur in dual pairs� Its technical vehicle is
the duality �or polarity
 who likes the term better� between constraints and vertices�extreme
rays of polyhedra� We discuss the basics of the theory here in a general setting for nonnegative
matrices and specialize to the combinatorial ��	 case in the following Sections 	�� and 	���

The center of the theory is the notion of a blocking and anti�blocking pair of matrices and
polyhedra that we introduce now� Consider a nonnegative �not necessarily ��	� matrix A and
the associated fractional packing problem �FPP� and the fractional covering problem �FCP�

�FPP� max wTx

Ax � �

x � �

�FCP� min wTx

Ax � �

x � ��

Associated to these problems are the fractional packing polytope and the fractional covering
polyhedron
 that we denote
 slightly extending our notation
 by P �A� and Q�A�
 respectively�
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By Weyl�s description theorem
 see
 e�g�
 Schrijver �	
��
 Corollary ��	b 
 these bodies are
generated by their vertices and extreme rays� Denote by ablA the matrix that has the
vertices of P �A� as its rows
 and by blA the matrix that has the vertices of Q�A� as its rows�
Then we have

P �A� ! fx � Rn� � Ax � �g ! conv vertP �A� ! conv�ablA�T

Q�A� ! fx � Rn� � Ax � �g ! conv vertQ�A� ' Rn� ! conv�blA�T' Rn� �

�We must assume that A does not contain empty columns for the packing equations to hold��
ablA is called the anti�blocker of the matrix A
 blA is the blocker of A� Associated to these
matrices are again a fractional packing polytope and another fractional covering polyhedron�

ablP �A� �! fy � Rn� � xTy � 	 �x � P �A�g ! fy � Rn� � ablAy � �g ! P �ablA�

blQ�A� �! fy � Rn� � yTx � 	 �x � Q�A�g ! fy � Rn� � blAy � �g ! Q�blA��

ablP �A� is called the anti�blocker of the polytope P �A�
 blQ�A� is the blocker of Q�A�� The
general duality between constraints and vertices�extreme rays of polyhedra translates here
into a duality relation between anti�blocking and blocking matrices and polyhedra�

����� Theorem �Blocking and Anti�Blocking Pairs� Fulkerson ������	
For any nonnegative matrix A holds�

�i� If a is a vertex of ablP �A�� aTx � 	 is ei	
ther a facet of P �A�� or can be obtained
from a facet by setting some left	hand
side coe
cients to zero� In particular�

�ii� abl� P �A� ! P �A��

�iii� IfA has no empty column� so does ablA�

�iv� If a is a vertex of blQ�A�� aTx � 	 is a
facet of Q�A�� In particular�

�v� bl�Q�A� ! Q�A��

�vi� blA is proper and
bl�A ! A 
� A is proper�

Here
 abl� is short for abl abl
 and so on� Theorem 	���	 �ii� and �v� state that the anti�
blocking relation gives indeed rise to a dual anti�blocking pair of polyhedra and the blocking
relation to a dual blocking pair of polyhedra� This duality carries over to the associated
matrices� Theorem 	���	 �iv� and �vi� establishes a blocking pair of proper matrices� The
duality is a bit distorted in the anti�blocking case
 because the anti�blocking relation produces
dominated vertices�rows� Since only the maximal rows give rise to facets
 one does not insist
on including dominated rows in a packing matrix
 and calls two matrices A and B an anti�
blocking pair of matrices
 if the associated packing polyhedra constitute an anti�blocking pair�
Blocking and anti�blocking pairs of matrices �and polyhedra� are characterized by a set of
four relations that provide a link to optimization� Let A and B be two nonnegative matrices
and consider the equalities

min yT�

yTA � wT

yT � �T

! max Bw �	��� max yT�

yTA � wT

yT � �T

! min Bw� �	���

Here
 min Bw is short for min fBi�w � i ! 	� � � � �mg
 and so on� If �	��� holds for all
nonnegative vectors w
 we say that the min�max equality holds for the ordered pair of matrices
A�B� If �	��� holds for all nonnegative vectors w
 we say that the max�min equality holds for
the ordered pair of matrices A�B�
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The other two relations are inequalities�

max Al 	max Bw � lTw �	��� min Al 	min Bw � lTw� �	���

If �	��� holds for all nonnegative vectors w and l
 we say that the max�max inequality holds
for the �unordered� pair of matrices A and B� If �	��� holds for all nonnegative vectors w
and l
 we say that the min�min inequality holds for the �unordered� pair of matrices A and B�

These equations and inequalities are related to the anti�blocking and the blocking relation via
appropriate scalings of the vectors w and l such that the above optima become one� this is
always possible except in the trivial cases w ! � and�or l ! �� Such a scaling makes w and l
a member of the anti�blocking�blocking polyhedron� These arguments can be used to prove

����
 Theorem �Characterization of Blocking and Anti�Blocking Pairs� Fulkerson
������	

For any pair of nonnegative matrices A and B
with no empty columns� the following state	
ments are equivalent�

�i� A and B are an anti	blocking pair�

�ii� P �A� andP �B� are an anti	blockingpair�

�iii� The min	max equality holds for A�B�

�iv� The min	max equality holds for B�A�

�v� Themax	max inequalityholds forA andB�

For any pair of proper nonnegative matrices A
and B� the following statements are equiva	
lent�

�vi� A and B are a blocking pair�

�vii� Q�A� and Q�B� are a blocking pair�

�viii� The max	min equality holds for A�B�

�ix� The max	min equality holds for B�A�

�x� Themin	min inequality holds forA andB�

Theorem 	���� bears on dual min�max results for packing and covering optimization problems�
We give an interpretation of the anti�blocking part �iii� and �iv� of Theorem 	���� in terms of
the fractional packing problem
 the covering case is analogous� The min�max equality �	���
can be interpreted as a �weighted max fractional packing�min fractional covering theorem��
The rows of A are used for covering
 the rows of B
 that correspond to the feasible solutions of
�FPP�
 for packing� If this min�max theorem can be established
 anti�blocking theory yields
a second
 equivalent theorem of the same type
 where the covering�packing roles of A and B
are exchanged�

��� Perfect and Ideal Matrices

The main point of interest in anti�blocking and blocking theory is the study of anti�blocking
and blocking pairs of matrices A and B that are both ���� Saying that a ��	 matrix A has a
��	 anti�blocking matrix B is by de�nition equivalent to integrality of the fractional packing
polytope associated to A� a ��	 matrix A that gives rise to such an integral packing polytope
P �A� ! PI�A� is called perfect� Analogous for covering� ��	 blocking matrices correspond to
integral covering polyhedra Q�A� ! QI�A�� a ��	 matrix A with this property is called ideal�

By Theorem 	����
 perfect matrices occur in anti�blocking pairs and so do ideal matrices occur
in blocking pairs� Associated to an anti�blocking�blocking pair of perfect�ideal matrices is a
pair of equivalent min�max�max�min equalities and one can either prove one of the equalities
to establish the second plus the anti�blocking�blocking property plus perfection�ideality of a
��	 matrix pair
 or one can prove one of the latter two properties to obtain two min�max�max�
min results�
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Anti�blocking�blocking pairs of perfect�ideal matrices often have combinatorial signi�cance
and this brings up the existence question for combinatorial covering and packing theorems�
The min�max�max�min equalities �	��� and �	��� are not of combinatorial type
 because they
allow for fractional solutions of the covering�packing program� But consider stronger
 integer
forms of these relations for ��	 matrices A and B�

min yT�

yTA � wT

yT � �T

yT � Zm

! max Bw �	��� max yT�

yTA � wT

yT � �T

yT � Zm

! min Bw� �	���

If �	��� holds for all nonnegative integer vectors w
 we say that the strong min�max equality
holds for the ordered pair of ��	 matrices A and B� this is equivalent to stating that the
packing system Ax � �� x � � is TDI� If �	��� holds for all nonnegative integer vectors w

we say that the strong max�min equality holds for the ordered pair of ��	 matrices A and
B� this relation corresponds to a TDI covering system Ax � �� x � �� The combinatorial
content of these relations is the following� The strong min�max equality can be interpreted
as a combinatorial min covering�max packing theorem for an anti�blocking pair of perfect
matrices� The smallest number of rows of A such that each column j is covered by at least
wj rows is equal to the largest packing of columns with respect to w
 where the packings are
encoded in the rows of B� An analogous statement holds in the strong max�min case for a
blocking pair of ideal matrices�

We mention two famous examples of such relations to point out the signi�cance of this concept�

Dilworth
s theorem is an example of a well�known strong min�max equality in the context of
partially ordered sets� Let A be the incidence matrix of all chains of some given poset
 let
B be the incidence matrix of all its antichains
 and consider the strong min�max equality
for A�B� It states that
 for any nonnegative integer vector w of weights associated to the
elements of the poset
 the smallest number of chains such that each element is contained in
at least wj chains is equal to the maximum w�weight of an antichain� For w ! �
 this is
the classical Dilworth theorem
 and one can generalize it to the weighted case by appropriate
�replications� of poset elements �the reader may verify that this is easy�� The validity of this
weighted generalization of Dilworth�s theorem implies that A and B form an anti�blocking
pair of perfect matrices
 because the strong min�max equality for A�B yields
 trivially
 the
fractional min�max equality for A�B� This argument implies in turn the min�max equality for
B�A in its fractional form� What about the strong
 integer version for B�A# One can work
out that it holds as well � and this is not a strike of luck" But let�s stop here for the moment
and just consider the combinatorial content of the strong min�max equality for B�A� This
theorem is identical to the weighted Dilworth theorem
 except that the words �antichain�
and �chain� have changed their places � a combinatorial companion theorem�

The most famous example of a strong max�min equality is probably the max 	ow�min cut
theorem of Ford
 Jr� � Fulkerson �	
�� for two�terminal networks� Taking A as the incidence
matrix of all �s� t��paths versus edges and B as the incidence matrix of all �s� t��cuts versus
edges
 the max �ow�min cut theorem turns out to be exactly the strong max�min equality for
A
 B� Hence
 the incidence matrices of �s� t��paths and �s� t��cuts in a two�terminal network
form a blocking pair of ideal matrices� Can one also produce a companion theorem by inter�
changing the roles of paths and cuts as we did with the antichains and chains in Dilworth�s
theorem# The answer is yes and no� One can in this particular case
 but not in general�
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We have already hinted at one of the main insights of anti�blocking theory in the Dilworth
example and we state this result now� The perfection of a matrix A is equivalent to the validity
of the strong min�max equality for A and ablA which is itself equivalent to the validity of a
companion min�max theorem for ablA and A�

����� Theorem �Strong Min�Max Equality� Fulkerson ������	
Let A be a ��
 matrix without empty columns� The following statements are equivalent�

�i� A is perfect�

�ii� ablA is perfect�

�iii� The system Ax � �� x � � is integral�

�iv� The system Ax � �� x � � is TDI�

�v� The strong min	max equality holds for
A� ablA�

�vi� The strong min	max equality holds for
ablA�A�

Interpreting this result in terms of the stable set problem
 see Section 	��
 we enter the realm
of perfect graph theory� A minute�s thought shows that the only candidate for a ��	 anti�
blocker of the incidence matrix B of all stable sets of some given graph G is the incidence
matrix A of all cliques versus nodes� Now consider the two possible strong min�max equations�
the optima of the four associated optimization problems are commonly denoted by

�w�G� �! min yT�
yTA � wT

yT � �T

yT integral

�w�G� �! max Bw

�w�G� �! min yT�
yTB � wT

yT � �T

yT integral

�w�G� �! max Aw�

�w�G� is called the weighted clique covering number of G
 �w�G� is the weighted stability
number
 �w�G� the weighted coloring number
 and �w�G� the weighted clique number� With
this terminology
 the strong min�max equality for A�B translates into the validity of the
equation �w�G� ! �w�G� for any nonnegative integer vector w
 and a graph with this property
is called ��pluperfect� Similarly
 a ��pluperfect graph satis�es the second strong min�max
equality �w�G� ! �w�G� forall w � Zn�
 and a pluperfect graph is both �� and ��pluperfect�
Theorem 	���	 reads in this language as follows�

����
 Theorem �Pluperfect Graph Theorem� Fulkerson ������	
A graph is �	pluperfect if and only if it is �	pluperfect if and only if it is pluperfect�

This theorem can also be stated in terms of complement graphs by noting that ��pluperfection
of a graph G is equivalent to ��pluperfection of the complement graph G� This equivalent
version is� A graph is ��pluperfect if and only if its complement is�

One of the big questions in this context and the original motivation for the development
of the entire anti�blocking theory was the validity of Berge �	
�	 �s famous perfect graph
conjecture� The conjecture claimed a stronger form of the pluperfect graph theorem where
w is not required to run through all nonnegative integer vectors w
 but only through all ���
vectors� In exactly the same way as in the pluperfect case
 this concept gives rise to ��perfect

��perfect
 and perfect graphs
 hence the conjecture�s name� Fulkerson�s idea to prove it was
to show its equivalence to the pluperfect graph theorem� to establish this it is enough to
prove the following replication lemma� Duplicating a vertex of a perfect graph and joining
the obtained two vertices by an edge gives again a perfect graph� The replication lemma and
hence the conjecture was proved by Lov�asz �	
�	 and
 shortly after the result had become
known
 also by Fulkerson �	
�� �
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����� Theorem �Perfect Graph Theorem� Lov�asz ������	
A graph is �	perfect if and only if it is �	perfect if and only if it is perfect if and only if it is
pluperfect�

There is also a complement version of the perfect graph theorem� A graph is ��perfect if and
only if its complement is� And let us further explicitly state an integer programming form
of the perfect graph theorem
 that will turn out to have a blocking analogon� We include a
strong version of the max�max inequality with identical ��	 vectors w and l
 also proved by
Lov�asz �	
�� and Fulkerson �	
�� �

����� Theorem �Perfect Graph Theorem� Lov�asz ������� Fulkerson ������	
For ��
 matrices A and B without empty columns� the following statements are equivalent�

�i� A and B are an anti	blocking pair�

�ii� The strong min	max equality holds for A�B and all nonnegative integer vectors w�

�iii� The strong min	max equality holds for B�A and all nonnegative integer vectors w�

�iv� The strong min	max equality holds for A�B and all ��
 vectors w�

�v� The strong min	max equality holds for B�A and all ��
 vectors w�

�vi� The max	max inequality holds forA and B and all nonnegative integer vectors w and l�

�vii� The max	max inequality holds forA and B and all ��
 vectors w ! l�

Here
 we have used the expression �the strong min�max equality holds� in an obvious sense

slightly extending our terminology� A third interesting linear programming form of the perfect
graph theorem is again due to Lov�asz �	
�	 �

����� Theorem �Perfect Graph Theorem� Lov�asz ������	
A ��
 matrix A without empty columns is perfect if and only if the linear program max wTx�
Ax � �� x � � has an integer optimum value for all ��
 vectors w�

Let�s take a break from anti�blocking and perfect graphs at this point and turn to the blocking
case� Unfortunately
 the anti�blocking results of this section do not all carry over� It is not
true and the main di�erence between blocking and anti�blocking theory that the integrality of
the fractional covering polyhedron corresponds to a TDI constraint system
 neither is it true
that the strong max�min inequality for A�B implies the strong max�min equality for B�A
 see
Fulkerson �	
�	 for a counterexample� And there are also no results that compare to perfect
graph theory
 because there is no suitable graph version of the set covering problem�
The other Theorems 	���� and 	���� have analogues that are due to Lehman �	
�

 	
�	 �
proofs of these di%cult results are given in Padberg �	

� �from a polyhedral point of view�
and Seymour �	

� �from a hypergraph point of view�� We state them in the following two
theorems
 where we adopt the conventions that � 	� ! � �Theorem 	���� �iii�� and that � is
an integer �Theorem 	������

����� Theorem �Width�Length Property of Ideal Matrices� Lehman ������ �����
For ��
 matrices A and B� the following statements are equivalent�

�i� A and B are a blocking pair�

�ii� The min	min inequality holds for all nonnegative integer vectors w and l�

�iii� The min	min inequality holds for all vectors w and l restricted to coe
cients �� 	�
�� and at most one occurrence of another coe
cient that is equal to the number of

	coe
cients minus one� �The fourth type of coe
cients is solely needed to exclude the
incidence matrices of �degenerate projective planes�� see the following Section 
����
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����� Theorem �Max Flow�Min Cut Property of Ideal Matrices� Lehman ������	
A ��
 matrix is ideal if and only if the linear program min wTx�Ax � �� x � � has an integer
optimum value for all ��
�� vectors w�

The names for these results come from Lehman�s terminology� his width�length inequality is
the same as the min�min inequality
 the max 	ow�min cut equality is the max�min equality�
Generalizing the concepts of perfection and ideality to ���	 matrices
 we enter an area of
research that is related to the study of totally unimodular matrices� It is beyond the scope of
this chapter to discuss these �elds or integral�TDI ���	 systems in general� surveys on these
topics are given in Padberg �	
��a and Conforti
 Cornu�ejols
 Kapoor � Vu&skovi�c �	

� �

��� Minor Characterizations

Both the perfect graph theorem and the max �ow�min cut characterization of ideal matrices
have alternative interpretations in terms of matrix minors and
 in the anti�blocking case
 also
of graph minors that we discuss in this section� The study of minors bears on the recognition
problem for perfect and ideal matrices�
We start in the anti�blocking setting� Consider the perfect graph theorem in its linear pro�
gramming form 	���� and note that setting an objective coe%cient wj to zero has the same
e�ect on the optimum objective value as removing column A�j from the matrix A� Equiva�
lently
 we could remove node j from the column intersection graph or
 yet another equivalent
version
 we could intersect the fractional packing polytope P �A� with the hyperplane xj ! �
and eliminate coordinate j� The operation that we have just described is called a contraction
of coordinate �or column� j of the matrix A or of the intersection graph G�A� or of the frac�
tional packing polytope P �A�
 and the resulting matrix or graph or polytope is a contraction
minor of the original object� With this terminology
 considering all ��	 objectives is the same
as considering objective � for all contraction minors and one obtains various minor forms of
the perfect graph theorem by replacing the expression �for all ��	 vectors w� with �for all
contraction minors and w ! ��� For example
 Theorems 	���� and 	���� translate �in di�erent
ways� into the following minor results�

����� Theorem �Perfect Graph Theorem� Lov�asz ������	
A ��
 matrix A without empty columns is perfect if and only if the linear program max �Tx�
A�x � �� x � � has an integer optimum value for all contraction minors A� of A�

����
 Theorem �Perfect Graph Theorem� Lov�asz ������ ���
�	
The following statements are equivalent for a graph G�

�i� G is perfect�

�ii� ��G�� ! ��G�� for all minors G� of G�

�iii� ��G�� ! ��G�� for all minors G� of G�

�iv� ��G����G�� � jV �G��j for all minors G�

of G�

�Here� a minor is always a contraction minor��

The contraction technique can be used also in the blocking scenario to deal with the zero
objective coe%cients in Theorem 	����� A little more di%cult is the treatment of the ��
coe%cients� wj ! � amounts to forcing xj to one� this e�ect can also be obtained by removing
column j from the matrix A as well as all rows that A�j intersects
 or by an intersection
of the fractional covering polyhedron Q�A� with the hyperplane xj ! 	 and a subsequent
elimination of coordinate j� This operation is called a deletion of coordinate �or column� j of
the matrix A or the polyhedron Q�A� and its result is a deletion minor� It is straightforward
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to show that contraction and deletion commute and one can thus call the matrix A� the arises
by contracting and deleting some set of coordinates of A a �contraction�deletion� minor of A�
This nomenclature gives again rise to a number of minor theorems for ideal matrices
 like

����� Theorem �Minor Characterization of Ideal Matrices� Lehman ������	
A ��
 matrix is ideal if and only if the linear program min �Tx�A�x � �� x � � has an integer
optimum value for all contraction	deletion minors A� of A�

The minor characterizations for perfect and ideal matrices bear on the recognition problems
for these classes� Given a ��	 matrix A
 is it perfect�ideal or not# It is not known whether
any of the recognition problems is in NP or not
 but Theorems 	���	 and 	���� give a �rst
co�NP answer� Recognizing perfect and ideal matrices is in co�NP 
 if the input length is
assumed to be O�n�m�
 i�e�
 if we consider A the input� Just exhibit a minor such that 	���	
or 	���� fail and verify this by solving a linear program" This result is not very deep
 however

because one doesn�t need the perfect graph theorem or the max �ow�min cut characterization
to come up with polynomial certi�cates for the existence of a fractional basic solution of an
explicitly given linear system�
Anyway
 researchers are not satis�ed with results of this type and we explain now why this
is so for the perfection test� The problem is that the recognition of imperfect matrices does
not carry over to the recognition of imperfect graphs� The reason is that although we could
verify a clique matrix of a graph as imperfect in polynomial time
 this does not help much
for an e�ective investigation of some given graph
 because a clique matrix has in general
already exponential size in the encoding length of the graph� From this point of view
 a
co�NP complexity result as above �seems to be cheating� what we really want are algorithms
with running time polynomial in the number of vertices �columns of A � �Seymour �	

� ��
And nothing else but exactly this is in fact possible" One can devise such algorithms for the
veri�cation of imperfection as well as for the veri�cation of nonideality
 the latter in a sense
that is yet to be made precise�
The methods that resolve these questions are based on the concepts of minimally imperfect
�or almost perfect� and minimally nonideal �or almost ideal� ��	 matrices
 that are not per�
fect�ideal themselves
 but any of their deletion�contraction�deletion minors is� Obviously

any imperfect�nonideal matrix must contain such a structure and a recognition algorithm
can in principle certify perfection by making sure that no such minor exists
 imperfection
by exhibiting one
 and so for the ideality test� One approach to the recognition problem is
hence to study the structure of minimally imperfect and nonideal matrices� This structure is
still not fully understood
 but to a signi�cant extent and there are
 in particular
 complete
characterizations of minimally imperfect and minimally nonideal matrices
 and of perfect and
ideal matrices in terms of forbidden minors� A �nal terminological remark� As usual
 there
are also minimally imperfect �or almost perfect� graphs
 and the same concepts exist for the
fractional packing and covering polyhedra
 that are called almost integral�
We begin with results on minimal imperfection
 where the matrix structures of interest have
the following appearance� We say that an m� n ��	 matrix A has property ���n if

�i� A contains a regular n� n matrix A� with column and row sums all equal to �


�ii� each row of A which is not a row of A� is either equal to some row of A� or has row
sum strictly less than ��

The matrix A�
 that is obviously unique up to permutations of rows whenever it exists
 is
called the core of A and denoted by coreA�
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����� Theorem �Minimally Imperfect Matrices� Padberg �����b� �����	
An m� n ��
 matrix A is minimally imperfect if and only if

�i� A has property ���n� where n � 	 mod � and either � ! n� 	 or � � � � b�n� 	���c�

�ii� A has no m� k contraction minor A� with property ���k for any k 	 n and any � such
that � � � � k � 	�

Anm�n ��
 matrix A is perfect if and only if A does not contain anym�k contraction minor
A� having property ���k for � � k � min fm�ng and either � ! k� 	 or � � � � b�k� 	���c�

This theorem makes some progress toward the co�NP complexity part of the recognition
problem for perfect graphs
 because a core has an encoding length that is polynomial in n
and looks like a good candidate to certify property ���k for some contraction minor A� of
the �only implicitly known� clique matrix A of some given graph G� The only problem that
remains is to verify that some ��	 matrix A� is a core of A�� In other words� How does one
prove that all cliques in G�suppA� of size � are already contained in A� and that there are
no larger ones# The answer to this question is based on strong structural properties of �
dual pairs of minimally imperfect matrices
 how could it be di�erent"
To start
 note that the core of a minimally imperfect matrix A with property ���n produces
a fractional vertex x ! �coreA���� ! �	��� � � � � 	��� of the almost integral polytope P �A��
Padberg �	
�� has shown that this is the only fractional vertex� And much more is true�

����� Theorem �Pairs of Minimally Imperfect Matrices� Padberg �����b� �����	
Let A be an m � n ��
 matrix and let B ! ablI A be the integral part of its anti	blocker�
Suppose A is minimally imperfect with property ���n� Then�

�i� B is also minimally imperfect�

�ii� A has property ���n and B has property ���n where �� ' 	 ! n�
A and B have unique cores that satisfy the matrix equation coreA�coreB�T ! E � I�

�iii� P �A� has the unique fractional vertex x ! �	��� � � � � 	����
x is adjacent to precisely n vertices of P �A�� namely� the rows of coreB�
Moreover� PI�A� ! fAx � �� x � ���Tx � �g�

Here
 E is a matrix of all ones
 I is the identity matrix
 and the matrix equation in �ii� is
supposed to be understood modulo suitable column and row permutations�
Theorem 	���� has interesting consequences� Note that part �iii� states that all that misses to
make an almost integral packing polytope integral is one simple rank facet� This situation can
come up in two ways� The �rst case is when A is not a clique matrix of its con�ict graph G�A�

i�e�
 some clique row is missing� As A is minimally imperfect
 it must have property �n���n

G�A� must be a clique
 and the missing row is �Tx � 	� The second and exciting case is when
A is a clique matrix� Then we see from Theorem 	���� the following�

�i� G ! G�A� has exactly n maximum cliques of size � ! ��G� and exactly n maximum
stable sets of size � ! ��G�� the incidence vectors of these maximum cliques and stable
sets are linearly independent� Each maximum clique intersects all but exactly one
maximum stable set
 its so�called partner
 and vice versa�

�ii� For every node j
 G � j can be partitioned into � maximum cliques of size � and �
maximum stable sets of size �
 where �� ' 	 ! n�

Here
 ej denotes the unit vector that has a one in coordinate j
 and G� j is the minor that
arises from G by contracting node j� �i� is derived from column j of the matrix equation
coreA coreBT

j� ! �� ej 
 �ii� using Theorem 	���� �iv��
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A graph that satis�es the strong condition �ii� on the preceding page is called partitionable�
Note that
 for such a graph G
 � ! ��G� and � ! ��G� must hold
 and since ��G���G� !
�� ! n � 	 	 n
 partitionable graphs are imperfect by virtue of Theorem 	����� But it is
easy to verify that a graph or a contraction minor of a graph is partitionable
 and this �nally
proves that perfection of a graph is a property in co�NP � This complexity result was �rst
stated �and proved in a di�erent way� by Gr�otschel
 Lov�asz � Schrijver �	
�� �

����� Theorem �Recognition of Perfect Graphs� Padberg �����b� ������ Gr�otschel�
Lov�asz � Schrijver ������	 The recognition problem for perfect graphs is in co	NP �

But is that all that one can derive from Padberg�s strong conditions �i� and �ii�# One can
not help thinking that they stop just by a hair short of a much more explicit characterization
of all minimally imperfect matrices
 which is a long standing research objective� In fact
 only
two in�nite
 but simple classes of minimally imperfect matrices are known� The circulants
C��k ' 	� ��
 that are the incidence matrices of odd holes �that we denote with the same
symbol�
 and their anti�blockers ablI C��k' 	� ��
 the incidence matrices of the odd antiholes

the complements of the odd holes� Is that all# The strong perfect graph conjecture of Berge
�	
�	 
 which is perhaps the most famous open question in graph theory
 claims that it is"
If so
 odd holes and antiholes furnish simple minor certi�cates of imperfection� But there is
more� It does not seem to be completely out of the question to detect the presence or the
absence of odd holes and antiholes in polynomial time
 although nobody knows for now if
this is possible or not� But if the strong perfect graph conjecture holds
 and if the recognition
problems for odd holes and antiholes can be solved in polynomial time as well
 these results
together would solve the recognition problem for perfect graphs�
Chv�atal �	
�� pointed out that the strong perfect graph conjecture holds if one can show
that every minimally imperfect graph G contains a spanning circulant C��� ' 	� ��
 i�e�
 the
nodes of G can be numbered �� � � � � �� such that any � successive nodes i� � � � � i ' � � 	
�indices taken modulo �� ' 	� form a clique� here
 we denote � ! ��G�
 � ! ��G�� When
Padberg�s conditions became known
 there was some hope that they would be strong enough
to establish this circulant structure in every minimally imperfect graph� But Bland
 Huang
� Trotter �	
�
 showed that one can not prove the strong perfect graph conjecture in this
way
 because Padberg�s condition �i� follows from �ii�
 and the partitionable graphs
 that
satisfy �ii�
 do not all contain spanning circulants C��� ' 	� ���
We turn now to the minimally nonideal matrices
 where minor characterizations are known
that are similar to the packing case
 but more complicated� We start with the analogon of
the imperfection property ���n� We say an m� n ��	 matrix A has property 
��n if

�i� A contains a regular n� n matrix A� with column and row sums all equal to �


�ii� each row of A which is not a row of A� is either equal to some row of A� or has row
sum strictly larger than ��

The matrix A� is again unique up to permutations of rows whenever it exists
 and it is also
called the core of A and denoted by coreA�
Unlike in the packing case there is
 however
 an in�nite class of minimally nonideal matrices
that do not have constant row and column sums� These incidence matrices of degenerate
projective planes �points versus lines� read

Jn !

�
� �T

� In��

�
�

where In�� denotes the �n� 	�� �n� 	� identity matrix�
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����� Theorem �Minimally Nonideal Matrices� Lehman ������� Padberg ������	
If a proper m� n ��
 matrix is minimally nonideal then either A ! Jn or

�i� A has property 
��n� where n 
� � mod ��

�ii� A has no m � k contraction	deletion minor A� with property 
��k for any k 	 n and
any � such that k 
� � mod ��

Anm�n ��
 matrix A is ideal if and only if A does not contain anym�k contraction	deletion
minor A� having property 
��k for � � k � min fm�ng�

The requirement that A is proper can also be removed
 but then we must change �i� from
�A ! Jn� into �A contains Jn and some additional redundant rows�� Note also that we have
not claimed an equivalence as for property ���n�
As the minimally imperfect matrices occur in anti�blocking pairs
 so do their minimally non�
ideal relatives�

����� Theorem �Pairs of Minimally Nonideal Matrices� Lehman ������� see also
Padberg ������ and Seymour ����
�	
Let A be a proper m � n ��
 matrix and let B ! blI A be the integral part of its blocker�
Suppose A is minimally nonideal� Then�

�i� B is also minimally nonideal�

�ii� Either

�a� A ! B ! Jn�

�b� Q�A� has the unique fractional vertex x ! ��n� ����n � 	�� 	��n � 	�� � � � � 	��n � 	���
x is adjacent to precisely n vertices of Q�A�� namely� the rows of B�
Moreover� QI�A� ! fAx � �� x � �� �n� ��x� '

Pn
j�� xj � n� 	g�

or

�c� A has property 
��n and B has property 
��n where �� ! n ' r� � 	 r 	 min f�� �g�
A and B have unique cores that satisfy the matrix equation coreA�coreB�T ! E ' rI�

�d� Q�A� has the unique fractional vertex x ! �	��� � � � � 	����
x is adjacent to precisely n vertices of Q�A�� namely� the rows of coreB�
Moreover� QI�A� ! fAx � �� x � ���Tx � �g�

The assumption that A is proper can again be removed as in Theorem 	����� Compare also
the coe%cients in the left�hand side of the additional facet in Theorem 	���� �ii� �b� to the
objective coe%cients in Theorem 	���� �iii� to see that the fourth type of objective coe%cients
�the n� �� was only needed to deal with the degenerate projective planes Jn�
Seymour �	

� used Lehman�s minor characterization 	���� �for which he also gives a proof�
to establish that ideality is a co�NP property in a sense that can be seen as the analogon of
Theorem 	���� on the recognition of perfection� Seymour views the m � n ��	 matrix A of
interest as the incidence matrix of a hypergraph that �should� have an encoding length that
is polynomial in the number n of elements� This creates the problem that the encoding length
of an m� n ��	 matrix A is in general certainly not polynomial in n� Seymour assumes thus
that A is given in the form of a �lter oracle
 that decides in constant time whether a given ��	
vector contains a row of A or not� Calling this oracle a number of times that is polynomial
in n
 one can certify the existence of blocking matrices coreA and coreB with properties as
in Lehman�s Theorem 	���� that ensure that A is nonideal�



	�� Balanced Matrices �	

����� Theorem �Recognition of Ideal Matrices� Seymour ����
�	
The recognition problem for ideal matrices that are given by a �lter oracle is in co	NP �

There are some further results toward a more explicit characterization of minimally nonideal
matrices� Lehman �	
�
 gave three in�nite families of minimally nonideal matrices� The
incidence matrices of the degenerate projective planes Jn �which are self�dual in the sense
they coincide with their blockers
 i�e�
 Jn ! blI Jn�
 the odd circulants C��k ' 	� ��
 and
their blockers blI C��k ' 	� �� that coincide via permutation of rows and columns with the
circulants C��k' 	� k' 	�� But
 di�erent to the packing case
 many more minimally nonideal
matrices are known�

First
 researchers have compiled a substantial
 but �nite list of �exception� matrices
 that do
not belong to the three in�nite classes of Lehman� The incidence matrix of the Fano plane

F� !

�BB�
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�CCA �

is one such exception matrix
 see Cornu�ejols � Novik �	
�
 and L�utolf � Margot �	

� for
comprehensive lists� But the situation is more complicated than this
 because further in�nite
classes of minimally nonideal matrices have been constructed� For example
 Cornu�ejols �
Novik �	
�
 prove �and give a reference to a similar result� that one can add a row ei'ej'ek

i 	 j 	 k
 to any odd circulant C��k ' 	� ��
 �k ' 	 � 

 where j � i and k � j are both odd

and doing so one obtains a minimally nonideal matrix�

Does all of this mean that the set of minimally nonideal matrices is just a chaotic tohuwabohu#
Cornu�ejols � Novik �	
�
 say no and argue that all minimally nonideal matrices in the
known in�nite non�Lehman classes have core C��k ' 	� �� or C��k ' 	� k ' 	�� This means
geometrically that the associated fractional covering polyhedra arise from Q�C��k ' 	� ��� or
Q�C��k ' 	� k ' 	�� by adjoining additional integral vertices� Or
 to put it di�erently
 the
crucial part of a minimally nonideal matrix is its core and there
 if one forgets about the
exception list
 only the three Lehman classes have been encountered� These �ndings motivate
the following conjecture
 that can be seen as the covering analogon of the strong perfect graph
conjecture�

�����
 Conjecture �Ideal Matrix Conjecture� Cornu�ejols � Novik ������	
There is some natural number n� such that every m � n minimally nonideal matrix A with
n � n� has core either C��k ' 	� �� or C��k ' 	� k ' 	��

��
 Balanced Matrices

Perfect and ideal matrices were de�ned in terms of integral polyhedra� their characterization
through forbidden minors was and still is a major research problem� The study of balanced
matrices
 that were invented by Berge �	
�	 
 goes the other way round� This class is de�ned
in terms of forbidden minors and one investigates the combinatorial and polyhedral conse�
quences of this construction� It turns out that these properties subsume all characteristics of
perfect and ideal matrices
 and balanced matrices give
 in particular
 rise to a multitude of
combinatorial packing and covering problems� But not only do results from perfect and ideal
matrix theory carry over� There are additional genuine consequences of balancedness that
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include TDIness of both associated covering systems and bear on combinatorial partitioning
theorems� And there is another recent spectacular result that does have no parallel �yet"��
Balanced matrices can be recognized in polynomial time"
It is not the aim of this section to give an overview on the entire �eld of balanced matrices

to say nothing of their ���	 generalizations and�or the connections to totally unimodular
matrices� Such surveys can be found in Padberg �	
��a 
 Conforti et al� �	

� 
 and Conforti

Cornu�ejols
 Kapoor � Vu&skovi�c �	

� 
 we summarize here just some basic results�
A matrix A is balanced if it does not contain an odd square minor with row and column sums
all equal to two or
 equivalently
 a row and column permutation of the circulant C��k' 	� ���
In the context of balancedness
 it is understood that minors are not restricted to contraction
and deletion minors� instead
 any subset I of rows and J of columns of A induces a minor
A� ! AIJ � As an immediate consequence
 every such minor A� of a balanced matrix A must
also be balanced
 so is the transpose AT
 and so is also any matrix that arises from A by
replicating one or several columns any number of times� Note that the excluded odd hole
minors C��k' 	� �� are �one half� of the known structures that cause imperfection� and note
also that a balanced matrix does not only contain no odd hole contraction minor
 but no odd
hole at all
 i�e�
 no odd hole as any minor� The possible existence of such di�erent
 but similar
forbidden minor characterizations for balanced and perfect matrices allows to view the study
of balancedness as a precursor to a possible future branch of perfect matrix and graph theory
after a successful resolution of the strong perfect graph conjecture�
Back to the present �and actually �� years to the past�
 it is easy to see that the edge�
node incidence matrices of bipartite or
 equivalently
 ��colorable graphs are balanced
 and
balancedness is in fact a generalization of the concept of ��colorability to hypergraphs� The
connection between ��	 matrices and colorings of hypergraphs arises from an interpretation
of the �rst as incidence matrices of the latter that goes as follows� We associate to a ��	
matrix A the hypergraph H ! H�A�
 that has the rows of A as its nodes and the columns as
edges��� H is called balanced if and only if A is� Hypergraphs can be colored just like graphs�
A node coloring of H assigns a color to each node such that no edge contains only nodes of
a single color
 the chromatic number ��H� is the minimum number of colors in such a node
coloring
 and H is ��colorable if ��H� � �� It is not so obvious that ��colorability leads again
back to balancedness
 but exactly this was Berge �	
�	 �s idea and his motivation to introduce
the whole concept�

����� Theorem �Balancedness and 
�Colorability� Berge ������	
A ��
 matrix A is balanced if and only if H�A�� is �	colorable for all minors A� of A�

Many combinatorial properties of bipartite graphs carry over to their balanced hypergraph
relatives� These similarities arise from �or are re�ected in
 who likes this better� analogous
symmetries between the totally unimodular and balanced incidence matrices of bipartite and
balanced hypergraphs
 that are stressed in the �minor presentation� of the following theorem�

����
 Theorem �Balanced Matrices� Berge ������� Fulkerson� Ho�man � Oppen�
heim ������	 For a ��
 matrix A� the following statements are equivalent�

�i� A is balanced�

�ii� A� is perfect for all minors A� of A�

�iii� A� is ideal for all minors A� of A�

�iv� P �A�� is integral for all minors A� of A�

�v� Q�A�� is integral for all minors A� of A�

�vi� P��A�� is integral for all minorsA� ofA�

��This is just custom �cf� the K�onig examples of Section ����� the transposed way would be feasible as well�
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We do not delve further into the relations between total unimodularity and balancedness
here and consider instead the amazing connections to perfection and ideality� The balanced
matrices are exactly those that have only perfect or ideal minors� This has two consequences�
First
 balanced matrices inherit the properties of their perfect and ideal superclasses for every
minor
 which includes in particular all combinatorial min�max and max�min results� Second

Theorem 	���� can be extended by many other equivalent characterizations of balanced ma�
trices in combinatorial
 polyhedral
 and in integer programming terminology just like in the
theory of perfect and ideal matrices� We give three examples to illustrate these points�
The �rst example is another combinatorial min�max characterization of balancedness that we
derive with perfect matrix techniques� Consider the strong min�max equality for A�� ablA�

and objective w ! �
 where A� is any minor of A� Interpreting this relation in terms of
the hypergraph H�A� is to say that for any �partial subhypergraph� H�A�� of H�A� the
maximum size of a matching �edge packing� is equal to the minimum size of a transversal�
the equivalence of this relation with balancedness is Berge �	
�	 �s Theorem ��
Example two is an alternative integer programming characterization of balanced matrices

that we obtain from transformations of Theorem 	���� �ii�� Namely
 this statement is equiva�
lent to saying that the integer program max �Tx�A�x � �� x � � has an integer optimum value
for any minor A� of A
 which holds if and only if the linear program max bTx�Ax � w� x � �
has an integer optimum value for any b � f�� 	gn and w � f	�'�gm� This is true if and
only if the dual program min yTw� yTA � b� yT � � has an integer optimum value for any
b � f�� 	gn and w � f	�'�gm �here
 � is not considered to be an integer�
 and this holds if
and only if the program min yT�� yTA � b� �T � yT � wT has an integer optimum value for
any b � f�� 	gn and w � f�� 	gm� The equivalence of this last statement with balancedness is
Berge �	
�	 �s Theorem ��
As a third and last example
 we show that balanced hypergraphs have the Helly property �
The transpose AT of a balanced matrix A is also balanced
 hence AT is perfect
 hence it is a
clique matrix of a graph� but the cliques of a graph have the Helly property that if any two
of a set of cliques have a common vertex
 they all have a common vertex
 and the same holds
for the edges of a balanced hypergraph� this is Berge �	
�	 �s Proposition ��
We turn next to two properties of balanced matrices that are �genuine� in the sense that
they do not have this inheritance �avour� TDIness of balanced covering and their blocking
systems
 and a strengthening of this last result to one of the rare and precious combinatorial
partitioning max�min theorems�

����� Theorem �TDI Balanced Covering and Blocking Systems� Fulkerson� Ho��
man � Oppenheim ������	
If A is a balanced ��
 matrix� the strong max	min equality holds for A�blA and for blA�A�

Hence
 the balanced matrices satisfy an integrality relation that does not hold in the general
blocking case� To avoid misunderstandings
 we point out that the blocker of a balanced matrix
is in general not balanced
 see Fulkerson
 Ho�man � Oppenheim �	
�� for a counterexample�
It is surprising and remarkable that the strong max�min equality for blA�A
 can �in a certain
sense� be strengthened further into a combinatorial max partioning�min covering theorem�

����� Theorem �Partition into Transversals� Berge ������	
Let AT be a balanced matrix and B ! blAT its blocker� Then�

max yT�
yTB ! �T� yT� �T� yT integral

! min AT��
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To state Theorem 	���� in terms of hypergraphs
 note that the blocker B of AT is the incidence
matrix of all transversals ofH�A� versus nodes �each row is a transversal
 each column a node��
Then the theorem states the following� If k ! min AT� is the minimum size of an edge of a
balanced hypergraph H�A�
 there exist k transversals in H�A� that partition the vertices or

to put it di�erently
 there is a k�coloring of H�A� such that each edge contains a node of each
color� this is Berge �	
�	 �s Theorem ��

We have seen by now that balanced matrices have analogous
 but stronger combinatorial
properties than perfect and ideal ones and this trend continues in the study of the recognition
problem� The scenario di�ers slightly from the one for perfection and ideality testing
 though�
First
 we explicitly know the complete �in�nite� list of all forbidden minors� Second
 there
is no controversy about using the matrix itself as the input to the recognition algorithm�
Nobody has suggested a graphical �or other� representation of an m�n balanced matrix that is
polynomial in n
 and mn is accepted as just �ne an encoding length� In this setting
 one of the
most startling results on balanced matrices was the recent construction of an algorithm that
recognizes this class in polynomial time by Conforti
 Cornu�ejols � Rao �	

	 � This algorithm
is based on decomposition methods
 that recursively break a ��	 matrix into �elementary
pieces� in such a way that the balancedness of the whole is equivalent to balancedness of
the pieces
 and such that the pieces are of combinatorial types whose balancedness can be
established or disproved� The recognition of the pieces is based on earlier work on classes of
so�called totally balanced
 strongly balanced
 and linearly balanced matrices�

����� Theorem �Recognition of Balancedness� Conforti� Cornu�ejols � Rao ������	
The recognition problem for balanced matrices is in P�

Like for perfect and ideal matrices
 there is a new branch of research that investigates the
more general class of balanced ���	 matrices� Conforti � Cornu�ejols �	

� show
 for instance

that the members of this class can also be characterized in terms of ��colorability and that the
associated packing
 covering
 and partitioning system are TDI
 even in arbitrary �mixes�� An
overview on balanced ���	 matrices can be found in the survey article Conforti
 Cornu�ejols

Kapoor � Vu&skovi�c �	

� �

We close this section with a remark on the integrality of fractional set partitioning polytopes�
By Theorem 	���� �vi�
 the balanced matrices form a class that gives rise to integral polytopes
of this type
 like perfect and ideal matrices do
 too
 but these are not all matrices with this
property� For a trivial example
 consider the matrix

A !

�BBBBB�
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�CCCCCA �

that is composed from an imperfect �top� and a nonideal �bottom�� It is easy to see that A is
neither perfect
 nor ideal
 nor balanced
 but one can verify that the fractional set partitioning
polytope P��A� is integral� P��A� consists
 in fact
 of the single point e�� We see that the
occurrence of forced variables allows to blow up a matrix with all kinds of �garbage� and
di%culties of this sort are the reason why there is no minor theory for matrices with integer
set partitioning polytopes�
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��� The Set Packing Polytope

The set packing problems of the previous sections were almost always assumed to have a
constraint matrix that is perfect� now we turn to the general case with arbitrary ��	 matrices�
Such matrices lead to nonintegral systems Ax � �� x � � that do not su%ce to describe the
set packing polytope PI�A�� The polyhedral study of general set packing polytopes aims at
identifying the missing inequalities and at developing methods for their e�ective computation�
Such knowledge of the facial structure of set packing polytopes is useful in three ways� To
develop polynomial time algorithms for classes of stable set problems
 to derive combinatorial
min�max results
 and computationally in branch�and�cut codes for the solution of set packing
or set partitioning problems� Let us say a word about each of these points�
The link between polynomial time algorithms and facial investigations is a fundamental al�
gorithmic result of Gr�otschel
 Lov�asz � Schrijver �	
�� that is often termed the polynomial
time equivalence of separation and optimization� It is based on the concept of a separation
oracle for a polyhedron P �� that takes an arbitrary point x as input and decides if it is con�
tained in P 
 or
 if not
 returns an inequality that separates x and P � The theory asserts that

whenever such an oracle is at hand
 one can optimize over P in oracle polynomial time
 where
each call of the oracle is counted as taking constant time� When the separation can also be
done in polynomial time
 this results in a polynomial optimization algorithm � even and in
particular when a complete description of P by linear inequalities has exponential size" And
it turns out that one can construct such polynomial separation oracles for the set packing
polytopes of quite some classes of graphs
 most notably for perfect graphs�
Combinatorial min�max results require explicit complete descriptions by TDI systems� It is
theoretically easy to �make a linear system TDI�
 but it is di%cult to obtain systems of this
type with �combinatorial meaning�� In fact
 besides perfect and line graphs there seems to
be only one class of �odd K� free� graphs where a combinatorial min�max result is known�
The computational use of set packing inequalities goes to the other extreme� Anything goes

valid inequalities can be used as well as facet de�ning ones
 and whether exact separation is
always preferable to heuristics � well
 it�s wiser not to enter this discussion"
We try to survey in this section the main results of the polyhedral approach to the set
packing problem� The organization of the section is as follows� Subsection 	���	 introduces
the concept of facet de�ning graphs and gives a list of known such structures as well as
of graphs where these inequalities yield complete descriptions� Subsection 	���� deals with
composition procedures
 that construct from simple inequalities more complicated ones� Some
results on a special class of claw free graphs are collected in Subsection 	����� Quadratic and
semide�nite approaches are treated in Subsection 	����� The �nal Subsection 	���� states
some adjacency results
 that bear on primal algorithms�
Some basic properties of set packing polytopes for reference in subsequent subsections are�

����� Observation �Dimension� Down Monotonicity� Nonnegativity	
Let A be a ��
 matrix and PI�A� be the associated set packing polytope�

�i� PI�A� is full dimensional�

�ii� PI�A� is down monotone� i�e�� x � PI�A� !� y � PI�A� for all � � y � x�

In particular� all nontrivial facets of PI�A� have all nonnegative coe
cients�

�iii� The nonnegativity constraints xj � � induce facets of PI�A��

��The theory works also for convex bodies�
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����� Facet De�ning Graphs

There are three general techniques to �nd valid or facet de�ning inequalities for the set packing
polytope� The study of facet de�ning graphs
 the study of semide�nite relaxations of the set
packing polytope
 and the study of combinatorial relaxations� We discuss in this section the
�rst technique
 semide�nite relaxations are treated in Subsection 	����
 and combinatorial
relaxations in Chapter � and in particular in Section ����

The polyhedral study of general set packing polytopes through classi�cations of graphs
 initi�
ated by Padberg �	
��a 
 is based on the down monotonicity of PI�A�� Namely
 this property
implies that if H ! G�W  is some node induced subgraph of some given graph G ! �V�E�
and the inequality aTx � � is valid for PI�G� � fx � RV j xj ! � �j 
� Wg and has aj ! �
for all j 
� W 
 it is also valid for PI�G�� The consequence is that substructures of a graph
give rise to valid inequalities for the set packing polytope of the whole graph
 a relation that
can be stressed by identifying the polytopes PI�G� � fx � RV j xj ! � �j 
�Wg and PI�H�
�and we want to use this notation here and elsewhere in this section��

An investigation of the rules that govern the transfer of inequalities from set packing sub�
polytopes to the whole and vice versa leads to the concepts of facet de�ning graphs and
lifting
 see Padberg �	
��a � We say that a node induced subgraph H ! G�W  of G de�nes
the facet aTx � � if this inequality is essential for PI�H�� Now
 among all node induced
subgraphs H ! G�W  of G are those of particular interest that are minimal in the sense that
they give rise to a facet �for the �rst time�� This is not always the case� If H ! G�W  de�nes
the facet aTx � � for PI�G�W  �
 it is possible that there is a smaller subgraph G�U  � G�W  
�U �W �
 such that aTx � � de�nes already a facet of PI�G�U  �� If this is not the case for all
U � W such that jU j ! jW j � 	
 the subgraph G�W  is �elementary plus�minus one node�
and said to produce aTx � �
 see Trotter �	
�� 
 and if this property extends to any subset
U � W 
 the subgraph G�W  is said to strongly produce the inequality� Having mentioned
these concepts
 we do
 however
 restrict our attention in the sequel to facet de�ning graphs
and refer the reader to the survey article of Padberg �	
�� for a discussion of facet producing
graphs� Moving in the other direction again
 from small to large
 the question of what kind
of extensions of valid inequalities�facets from subgraphs result in valid inequalities�facets for
set packing polytopes of supergraphs is precisely the lifting problem that we discuss in the
next section�

We give next a list of facet de�ning classes of graphs� For each such class L
 one can try to
determine a corresponding class of L�perfect graphs
 whose associated set packing polytopes
can be described completely in terms of L �plus the edge inequalities
 where appropriate��
This concept
 invented by Gr�otschel
 Lov�asz � Schrijver �	
�� 
 provides a general technique
to identify classes of graphs with polynomially solvable stable set problems� Namely
 to
establish such a result
 one merely has to prove that the inequalities from L can be separated
in polynomial time" Our list includes also these results as far as we are aware of them�

Edge Inequalities� Associated to each edge ij of a graph G ! �V�E� is the edge inequality
xi ' xj � 	� Edge inequalities are special cases of clique inequalities and inherit the face�
tial properties of this larger class
 see next paragraph� The edge perfect graphs are exactly
the bipartite graphs without isolated nodes
 and these have polynomially solvable stable set
problems� For general graphs G
 the system of edge inequalities �plus the nonnegativity in�
equalities� A�G�x � �� x � � de�nes an edge relaxation of PI�A�� This relaxation has been
investigated by a number of authors
 including Padberg �	
��a and Nemhauser � Trotter
�	
�� 
 and displays some initially promising looking properties� Namely
 P �A�G�� has only
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half integral vertices �all components are �
 	��
 or 	 only� and
 stronger
 all integer com�
ponents of a solution of the associated fractional set packing problem have the same value
in some optimal integral solution and can thus be �xed" Unfortunately
 this almost never
happens in computational practice and neither does it happen in theory� Pulleyblank �	
�
 
proved that the probability that the edge relaxation of a set packing problem with w ! � on
a random graph has an all 	�� optimal solution tends to one when the number of nodes tends
to in�nity� And this is not only asymptotically true� For n ! 	��
 the probability of a single
integer component is already less than 	��� 	��	�

Clique Inequalities� Fulkerson ������� Padberg �����a�� A clique in a graph G !
�V�E� is a set Q of mutually adjacent nodes
 see Figure 	��� Associated to such a structure
is the clique inequality

X
i�Q

xi � 	�

�

	

� �

�

Figure 	��� A ��Clique�

�The support graphs of� Clique inequalities are trivially facet de�ning� Moreover
 Fulkerson
�	
�	 and Padberg �	
��a have shown that such a constraint induces also a facet for the
stable set polytope of a supergraph if and only if the clique is maximal with respect to set
inclusion in this supergraph� By de�nition
 the clique perfect graphs coincide with the perfect
graphs� Separation of clique inequalities is NP�hard
 see Garey � Johnson �	
�
 
 but this
complexity result is irrelevant because Gr�otschel
 Lov�asz � Schrijver �	
�� have shown that
the clique inequalities are contained in a larger class of polynomially separable orthogonality
inequalities
 that we will discuss in Subsection 	����� This implies that the stable set problem
for perfect graphs can be solved in polynomial time" This result
 one of the most spectacular
advances in combinatorial optimization
 subsumes a myriad of statements of this type for
subclasses of perfect graphs
 see Gr�otschel
 Lov�asz � Schrijver �	
�� for a survey�

Odd Cycle Inequalities� Padberg �����a�� An odd cycle C in a graph G ! �V�E�
consists of an odd number �k ' 	 of nodes �� � � � � �k and the edges �i� i ' 	� for i ! �� � � � � �k
�where indices are taken modulo �k ' 	�
 see Figure 	��� Any additional edge ij between two
nodes of a cycle that is not of the form �i� i ' 	� is a chord� An odd cycle without chords is
an odd hole� the odd holes coincide with the circulant� graph�s C��k ' 	� ��� Associated to a
not necessarily chordless odd cycle C on �k ' 	 nodes is the odd cycle inequality

X
i�C

xi � �jCj � 	����

�

	

� �

�

Figure 	��� A ��Cycle�
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Padberg �	
��a showed that �the support graph of� an odd cycle inequality is facet de�ning if
and only if the cycle is a hole� note that the �only if� part follows from minimal imperfection�
Gr�otschel
 Lov�asz � Schrijver �	
��
 Lemma 
�	�		 gave a polynomial time algorithm to
separate odd cycle inequalities such that the stable set problem for cycle �plus edge
 perfect
graphs
 that are also called t�perfect �t stands for trou
 the French word for hole�
 is solvable
in polynomial time� Series parallel graphs �graphs that do not contain a subdivision of K� as
a minor� are one prominent class of cycle �plus edge� perfect graphs� This was conjectured by
Chv�atal �	
�� 
 who showed that the stable set problem for w ! � can be solved in polynomial
time
 and proved by Boulala � Uhry
 a short proof was given by Mahjoub �	
�� � In fact
 even
more is true
 and for a larger class� Gerards �	
�
 proved that the system of nonnegativity

edge
 and odd cycle inequalities is TDI for graphs that do not contain an odd K�
 i�e�
 a
subdivision of K� such that each face cycle is odd� This gives rise to a min cycle and edge
covering�max node packing theorem� Perfect graphs
 line graphs �see next paragraph�
 and
Gerards�s class seem to be the only instances where such a min�max result is known� A list
of further cycle perfect graphs can be found in Gr�otschel
 Lov�asz � Schrijver �	
�� �

Taking the union of clique and odd cycle inequalities
 one obtains the class of h�perfect graphs

see again Gr�otschel
 Lov�asz � Schrijver �	
�� for more information�

Blossom Inequalities� Edmonds ������� The matchings in a graph H ! �V�E� are in
one�to�one correspondence to the stable sets in the line graph L�H� �! �E� f�ij� jk� � E�g�
of H� Associated to such a linegraph L�H� is the blossom inequality

X
e�E

xe �
�
jV j��

�
�

C�C�

�
	

�

�
�

�

�

�

Figure 	��� A Line Graph of a ��Connected Hypomatchable Graph�

Edmonds � Pulleyblank �	
�� showed that a blossom inequality is facet de�ning for PI�L�H��
if and only if H is ��connected and hypomatchable� �If we denote by ��H� the maximum size
of a matching in a graph H
 this graph is hypomatchable if ��H� ! ��H � i� holds for all
contractions H � i of the graph H� It is known that a graph H ! �V�E� is ��connected
and hypomatchable if and only if it has an open ear decomposition E ! 	

Sk
i�� Ci
 where C�

is an odd hole and each Ci is a path with an even number of nodes v�i � � � � � v
�ki
i and distinct

endnodes v�i 
! v�kii 
 such that V �Ci�� 	
Si��
j�� V �Cj� ! fv�i � v

�ki
i g
 see Lov�asz � Plummer �	
��


Theorem ����� and Figure 	���� Separation of blossom inequalities is equivalent to a minimum
odd cut problem
 see Gr�otschel
 Lov�asz � Schrijver �	
��
 page ��� 
 for which Padberg �
Rao �	
�� gave a polynomial time algorithm� Edmonds �	
�� has shown that the stable
set polytope of a line graph is completely described by the nonnegativity
 blossom
 and the
clique inequalities

P
e��
i� xe � 	 for all i � V � this means that the class of blossom �and

clique
 perfect graphs subsumes the class of line graphs� These arguments yield a polynomial
time algorithm for the stable set problem in line graphs �the matching problem in graphs�
alternative to the celebrated combinatorial procedure of Edmonds �	
�� � Finally
 we mention
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that Cunningham � Marsh �	
�� have shown that the above mentioned complete description
of the set packing polytope of a line graph is even TDI
 which results in a combinatorial min
packing�max covering theorem for edges�blossoms and cliques in graphs�

Odd Antihole Inequalities� Nemhauser � Trotter ������� An odd antihole C is the
complement of an odd hole
 see Figure 	��� the odd antiholes coincide with the circulants
C��k ' 	� k�� Associated to an odd antihole on �k ' 	 nodes is the odd antihole inequality

X
i�C

xi � ��

�

�

�

� �

�

�

Figure 	��� A ��Antihole�

Odd antihole inequalities are facet de�ning by minimal imperfection� As far as we know

no combinatorial separation algorithm for these constraints is known
 but the odd antihole
inequalities are contained in a larger class of matrix inequalities with N��index 	
 that can
be separated in polynomial time
 see Lov�asz � Schrijver �	

	 � we will discuss the matrix
inequalities in Subsection 	����� These results imply that stable set problems for antihole
perfect graphs can be solved in polynomial time�

Wheel Inequalities� A wheel in a graph G ! �V�E� is an odd cycle C plus an additional
node �k ' 	 that is connected to all nodes of the cycle
 see Figure 	��� C is the rim of the
wheel
 node �k ' 	 is the hub
 and the edges connecting the node �k ' 	 and i
 i ! �� � � � � �k

are called spokes� For such a con�guration we have the wheel inequality

kx�k�� '
�kX
i��

xi � k�

�

�

�
�

��

�
�

�

Figure 	��� A ��Wheel�

Note that wheel inequalities can have coe%cients of arbitrary magnitude�
A wheel inequality can be obtained by a sequential lifting �see next subsection� of the hub
into the odd cycle inequality for the rim� Trying all possible hubs
 this yields a polynomial
time separation algorithm for wheel inequalities� An alternative procedure
 that reduces
wheel separation to odd cycle separation
 can be found in Gr�otschel
 Lov�asz � Schrijver
�	
��
 Theorem 
���� � Hence
 the stable set problem for wheel perfect graphs is solvable in
polynomial time�
Generalizations of wheel inequalities that can be obtained by subdividing the edges of a wheel
were studied by Barahona � Mahjoub �	

� 
 who derive a class of K� inequalities �see the
corresponding paragraph in this subsection�
 and by Cheng � Cunningham �	

� 
 who give
also a polynomial time separation algorithm for two such classes�
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We �nally refer the reader to Subsection ����	 of this thesis
 where we show that simple as
well as generalized wheels belong to a �larger� class of �odd cycles of paths� of a combinatorial
rank relaxation of the set packing polytope� the inequalities of this superclass can be separated
in polynomial time� We remark that the wheel detection procedure of Gr�otschel
 Lov�asz �
Schrijver �	
��
 Theorem 
���� is
 with this terminology
 exactly a routine to detect cycles of
paths of length � with one hub endnode�

Antiweb and Web Inequalities� Trotter ������� Antiweb is a synonym for circulant

see Figure 	��
 and a web is the complement of an antiweb
 see Figure 	��� Obviously
 every
odd hole is an antiweb
 and every odd antihole is a web� An odd antihole is also an antiweb

but the classes of antiwebs and webs do in general not coincide� in fact
 Trotter �	
�� proved
that an antiweb is a web if and only if it is a hole or an antihole� The inequalities associated
to C�n� k� and C�n� k� �! C�n� k� are the antiweb inequality and the web inequality

X
i�C
n�k�

xi � bn�kc

�
�

�

�
�

�

�

�

Figure 	��� The Antiweb C��� ���

X
i�C
n�k�

xi � k�

�
�

�

�
�

�

�

�

Figure 	��� The Web C��� ���

An antiweb C�n� k� is facet de�ning if and only if either k ! n or k and n are relatively prime

a web C�n� k� de�nes a facet if and only if either k ! 	 or k and n are relatively prime� As
far as we known
 no polynomial time separation algorithm for these classes themselves or any
superclass is known�

Wedge and K� Inequalities� Giles � Trotter ������� Barahona � Mahjoub �������
To construct a wedge
 one proceeds as follows� Take a ��wheel K�
 subdivide its spokes �not
the rim
 and at least one subdivision must really add a node� such that each face cycle is odd

and take the complement� the resulting graph is a wedge
 see Figure 	�
 for a complement
of a wedge� If we subdivide the nodes of a wedge into the set of nodes E that have an even
distance from the original rim nodes of the ��wheel
 and the set of remaining nodes O
 the
wedge inequality states that

X
i�E

xi '
X
i�O

�xi � ��

E ! f	� �� �� �� �g
O ! f�� �� �g

�

��
��

��

�

Figure 	�
� A Complement of a Wedge�
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The wedges are facet de�ning
 see Giles � Trotter �	
�
 � Nothing seems to be known about
the separation of this class�
By construction
 the complements of wedges �as in this thesis� are special subdivisions of K��
All subdivisions of K� have been analyzed by Barahona � Mahjoub �	
�
 � It turns out that
complete descriptions of the set packing polytopes associated to arbitrary subdivisions of K�

can be obtained by means of 	
 classes of K� inequalities� The separation of K� inequalities
does not seem to have been investigated�

Chain Inequalities� Tesch ������� A �k'	�chain H is similar to the antiweb C��k'	� ���
the di�erence is that the two chords ��� �k � 	� and �	� �k� are replaced with the single edge
�	� �k � 	�
 see Figure 	�	�� This structure gives rise to an inequality for the set packing
polytope� The chain inequality states that

X
i�H

xi �

�
�k ' �

�

	
�

	

���

�

� �

��

���

�

�

�




Figure 	�	�� A 	��Chain�

A �k ' 	 chain is facet de�ning if and only if k mod � ! �� Nothing is known about the
separation problem�

Composition of Circulant Inequalities� Giles � Trotter ������� A composition of
circulants is constructed in the following way� Choose a positive integer k
 let n ! �k�k'��'	

set up the �inner circulant� C ! C�n� k ' �� and the �outer circulant� C � ! C�n� k ' 	� with
node sets V ! f�� � � � � n�	g and V � ! f�� � � � � �n�	��g
 and add all edges ii�� � � � � i�i'�k'	��

for all nodes i � V 
 �indices taken modulo n�� The graph that one obtains from an application
of this procedure for any positive k is a composition of circulants that is denoted by Ck
 see
Figure 	�		� Associated to such a structure is the composition of circulants inequality

�k ' 	�
X
i�V

xi ' k
X
i��V �

xi� � �k�k ' 	��
�

�

�

�

�

��

��

��

��

�� ��

��

��

Figure 	�		� The Composition of Circulants C��

It is known that composition of circulant inequalities are facet de�ning�
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Further Inequalities� We close our list of facet de�ning inequalities for the set packing
polytope with some pointers to further classes�

An enumeration of all facets of the set packing polytopes associated to certain claw free
graphs �see next subsection� of up to 	� nodes has been done by by Euler � Le Verge �	

� �

We �nally refer the reader to Section ��� of this thesis
 where we present a class of facet de�ning
cycle of cycles inequality as an example of a method to derive facet de�ning inequalities from
a �rank relaxation� of the set packing polytope�

$

We have seen that most of the facet de�ning graphs of our list appeared in pairs of graph and
complement graph that give both rise to facets and one could thus be lead to believe that
some �yet to be made precise� principle of this sort holds in general� Padberg �	
�� o�ers
some su%cient conditions in this direction but also points out that graphs like the line graph
in Figure 	�� have complements that are not facet producing �no facet de�ning inequality of
the associated set packing polytope has full support��

Our discussion of facet de�ning graphs would not be complete without mentioning the neces�
sary and su�cient conditions that have been derived for structures of this type� It is hard to
come up with interesting characterizations of general constraints and the literature focusses
on the already notoriously di%cult class of rank inequalities or canonical inequalities
 as they
are also called� Denoting
 us usual
 the stability number or rank of a graph G by ��G�
 the
rank inequality that is associated to G isX

i�V

xi � ��G��

A necessary condition for a rank and more general for any inequality to de�ne a facet is�

����
 Observation �
�Connectedness of a Facet�s Support	
Let G be a graph and PI�G� the associated set packing polytope� If aTx � � de�nes a facet
of PI�G�� its support graph G�suppaT is �	�node	�connected�

Observation 	����
 which is a special case of the more general Theorem 	���� �to be discussed
in the next section�
 is
 as far as we know
 the only general condition that is known� the
criteria that follow apply to the rank case with all one coe%cients�

We start with a su�cient condition of Chv�atal �	
�� � His criterion for facetial rank inequal�
ities is based on the concept of critical edges in a graph G ! �V�E�� Namely
 an edge ij � E
is called critical if its removal increases G�s rank
 i�e�
 if ��G � ij� ! ��G� ' 	� A graph G
itself is called critical
 if all of its edges are critical�

����� Theorem �Rank Inequalities from Critical Graphs� Chv�atal ������	
Let G ! �V�E� be a graph and E� be the set of its critical edges� If the graph G� �! �V�E��
is connected� the rank inequality

P
i�V xi � ��G� is facet de�ning�

The reader can verify that most of the rank inequalities in this section�s list satisfy the criterion
of Theorem 	���� �in fact
 most have even critical support graphs� but this condition is not
necessary
 see Balas � Zemel �	
�� for a counterexample�

A set of further conditions
 suggested by Balas � Zemel �	
�� 
 makes use of the notion of a
critical cutset in a graph G ! �V�E�
 i�e�
 a cut 
�W � such such that ��G � 
�W �� � ��G��
In words� A cut�set� is critical if its removal increases the rank�
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����� Theorem �Critical Cutsets� Balas � Zemel ������	
Let G be a graph and PI�G� be the associated set packing polytope� If the rank inequality
for G de�nes a facet of PI�G�� every cutset in G is critical�

Balas � Zemel �	
�� give an example that shows that this condition is not su%cient� But
it is possible to obtain a complete characterization of those rank facets that arise from facet
de�ning subgraphs of a graph�

����� Theorem �Extension of Rank Facets� Balas � Zemel ������	
Let G be a graph� PI�G� be the associated set packing polytope�W � V some subset of nodes
of G� and let the rank inequality

P
i�W xi � ��G�W  � be facet de�ning for PI�G�W  �� Then�

The rank inequality
P

i�W xi � ��G�W  � de�nes a facet for PI�G� if and only if the cutset

�j� with respect to the graph G�W � fjg is not critical for every j 
�W �

It has been pointed out by Laurent �	
�
 that Theorems 	����
 	����
 and 	���� carry over
to the more general context of rank facets of set covering polytopes
 see also Section 	�
� For
the notion of critical cutsets
 this correspondence is as follows� If we interpret the stable
sets in a graph G as the independent sets of an independence system �see Subsection 	���

Theorem 	���� says that V is nonseparable
 while stating that all cutsets 
�j� with respect to
the graphs G�W � fjg are not critical as in Theorem 	���� is equivalent to W being closed�

����� Composition Procedures

In the preceding Subsection 	���	
 we have studied and accumulated a list of facet de�ning
graphs
 that have a local relevance in the sense that they are facet de�ning for their associated
set packing polytopes� In general
 the given graph will rarely be of one of the special facet
de�ning classes
 but it is not only possible
 but
 as we known from the minor investigations
of Section 	��
 inevitable that a given graph contains imperfect substructures of such types�
Then
 by down monotonicity
 the associated inequalities carry over from the set packing
polytopes of the subgraphs to the whole�
The procedure that we have just described is a simple example of a constructive approach
to the study of the set packing polytope� The idea here is the following� Given valid�facet
de�ning inequalities for one or several �small� graphs
 compose valid�facet de�ning inequali�
ties for a �bigger� graph� In this way
 we can build on analytic classi�cations of facet de�ning
graphs and synthesize global inequalities from elementary pieces�
In this subsection
 we survey two composition procedures of this type� The lifting method and
the study of the polyhedral consequences of graph theoretic operations�

Sequential Lifting� Padberg �����a�� The sequential lifting method
 that was introduced
by Padberg �	
��a in connection with odd cycle inequalities
 applied to arbitrary facets of
set packing and set covering polyhedra by Nemhauser � Trotter �	
�� 
 and further extended
to arbitrary ��	 polytopes by Zemel �	
�� 
 provides a tool to build iteratively facets for the
set packing polytope PI�G� associated to some graph G from facets of subpolytopes of the
form PI�G�W  ��

����� Theorem �Sequential Lifting� Padberg �����a�� Nemhauser � Trotter ������	
Let G ! �V�E� be a graph and PI�G� the associated set packing polytope� Let further
W ! fw�� � � � � wkg � V be some subset of nodes of G that is numbered in some arbitrary
order� letW �! V nW be the complement ofW � and let aTx � � be a facet de�ning inequality
for PI�G�W  ��
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Determine numbers �i � R for i ! 	� � � � � k by means of the recursion

�i �! �� max
x�PI
G�W�f������i��g��

aTx '

i��X
j��

�jxj � i ! 	� � � � � k� �	�
�

Then�

The inequality aTx '
Pk

i�� �ixi � � is facet de�ning for PI�G��

The ordering of the nodes in W is called a lifting sequence
 �	�
� is a lifting problem
 the
numbers �i are the lifting coe�cients

 the inequality aTx '

Pk
i�� �ixi � � is a lifting of the

inequality aTx � �
 and the whole procedure is referred to as �lifting the variables �or nodes�
in W into the inequality aTx � ���
Some simple properties of the lifting process are the following� If we start with a nonnegative
inequality �which we assume in the sequel�
 all lifting coe%cients will be nonnegative as well
and the right�hand side � of the original inequality is an upper bound on the value of each of
them� Taking a lower bound for the value of some lifting coe%cient is called a heuristic lifting
step� if we do that one or several times
 the resulting inequality will in general not be facet
de�ning
 but it will be valid� Next
 note that di�erent choices of the lifting sequence give rise
to di�erent liftings that have
 however
 an identical core aTx � �� We remark in this context
that one can also consider the possibility to compute several or all lifting coe%cients at once

an idea that is called simultaneous lifting
 see again Zemel �	
�� �
We have already encountered a prominent example of a lifting� A wheel inequality can be
obtained by lifting the hub into the odd cycle inequality that corresponds to the rim�
Sequential lifting is a powerful conceptual tool that o�ers an explanation for the appearance
of facet de�ning inequalities of general set packing polytopes� Such inequalities frequently
resemble the pure facet de�ning substructures as in Subsection 	���	
 but with all kinds of
additional protuberances� the aberrations can be understood as the results of sequential lift�
ings� We remark that one does in general not obtain all facets of a set packing polytope PI�G�
from sequential liftings of facets of subpolytopes
 namely and by de�nition
 when the graph G
itself is facet producing� examples of facet producing graphs are odd holes�
Turning to the algorithmic side of lifting
 we note that the lifting problem is again a set
packing problem
 one for each lifting coe%cient� So lifting is in principle a di%cult task� But
the procedure is very �exible and o�ers many tuning switches
 that can be used to reduce
its complexity in rigorous and in heuristic ways� First
 note that when the right�hand side
� is bounded
 the lifting problem can be solved by enumeration in pseudo polynomial time

i�e�
 time that is polynomial in the size of the data and the value of �� For instance
 clique
inequalities have a right�hand side of one and so will be all lifting coe%cients� sequentially
lifting a clique inequality is simply the process to extend the clique with additional nodes in
the order of the lifting sequence until the clique is maximal with respect to set inclusion
 and
this is easy to do in polynomial time� In a similar fashion
 one can come up with polynomial
time lifting schemes for antihole inequalities etc� � all for a �xed lifting sequence� Second

there are many degrees of freedom for heuristic adjustments� One can switch from exact to
heuristic lifting when the lifting problems become hard
 stop at any point with a result in
hand
 make choices in an adaptive and dynamical way
 etc� To put it short� Lifting is not
the algorithmic panacea of facet generation
 but it is a useful and �exible tool to enhance
the quality of any given inequality� Some applications of lifting in a branch�and�cut code for
set partitioning problems and some further discussion on computational and implementation
issues can be found in Section ��� of this thesis�
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The last aspect that we consider here is that the lifting method o�ers also an explanation for
the di%culties that one encounters in classifying the facets of the set packing polytope� It is
extremely easy to use the procedure to construct examples of arbitrarily complex inequalities
with involved graphical structures and any sequence of coe%cients� Does this mean that
the attempt to understand the facial structure of set packing polytopes by analysis of small
structures is useless# Maybe � but maybe things are not as bad� Padberg �	
�� argues
that small facet de�ning graphs may
 in a �statistical� sense
 give rise to reasonable fractional
relaxations of general set packing polytopes� It is
 however
 known that there is no polynomial
time approximation algorithm for set packing
 see
 e�g�
 Hougardy
 Pr�omel � Steger �	

� �

$

Graph Theoretic Operations� We consider in the following paragraphs composition pro�
cedures that are based on graph theoretic operations� Taking one or several graphs
 possibly
of special types
 we glue these pieces together to obtain a new graph
 possibly again of a
special type� Studying the polyhedral consequences of such an operation
 one tries to de�
rive �i� analogous procedures for the composition of valid�facet de�ning inequalities or
 more
ambitious
 �ii� complete descriptions for the set packing polytope of the composition from
complete descriptions for the pieces�

Extensions� The �rst operation that we consider is the extension of a graph with additional
nodes� Sequential lifting is an example of this doing when we reverse our point of view from
�top�down� to �bottom�up�� If we do not look at the seed graph G�W  of Theorem 	���� as
a subgraph of a bigger graph that is given in advance
 but as a graph of its own
 the graph
theoretic operation behind each lifting step turns out to be the addition of a single node�
Adding bigger structures results in special simultaneous lifting procedures� As an example

we mention a procedure of Wolsey �	
�� and Padberg �	
�� 
 who consider the extension of a
graph G with a K��n� A single node is joined to every node of G with a path of length �� Some
aspects of this procedure are discussed in Subsection 	���� of this thesis
 and we mention here
only that Padberg �	
�� has shown that the method can not only be used to extend facet
de�ning graphs
 but to construct facet producing graphs �see this section�s introduction� that
give rise to facets with arbitrarily complex coe%cients�

Substitutions� This is a second group of powerful graph theoretic manipulations� One
takes a graph
 selects some node or subgraph
 substitutes another graph for this component

and joins the substitution to the whole in some way�
A �rst and important example of such a procedure is due to Chv�atal �	
�� 
 who considered
the replacement of a node v� of a graph G� ! �V �� E�� by a second graph G�� ! �V ��� E��� �node
substitution�� The graph G that results from this operation is the union of G� � v� and G��

with additional edges that join all nodes of G�� to all neighbors of v� in G�� Note that node
substitution subsumes the multiplication or replication of a node to a clique of Fulkerson �	
�� 
and Lov�asz �	
�	 
 which plays a role in the theory of perfect graphs� Further
 substituting
graphs G� and G� for the two nodes of an edge yields the sum �sometimes also called join

but we want to use this term later in another way�
 and substituting G�� for every node of G�

the lexicographic product or composition of G� and G��� Node substitution has the following
polyhedral consequences�

����� Theorem �Node Substitution� Chv�atal ������	 Let G� and G�� be graphs and let
A�x� � b�� x� � � and A��x�� � b��� x�� � � be complete descriptions of PI�G

�� and PI�G
���� Let

v� be a node of G� and G be the graph that results from substituting G�� for v�� Then�
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The system

a�iv�
X

u���V ��

a��ju��xu�� '
X
u��V �

u� ��v�

a�iu�b
��
jxu� � b�ib

��
j � �i� j

x � �

is a complete description of PI�G�

Note that this system is of polynomial size with respect to the encoding length of the starting
systems A�x� � b�� x� � � and A��x�� � b��� x�� � ��
Other authors have considered similar operations� Wolsey �	
�� obtains facet lifting results
from studying the replacement of a node with a path of length � and of an edge with a path
of length � �edge subdivision�� di�erent from Chv�atal �	
�� �s node substitution
 these paths
are not connected in a uniform way to the original graph� Some discussion of the �rst of these
procedures can be found in Subsection 	���� of this thesis�
Operations related to paths have also been considered by Barahona � Mahjoub �	
�
 � They
transform facets using subdivisions of stars
 i�e�
 simultaneous replacements of all edges that
are incident to some �xed node with paths of length �
 and replacements of paths of length �
with inner nodes of degree � by edges �contraction of an odd path
 the reversal of edge
subdivision��
Subdivisions of edges and stars are intimately related to the class of K� inequalities
 see
Subsection 	���	� Namely
 Barahona � Mahjoub �	

� have shown that all nontrivial facets
of PI�G� for such a graph arise from a ��clique �K�� inequality by repeated applications of
these operations� The 	
 types of inequalities that one can produce in this way form the class
of K� inequalities�

Joins� The operations that we term here joins compose a new graph from two or more given
graphs in a way that involves an identi�cation of parts of the original graphs� Join operations
often have the appealing property that they can not only be used for composition
 but also
for decomposition purposes
 because the identi�cation component is left as a �ngerprint in
the composition� If we can recognize these traces
 we can recursively set up a decomposition
tree that contains structural information about a graph�
The composition�decomposition principle that we have just outlined is the basis for a graph
theoretic approach to the set packing problem� The idea of this approach is to develop algo�
rithms that work as follows� A given graph is recursively decomposed into �basic� components
�i�e�
 components that can not be decomposed further�
 the set packing problem is solved for
each component
 and the individual solutions are composed into an overall solution by going
the decomposition tree up again�
To develop such an algorithm
 we need the following ingredients� A join operation
 an �e%�
cient� procedure that can construct the associated decomposition tree for a �large� class of
graphs
 a method to solve the set packing problems at the leafs of the decomposition tree

and a way to compose an optimal stable set in a join from optimal stable sets in component
graphs� The last of these four tasks is where polyhedral investigations of joins come into
play� Namely
 if the join operation is such that one can construct a complete description for
the set packing polytope of a join from complete descriptions for its components
 and such
descriptions are known at the leafs
 then such a system can also be constructed for the root
and used to solve the original set packing problem�
Our �rst example of a join composes from two graphs G� ! �V �� E�� and G�� ! �V ��� E��� their
union G� �G�� �! �V � � V ��� E� � E���� When the intersection G� �G�� �! �V � � V ��� E� � E���
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of the component graphs is a clique
 this union is called a clique identi�cation� Looking at
the procedure from a decomposition point of view
 clique identi�cation o�ers a decomposition
opportunity whenever we can identify in a graph a node separator that is a clique�

����� Theorem �Clique Identi�cation� Chv�atal ������	
Let G��G�� be a clique identi�cation of two graphs G� and G��� and let A�x� � b� and A��x�� � b��

be complete descriptions of the set packing polytopes PI�G
�� and PI�G

���� Then�

The union of the systems A�x� � b� and A��x�� � b�� is a complete description of PI�G
� �G����

Unions of graphs that intersect on a coedge
 i�e�
 on two nonadjacent nodes
 were studied by
Barahona � Mahjoub �	

� � As in the case of clique identi�cation
 the set packing polytopes
of coedge identi�cations can also be described completely if such knowledge is available for
the components� This technique can be used to decompose a graph that has a coedge node
separator�

Coedge identi�cation�decomposition bears on the derivation of complete descriptions of set
packing polytopes that are associated to W� free graphs
 i�e�
 graphs that do not have a
subdivision of a ��wheel as a minor� It is known that such graphs can be decomposed into a
number of components where complete descriptions are known �among them subdivisions of
K��� The decomposition uses only three types of node separators� Node and edge separators
�cliques of size one and two� and coedge separators� Using Chv�atal �	
�� �s result on complete
descriptions for clique identi�cations in the �rst two and their own result in the coedge case

Barahona � Mahjoub �	

� construct a polynomial sized complete extended description of
the set packing polytope of a general W� free graph G ! �V�E�� Here
 the term �extended
description� refers to a system that de�nes a polytope P in a high dimensional space that can
be projected into RV to obtain PI�G�� extended descriptions take advantage of the observation
that a projection of a polytope can have more facets than the polytope itself�

The last type of join that we want to mention is the amalgamation of two graphs of Burlet �
Fonlupt �	

� � This concept subsumes the graph theoretic operations of node substitution
and clique identi�cation� it characterizes the class of Meyniel graphs� Burlet � Fonlupt �	

� 
show that one can obtain a complete description of the set packing polytope of the amalgam
from complete descriptions for the components�

����	 Polyhedral Results on Claw Free Graphs

We have collected in this subsection some results about set packing polyhedra that are asso�
ciated to claw free graphs� Most of this material �ts into other subsections of this survey
 but
the extent of the topic and some unique aspects seemed to suggest that a treatment in one
place would be more appropriate�

Claw is a synonym for K���
 see Figure 	�	�
 and a claw free graph is one that does not contain
such a structure�

Figure 	�	�� A Claw�
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Claw free graphs stir the interest of the polyhedral community because the set packing prob�
lem for this class can be solved in polynomial time
 see Minty �	
�� 
 but a complete polyhedral
description is not known� The research objective is to determine this description�

Line graphs are claw free and it was initially suspected that the facets of the set packing
polytopes of claw free graphs resemble the facets of the matching polytope and would not
be too complicated� one early conjecture was
 e�g�
 that the only coe%cients on the left�hand
side are �
 	
 and �� Giles � Trotter �	
�
 were the �rst to point out that these polytopes are
complex objects� They did not only prove the �
	
� conjecture false
 but gave also examples
of claw free graphs that produce complicated inequalities that contain
 e�g�
 arbitrarily large
coe%cients� We have mentioned two such classes in Subsection 	���	� The compositions of
circulants and the wedges �one can and must delete some edges in a wedge as de�ned in this
thesis to make it claw free��

Some progress was made by Pulleyblank � Shepherd �	

� for a the more restrictive class of
distance claw free graphs� These are graphs that do
 for each node v
 not only not contain a
stable set of size � in the neighborhood of v
 but they do also not contain such a stable set in
the set of nodes that have distance � from v� Pulleyblank � Shepherd give a polynomial time
�dynamic programming� algorithm for the set packing problem in distance claw free graphs
and derive a polynomial sized complete extended description of the associated polytope�

Gallucio � Sassano �	

� take up the subject of general claw free graphs again and investigate
the rank facets that are associated to such graphs� It turns out that there are only three
types of rank facet producing claw free graphs� Cliques
 line graphs of minimal ��connected
hypomatchable graphs
 and the circulants C���'	� ��� All rank facets can be obtained from
these types either by sequential lifting or as sums of two such graphs�

We �nally mention Euler � Le Verge �	

� �s list of complete descriptions of set packing
polytopes of claw free graphs with up to 	� nodes�

����
 Quadratic and Semide�nite Relaxations

Next to the search for facet de�ning and producing graphs
 the study of quadratic and
 inti�
mately related
 also of semide�nite relaxations is a second general technique to derive valid
and facet de�ning inequalities for the set packing polytope� While the �rst concept has a
combinatorial and in the �rst place descriptive �avour
 the quadratic�semide�nite techniques
are algebraic and
 even better
 algorithmic by their very nature
 and they do not only apply
to set packing
 but to arbitrary ��	 integer programs� And the method�s wider scope and
built�in separation machinery is not bought with a dilution of strength" Quite to the contrary

almost all of the explicitly known inequalities for set packing polytopes can be pinpointed in
the quadratic�semide�nite setting as well and more� Superclasses of important types of con�
straints
 most notably clique and antihole inequalities
 can be separated in polynomial time�
This implies
 in particular
 one of the most spectacular results in combinatorial optimization�
The polynomial time solvability of the stable set problem in perfect graphs� There is only
one price to pay for all of these achievements� The number of variables is squared�

We try to give in this subsection a survey over some basic aspects of quadratic and semide�nite
techniques for the set packing problem� It goes without saying that we can not do more than
scratching the surface of this fast developing �eld and we refer the reader to the book of
Gr�otschel
 Lov�asz � Schrijver �	
�� and the article of Lov�asz � Schrijver �	

	 and the
references therein for a more comprehensive treatment� Our exposition is based on the latter
publication and focusses on the special case of the set packing problem�
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We start by introducing the concepts of a quadratic relaxation
 and
 as a particularly strong
variant of such a model
 of a semide�nite relaxation of the set packing problem in some
graph G ! �V�E� with n nodes that will be numbered V ! f	� � � � � ng� The idea is to
consider not the convex hull of the incidence vectors x of the stable sets in Rn 
 but the convex
hull of the matrices xxT � Rn�n � We will see that this quadratic representation gives rise to
two additional cut generation procedures that are not available in the linear case�
It is technically easier to study quadratic models that gives rise to cones instead of polyhe�
dra and this is the reason to consider a homogenization of the set packing polytope that is
constructed with the aid of an additional component x��

HI�G� �! cone�f	g � PI� � Rf������ng�

PI�G� can be retrieved from this object by an intersection with the hyperplane x� ! 	� We
introduce also a fractional relaxation of HI�G� that is obtained by replacing PI�G� with
P �G� and denoted by H�G�� we will assume here and elsewhere in this subsection that P �G�
is described �canonically� by the nonnegativity and the edge constraints �we assume also that
there are no isolated nodes�� We will work in this subsection only with the cone versions of
the set packing polytope and its fractional relaxation and call HI�G� the set packing cone
and H�G� the fractional set packing cone� Going to quadratic space
 we are interested in the
set packing matrix cone

MI�G� �! fxxT� Rf������ng�f������ng j x � HI�G�g�

The way to construct a quadratic relaxation of the set packing matrix cone is not just to
replace HI�G� with H�G� in the de�nition of the set packing matrix cone
 which would yield
a trivial quadratic relaxation� Instead
 one can set up the following stronger relaxation�

�QSP� �i� eTi Y ej ! eTjY ei �i� j

�ii� eTi Y e� ! eTi Y ei �i

�iii� uTY ei � � �u � H�G�	� �i ! 	� � � � � n

uTY fi � � �u � H�G�	� �i ! 	� � � � � n

�iv� Y � Rf������ng�f������ng�

Here
 we denote by S	 the polar of a set S and by fi
 i ! 	� � � � � n the vectors of the form
fi �! e��ei �where ei is the i�th unit vector�� Their purpose is to serve as �the left�hand sides
of� facets of the �homogenized unit cube� U �! cone�f	g � ��� 	 n�
 which contains HI�G��
Associated to the system �QSP� is the fractional set packing matrix cone M�G� and this cone
will serve as one relaxation of MI�G� in quadratic space�
Before we take a closer look at this object and at the system �QSP�
 let us quickly introduce
another in�nite set of linear inequalities
 that strengthens the quadratic relaxation �QSP� to
a semide�nite relaxation that we denote by �QSP���

�v� uTY u � � �u � Rf������ng

Associated to the system �QSP�� is another fractional matrix cone M��G��
�QSP� �i� states that the matrices that are solutions to the system �QSP� are symmetric
 a
property that surely holds for all ��	 matrices xxTwith x � HI�G��f�� 	gf������ng� �ii� states a
type of �quadratic constraints�� For matrices xxT as above �ii� stipulates x�i ! xi
 i ! �� � � � � n�
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�iii� throws in what we know about H�G�� Again for matrices xxT
 we have that uTx � � for
all left�hand sides u � H�G�	 of valid constraints for H�G�
 and since H�G� � U 
 the same is
true for the facets v � U	 of the homogenized unit cube U �which are exactly the vectors ei
and fi�
 and this yields uTxxTv � �� �iv� is the same as stating that the matrix Y is positive
semide�nite
 which clearly holds for all matrices of the form xxT�
The quadratic constraints �QSP� �ii� and the semide�nite constraints �QSP�� �v� are not
available in the linear case and account for the greater strength of �QSP� and �QSP�� in
comparison to the trivial quadratic relaxation� One improvement is
 e�g�
 the following� Con�
sider the vector u ! �ei � ej ' e� � H�G�	 which is the left�hand side of the edge inequality
�xi�xj 'x� � � 
� xi 'xj � x� for H�G�
 and the vector ej � U	 which is the left�hand
side of the nonnegativity constraint xj � � for U � Inserting these vectors in �iii� yields

uTY ej ! ��ei � ej ' e��
TY�j ! �yij � yjj ' y�j ! �yij � ��

and this implies yij ! � for all ij � E� This property does not hold for the trivial relaxation�
But �QSP� as well as �QSP�� are not only strong
 they are also algorithmically tractable�
In fact
 �QSP� is of polynomial size and could be written down easily
 a property that does
not hold for �QSP��
 but one can solve the separation and the optimization problem for this
system in polynomial time as well
 see Gr�otschel
 Lov�asz � Schrijver �	
�� �
Having these �ne relaxations in quadratic space at hand
 we go back to the original �homoge�
nized� space by a simple projection to �nally construct good relaxations of the �homogenized�
set packing polytope
 which inherit the superior descriptive and algorithmic properties of the
matrix cones M�G� and M��G�� These relaxations are the cones

N�G� �! Me� ! fY e� � Rf������ng j Y �M�G�g

N��G� �! M�e� ! fY e� � Rf������ng j Y �M��G�g

and any inequality that is valid for them is a matrix inequality� It follows once more from
the general methodology of Gr�otschel
 Lov�asz � Schrijver �	
�� that the weak separation
problem for matrix inequalities can be solved in polynomial time such that one can weakly
optimize over N�G� and N��G� in polynomial time�

����� Theorem �N and N� Operator� Lov�asz � Schrijver ������	
Let G be a graph� let HI�G� be the homogenization of its set packing polytope� and let H�G�
be the fractional �edge� relaxation of this homogenization� Then�

HI�G� � N��G� � N�G� � H�G��

The weak separation and optimization problem for N�G� and N��G� can be solved in poly	
nomial time�

We remark that the strong separation and optimization problems for N�G� are also in P �
One can now go one step further and iterate the construction of the matrix cones
 obtaining
tighter descriptions in every step� Inserting N�G� into �QSP� �iii� in the place of H�G�
 one
obtains a second matrix cone M��G�
 that is projected into �n ' 	��space to become a cone
N��G�
 and so on� any valid inequality for such a relaxation Nk�G� is called a matrix inequality
with N �index k� Analogously
 we can iterate the N��operator to obtain relaxations Nk

��G�
and N� matrix inequalities for any natural index k� One can show that these relaxations get
tighter and tighter
 that one can solve the weak separation problem in polynomial time for
any �xed k
 and that the n�th relaxation coincides with PI�G��
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�����
 Theorem �Iterated N and N� Operator� Lov�asz � Schrijver ������	
Let G ! �V�E� be a graph with n nodes� let HI�G� be the homogenization of its set packing
polytope� and let H�G� be the fractional �edge� relaxation of this homogenization� Then�

�i� Nk���G� � Nk�G� �k � N�

�ii� Nk
��G� � Nk�G� �k � N�

�iii� Nn�G� ! HI�G��

The weak separation and optimization problem for Nk�G� and Nk
��G� can be solved in poly	

nomial time for every �xed natural number k�

Theorem 	���	� gives a wealth of polynomial time separable classes of inequalities for general
set packing polytopes
 namely
 all matrix cuts with arbitrary but �xed N � or N��index� The
graphs whose associated set packing polytopes can be described completely in this way are
also said to have N � or N��index k� It turns out that a large number of graphs have bounded
indices� We �rst state the results for the N �index�

������ Theorem �Graphs with Bounded N�Index� Lov�asz � Schrijver ������	
�i� An odd cycle C��k ' 	� �� has N 	index 
�

�ii� A complete graph Kn has N 	index n� ��

�iii� A perfect graph G has N 	index ��G�� ��

�iv� An odd antihole C��k ' 	� k� has N 	index �k�

�v� A minimally imperfect graph G has N 	index ��G�� 	�

It is more di%cult to characterize graphs with bounded N��index
 but �with an analogous def�
inition� a number of inequalities are known to have small N��indices
 in particular clique and
odd antihole inequalities
 which are hence contained in the polynomially separable superclass
of matrix inequalities with N��index 	�

�����
 Theorem �Inequalities with Bounded N��Index� Lov�asz � Schrijver ������	
Clique� odd cycle� wheel� and odd antihole inequalities have N�	index 
�

As the perfect graphs are exactly those with perfect clique matrices
 i�e�
 the graphs whose
associated set packing polytopes can be described completely by means of clique inequalities

it follows that the set packing problem in perfect graphs can be solved in polynomial time
 a
spectacular result that was �rst proved by Gr�otschel
 Lov�asz � Schrijver �	
�� �

������ Theorem �Set Packing Polytopes of Perfect Graphs� Gr�otschel� Lov�asz �
Schrijver ������� Lov�asz � Schrijver ������	
Perfect graphs have N�	index 
�

������ Theorem �SetPacking in PerfectGraphs�Gr�otschel� Lov�asz � Schrijver ������	
The set packing problem in perfect graphs can be solved in polynomial time�

We �nally relate the semide�nite relaxation N��G� to the original approach of Gr�otschel

Lov�asz � Schrijver �	
�� � They considered the semide�nite formulation �QSP��
 but with
�iii� replaced by

�iii�� eTi Y ej ! � �ij � E�

We denote this semide�nite system by �QSP�
��
 and the associated matrix cone by M �

��G��
The projection of this matrix cone into �n ' 	��space yields an N �

��cone
 and this N �
��cone�s
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intersection with the hyperplane x� ! 	 yields the convex
 but in general not polyhedral set

TH�G� �!


y � Rn j yi ! eTi Y e�� i ! 	� � � � � n� Y � N �

��G� � feT�Y e� ! 	g
�
�

Gr�otschel
 Lov�asz � Schrijver �	
�� have proved that TH�G� can be described completely by
means of �nonnegativity and� orthogonality inequalities� Such an orthogonality inequality for
a graph G ! �V�E� with nodes V ! f	� � � � � ng involves an orthonormal representation of G

i�e�
 a set of vectors vi � R

n with jvij ! 	
 one for each node i of G
 such that vTi vj ! � holds
for all ij 
� E
 and an additional arbitrary vector c � Rn with jcj ! 	� The orthogonality
inequality that corresponds to this data isX

i�V

�cTvi�
�xi � 	�

This class subsumes the clique inequalities by suitable choices of orthonormal representations�

������ Theorem �Orthogonality Inequalities� Gr�otschel� Lov�asz � Schrijver ������	
For any graph G holds�

�i� Orthogonality inequalities can be separated in polynomial time�

�ii� TH�G� is completely described by nonnegativity and orthogonality inequalities�

�iii� G is perfect if and only if TH�G� ! PI�G��

������ Theorem �N��Index ofOrthogonality Inequalities�Lov�asz � Schrijver ������	
Orthogonality inequalities have N�	index 
�

����� Adjacency

We summarize in this subsection some results on the adjacency of vertices of the set packing
polytope and on the adjacency of integer vertices of its fractional relaxation� Such results
bear on the development of primal algorithms for the set packing problem in a graph G�
For the purposes of this subsection
 we can de�ne a primal algorithm in terms of a search
graph G ! �V�E�
 that has the set of all set packings of G as its nodes �and some set of edges��
A primal algorithm uses the edges of G to move from one set packing to another� In every
move
 the algorithm searches the neighbors of the current node for a set packing that has

with respect to some given objective
 a better value than the current one� this neighborhood
scan is called a local search� When an improving neighbor has been found
 the algorithm
moves there along an edge of the graph� this edge is an improvement direction� When there
is no improvement direction
 the algorithm is �trapped� in a local optimum and stops�
The connection between a primal algorithm of local search type and the adjacency relation
on a set packing polytope PI�G� is that adjacency is a natural candidate to de�ne the edge
set of the search graph G� Namely
 we let uv � E if and only if the incidence vectors of the set
packings u and v are neighbors on PI�G�
 i�e�
 if they lie on a common 	�dimensional face of
PI�G�� Doing so produces a graph G�PI�G�� which is called the skeleton of PI�G�� Skeletons
have a property that makes them attractive search graphs� Not only are they connected
 but
there is a path of improvement directions from any vertex to the global optimum�
Edmonds �	
�� famous polynomial algorithm for set packing problems on line graphs
 i�e�

for matching problems
 moves from one packing to another one by �ipping nodes �in the line
graph� of a connected structure that is called a Hungarian tree� For maximum cardinality
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set packing problems on arbitrary graphs
 Edmonds �	
�� has derived a local optimality
criterion that is also in terms of trees and characterizes all improvement directions� A set
packing X in a graph G ! �V�E� is not of maximum cardinality if and only if the bipartite
graph �V� �X � V n X� � E� contains a tree T ! �W�F �
 such that X(W is a packing of
larger cardinality than X� �Here
 X(Y denotes the symmetric di�erence of two sets X and
Y �� It follows from a result of Chv�atal �	
�� that we will state in a second
 that Edmonds�s
matching algorithm does a local search on the skeleton of the set packing polytope that is
associated to a line graph
 and that his tree optimality criterion characterizes adjacent vertices
in the skeleton of a general set packing polytope� In view of these similarities between the
line graph�matching and the general case
 it was hoped that matching like primal techniques
could also be applied to general set packing problems� An attempt in this direction was
undertaken by Nemhauser � Trotter �	
�� 
 who investigated Edmonds�s criterion further
and used it
 supplemented with lower bounding LP techniques
 for the development of a
branch�and�bound algorithm that could solve maximum cardinality set packing problems on
random graphs with up to 	�� nodes�
The link between these results and polyhedral theory is the following result of Chv�atal �	
�� 
that characterizes the adjacent vertices of set packing polytopes completely� The theorem
shows that the above mentioned optimality criteria characterize adjacency in the skeleton of
the set packing polytope
 and that the algorithms perform a local search in this structure�

������ Theorem �Adjacency on the Set Packing Polytope� Chv�atal ������	
Let G ! �V�E� be a graph� let PI�G� be the associated set packing polytope� and let x and y
be the incidence vectors of two set packings X and Y in G� respectively� Then�

x and y are adjacent on PI�G� if and only if the graph G�X(Y  is connected�

Theorem 	���	� brings up the question if it is possible to use polyhedral information to perform
a local search in the skeleton� One idea to do this was investigated in a series of papers by
Balas � Padberg �	
��
 	
��
 	
�� and is as follows� Consider the fractional set packing
polytope P �A� that is associated to a given ��	 matrix A� Any vertex of PI�A� is also a
vertex of P �A�
 which means that it is possible to reach the integer optimum by searching
through the skeleton G�P �A�� of the fractional relaxation� This is interesting because there
is an e�ective and ready�to�use algorithm that does exactly this� The simplex method� In
fact
 nondegenerate pivots lead from one vertex to adjacent vertices
 and
 doing additional
degenerate pivots
 it is possible to reach from a given vertex all of its neighbors� In other
words� The simplex algorithm performs a local search on the skeleton of the fractional set
packing polytope with some additional degenerate steps� These statements were trivial
 but
point into an interesting direction� Is it perhaps possible to move with all integer pivots
through the skeleton of the integer set packing polytope as well# It is
 and G�PI�A�� seems
to have even extremely promising looking properties"

������ Theorem �Skeleton of SetPacking Polytopes� Balas � Padberg ����
� �����	
Let A be an m�n ��
 matrix� PI�A� the associated set packing polytope� P �A� its fractional
relaxation� and let GI �! G�PI�A�� and G �! G�P �A�� be the associated skeletons� Then�

�i� GI is a subgraph of G�

�ii� diamGI � m���

�iii� j
�v�j � n �v � V �GI��

Here
 diamGI denotes the diameter of the graph GI �
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Theorem 	���	� �i� states that vertices are adjacent on PI�A� if and only if they are adjacent
on P �A�
 i�e�
 it is possible to reach the optimum integer solution by a sequence of all integer
pivots� And not only is this possible� By �ii�
 one can reach the optimum from any given
integer starting point in at most m�� pivots" �The theorem makes only a statement about
nondegenerate pivots
 but one can sharpen this result�� We remark that Naddef �	
�
 has
proved the Hirsch conjecture true for ��	 polytopes� this can sometimes yield a smaller bound
on the diameter than Theorem 	���	� �ii�� Finally
 �iii� hints to a di%culty� Each vertex has
a very large number of neighbors
 and this may render the local search di%cult�

Balas � Padberg have developed and tested primal pivoting algorithms along these lines�

��� The Set Covering Polytope

We survey in this section polyhedral results on the set covering polytope QI�A�� Analogous to
the set packing case
 such investigations aim at the characterization of valid and facet de�n�
ing inequalities and the development of methods to compute them e%ciently� But the main
motivation for this doing is di�erent
 namely
 to unify polyhedral results that were obtained
for various kinds of combinatorial optimization problems that can be stated as optimiza�
tion problems over independence systems
 a problem that is in a very direct way equivalent
to the set covering problem� For example
 the minimal cover inequalities of the knapsack
polytope turn out to be so�called generalized clique inequalities
 and the M�obius ladder in�
equalities of the acyclic subdigraph polytope can be seen as generalized cycle inequalities of
an independence system�set covering polytope that is associated to an appropriately chosen
independence system�

The concepts that guide these polyhedral investigations are essentially the same as in the set
packing case� One considers facet de�ning submatrices of a given ��	 matrix
 tries to identify
facet de�ning classes
 and uses lifting procedures to make local constraints globally valid�
The similarity in the approaches carries over to the descriptive results
 and we will encounter
familiar structures like cliques
 cycles
 etc� What misses in comparison to set packing are
signi�cant classes of polynomially solvable set covering problems
 polynomially separable
types of inequalities
 and completely described cases� This algorithmic lack is apparently due
to the ine�ectiveness of graph theoretic approaches to set covering� In other words� The
algorithmic theory of hypergraphs is way behind its graphical brother�
This section is organized as follows� The remainder of this introduction states some basic
properties of the set covering polytope
 most notably the relation to the independence system
polytope� The only Subsection 	�
�	 gives a list of facet de�ning matrices and some results
on rank facets�
The subsequent subsections resort to the following basic properties of the set covering poly�
tope� Recall from Section 	�� that a set covering problem with ��	 matrix A is equivalent
to an optimization problem over an independence system I�A� via an a%ne transformation
y �! �� x�

�SCP� min wT��� y�

A��� y� � �

��� y� � �

��� y� � �

��� y� � f�� 	gn

! wT�� �ISP� max wTy

�i� Ay � �A� I��

�ii� y � �

�iii� y � �

�iv� y � f�� 	gn�
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The independence system I�A� has the set of column� indice�s of A as its ground set
 and its
cycles are the nonredundant rows of A�

The above relation implies that �SCP� and �ISP� are equivalent problems
 and in a very
direct way� x is a solution of �SCP� if and only of �� x is a solution of �ISP�� This means in
polyhedral terms that the associated polytopes satisfy

QI�A� ! �� PISP�A�

and we need to study only one of them� More precisely
 we have the following�

����� Corollary �Set Covering and Independence System Polytope	
Let A be a ��
 matrix andQI�A� and PISP�A� be the associated set covering and independence
system polytope� respectively� Then�

aTx � � is valid�a facet for QI�A� 
� aTx � aT�� � is valid�a facet for PISP�A��

The signi�cance of the set covering�independence system polytope for combinatorial opti�
mization is that polyhedral results for QI�A��PISP�A� carry over to many combinatorial opti�
mization problems� Namely
 combinatorial optimization problems can often be interpreted as
optimization problems over special independence systems and this means that their polytopes
inherit all facets of the more general body� We will point out some relations of this type that
have been observed in the literature next to the discussion of the corresponding classes of
inequalities�

Some simple properties of the set covering polytope are collected in

����
 Observation �Dimension� Up Monotonicity� Bounds� and Nonnegativity	
Let A be a ��
 matrix that has at least � nonzero entries in each row and QI�A� be the
associated set covering polytope�

�i� QI�A� is full dimensional�

�ii� QI�A� is up monotone� i�e�� x � QI�A� !� y � QI�A� for all x � y � ��

�iii� The upper bound constraints xj � 	 induce facets of QI�A��

�iv� A nonnegativity constraint xj � � de�nes a facet of QI�A� if and only if the minor A�
j

that results from A by a contraction of column j has at least � nonzeros in each row�

�v� If aTx � � de�nes a facet of QI�A� that is not one of the upper bound constraints xj � 	�
all coe
cients of aTx � � are nonnegative�

����� Facet De�ning Matrices

The technique that is used in the literature to derive classes of valid and facet de�ning
inequalities for the set covering polytope is the study of submatrices of a given m � n ��	
matrix A
 similar to the study of subgraphs of the con�ict graph in the set packing case�
Likewise
 this approach is motivated by and related to the study of minimally nonideal matrix
minors� The general theory of nonideal matrices guarantees the existence of certain �cores�
of locally facet de�ning structures�

Let us get more precise� The derivation techniques for inequalities for set covering polytopes
from submatrices are based on the up�monotonicity of QI�A�� Namely
 if AIJ is some arbitrary
minor of A
 where I is some set of row� indice�s of A
 and J some set of column indices
 and
the nonnegative inequality aTx � � is valid for QI�AI�� � fx � Rn j xj ! 	 �j 
� Jg and
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has aj ! � for j 
� J 
 it is also valid for QI�A�� The simple extension technique that we
have just described is not very satisfactory
 but it points to the principle that substructures
of A give rise to valid and facet de�ning inequalities� This motivates the concept of a facet
de�ning ��� matrix in analogy to facet de�ning graphs for set packing problems� We say
that the matrix A de�nes the facet aTx � � if this inequality is essential for QI�A�� A
�rst research topic on set covering polytopes is now to undertake a classi�cation of such
facet de�ning matrices and the corresponding inequalities� The facet de�ning matrices will
serve as candidates for minors of some given ��	 matrix of interest� Having identi�ed such
a minor
 we can set up a corresponding inequality and try to extend it to an inequality that
is globally valid� The investigation of possibilities to do this extension in a systematic way
leads to the study of lifting techniques� The lifting problems for set covering inequalities are
slightly more complicated then in the set packing case
 because one deals with additional
columns and rows
 but the general principle is the same� we refer the reader to Nemhauser
� Trotter �	
�� 
 Sassano �	
�
 
 and Nobili � Sassano �	
�
 for examples of sequential and
combinatorial simultaneous lifting procedures�
We give next a list of facet de�ning matrices for the set covering polytope�

Generalized Antiweb Inequalities� Laurent ������� Sassano ������� For natural
numbers n � t � q
 a generalized antiweb AW�n� t� q� is a n

�t��
q��



� n ��	 matrix that

has a row
P

i�Q e
T
i for each q�element subset Q of each set of t consecutive column indices

fj� � � � � j ' t� 	g �indices taken modulo n�
 see Figure 	�	�� Associated to this matrix is the
generalized antiweb inequality

nX
j��

xj � dn�t� q ' 	��te�

�BBBBB�
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�CCCCCA

Figure 	�	�� The Generalized Antiweb AW��� �� ���

The generalized antiweb inequality is facet de�ning if and only if either n ! t or t does not
divide n�q � 	�
 see Laurent �	
�
 and Sassano �	
�
 �
Generalized antiwebs subsume a number of structures that have been investigated earlier�
Generalized cliques �n ! t� by Nemhauser � Trotter �	
�� 
 Sekiguchi �	
�� 
 and Euler

J�unger � Reinelt �	
�� 
 generalized cycles �q ! t and t does not divide n� by Sekiguchi �	
�� 
and Euler
 J�unger � Reinelt �	
�� 
 and generalized antiholes
 �n ! qt ' 	� by Euler
 J�unger
� Reinelt �	
�� � The last mentioned authors have also investigated some generalizations
of their antiwebs
 that arise from �i� duplicating columns of the matrix AW�n� t� q� any
number of times and �ii� adding any number of additional columns with certain rather general
properties like not having too many nonzero entries� see also Schulz �	

�
 Section ��� for
some further extensions� They can show that these generalizations are also facet de�ning� An
application to the independence system of acyclic arc sets in a complete digraph exhibits the
classes of k�fence inequalities for the acyclic subdigraph polytope as generalized clique
 and the
M�obius ladder inequalities as generalized cycle inequalities
 a further example is mentioned
in Nobili � Sassano �	
�
 � Nemhauser � Trotter �	
�� mention a relation to the knapsack
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problem
 where the class of cover inequalities turns out to correspond to the generalized clique
inequalities of the associated independence system polytope
 see also Padberg �	
��b �

The antiwebs AW��k'	� �� ��
 the odd holes
 have been investigated further by Cornu�ejols �
Sassano �	
�
 � They study the e�ects of switching zeros in odd holes to ones and can com�
pletely characterize the cases where such operations do not destroy the validity and faceteness
of the odd hole inequality�

Sassano �	
�
 and Nobili � Sassano �	
�
 give two further �and more complicated� classes
of facet de�ning matrices that arise from certain operations on the antiwebs AW�n� q� q�
 one
a lifting
 the other a composition operation�

Generalized Web Inequalities� Sassano ������� Generalized webs are the complements
of generalized antiwebs� For natural numbers n � t � q
 the generalized web W�n� t� q� is a�n
q



� n

�t��
q��



� n ��	 matrix that has a row

P
i�Q e

T
i for each q�element subset Q of column

indices such that Q is not contained in any of the sets fj� � � � � j ' t � 	g �indices taken
modulo n� of t consecutive column indices
 see Figure 	�	�� Associated to such a web matrix
is the generalized web inequality

nX
j��

xj � n� t�

�BB�
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�CCA

Figure 	�	�� The Generalized Web W��� �� ���

which is facet de�ning if t does not divide n
 see Nobili � Sassano �	
�
 �

Further Inequalities� The inequalities that we have considered so far were all rank in�
equalities
 i�e�
 they had all only ��	 coe%cients on their left�hand sides� We mention now
two classes of facets with more general coe%cients�

Nobili � Sassano �	
�
 have studied a class of inequalities from compositions of rank facets�
Starting point is a matrix operation
 the complete bipartite composition
 that constructs from
two ��	 matrices A� and A� the new matrix

A� � A� �!

�
A� E
E A�

�
�

Here
 E denotes a matrix with all one entries� Nobili � Sassano �	
�
 show that if the rank
inequality �Tx� � �� is valid for QI�A�� and the second rank inequality �Tx� � �� is valid
and
 in addition
 tight for QI�A��
 the inequality

��� � 	��Tx� ' �Tx� � ��

de�nes a facet of QI�A� � A���

Finally
 we mention that Balas � Ng �	
�
a
b have completely characterized those facets of
the set covering polytope that have only coe%cients of �
 	
 and � on the left�hand side�

$
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A second branch of research on the set covering polytope is devoted to the study of necessary
and su�cient conditions that make a valid inequality facet de�ning� Like in the set packing
case
 the literature focusses on the class of rank inequalities� To set up this class
 consider an
m� n ��	 matrix A and de�ne its rank as the number

��A� �! min �Tx� Ax � �� x � f�� 	gn�

Then
 the inequality

nX
j��

xj � ��A�

is the rank inequality that is associated to A� Rank inequalities are valid by de�nition
 but
there is no complete characterization of those matrices known that give rise to facet de�ning
rank constraints� But a number of necessary and su%cient conditions have been derived that
we survey next� It will turn out that deletion minors play an important role in this context

and
 for the remainder of this subsection
 we want to denote by A�J the deletion minor of A
that results from a deletion of all columns that are not contained in J 
 i�e�
 A�J consists of
the columns of A that have indices in J and those rows
 whose support is contained entirely
in J � This matrix is the �uncovered� part of A that remains when one sets all variables xj 

j 
� J 
 to 	�
The necessary conditions for a rank inequality to be facet de�ning can be given in terms of
the notions of closedness and nonseparability� We say that a set J of column indices is closed
if ��A�J�fkg� � ��A�J � holds for all columns k 
� J 
 i�e�
 if the addition of any k to J strictly
increases the rank� J is nonseparable if ��A�J �� ' ��A�J ��� 	 ��A�J� holds for any partition
J ! J � 	� J �� of J into sets J � and J ��
 i�e�
 a separation results in a loss of rank�

����� Observation �Necessary Conditions for Rank Facets	
Let A be an m � n ��
 matrix� let J be any subset of column indices� and let A�J be the
minor that results from deleting from A the columns that are not in J � Then�

If the rank inequality
P

j�J xj � ��A� de�nes a facet of QI�A�� the set J must be closed and
nonseparable�

There are some cases where the condition in Observation 	�
�� is known to be also su%cient�
When A is the circuit�node incidence matrix of a matroid
 and when the independence sys�
tem I�A� that is associated to A is the set of solutions of a single knapsack problem
 see
Laurent �	
�
 �
A su�cient condition for the faceteness of the rank inequality that is associated to an m�n
��	 matrix A can be stated in terms of a critical graph G ! �V�E�� This graph has the set
of column� indice�s of A as its nodes and two nodes i and j are adjacent if and only if there
exists a covering x � QI�A��Zn that satis�es �Tx ! ��A� and such that the vector x�ei'ej 

which results from exchanging the elements i and j
 is also a feasible covering�

����� Observation �Su�cient Condition for Rank Facets� Laurent ������	
Let A be an m� n ��
 matrix� let QI�A� be the associated set covering polytope� and let G
be the critical graph of A� Then�

If G is connected� the rank inequality
Pn

j�� xj � ��A� de�nes a facet of QI�A��

This observation generalizes a number of earlier results of Sekiguchi �	
�� 
 Euler
 J�unger �
Reinelt �	
�� 
 and Sassano �	
�
 �
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We close the discussion of rank inequalities for the set covering polytope with two approaches
to the heuristic separation of cuts this type�

Rank Inequalities From K�Projection� Nobili � Sassano ����
�� Given an m � n
��	 matrix A
 a subset J � f	� � � � � ng of columns
 its complement J ! f	� � � � � ng n J 
 and
an integer k � Z�
 a k�projection of A with respect to J is a ��	 matrix Ajx
J��k with

n�jJ j ! jJ j columns and the property that any of its covers can be extended to a cover of A
that contains exactly k columns from the set J � This matrix is unique up to permutation of
rows� in fact
 Ajx
J��k ! bl

�
�blAjAi�
J��k��J




 where blAjAi�
J��k is the submatrix of blA that

has as its rows all the covers of A that contain exactly k columns from J � One can prove that
QI�Ajx
J��k� is the orthogonal projection of the �equality constrained� set covering polytope

convfx � f�� 	gn � Ax � �� x�J� ! kg onto the subspace RJ 
 hence the name k�projection�
The operation has the property that ��A� � ��Ajx
J��k� ' k�
Under special circumstances
 k�projections can be used to construct rank inequalities� Namely

suppose that the equation ��A� ! ��Ajx
J��k� ' k holds such that A is k�projectable with
respect to J 
 as we say� In this case
 we can write the rank inequality associated to A as

nX
j��

xj � ��Ajx
J��k� ' k ! ��A��

i�e�
 we can construct it from the rank inequality for Ajx
J��k which is simpler in the sense
that it has a smaller right�hand side�
Nobili � Sassano �	

� suggest a separation heuristic for rank inequalities that is based on
the iterative application of k�projections� They focus on the simplest case where k ! 	 and J
is the support of a row of the original matrix A
 i�e�
 they always project with respect to one of
the equations Ai�x ! 	� Projectability is established using two exponential su%cient criteria
which are checked in a heuristic way� As the construction of the 	�projections is exponential
as well
 the authors resort to heuristically chosen submatrices at the cost of a weakening of
the right�hand side� Projection is continued until the resulting matrix becomes so small that
the covering number can be determined exactly� The separation routine
 augmented by a
clever lifting heuristic
 has been successfully used in a branch�and�cut code for the solution
of set covering problems from a library of randomly generated instances from the literature
with several hundred rows and columns�

Conditional Cuts� Balas ����
�� Balas � Ho ����
�� The cutting planes that we
consider in this paragraph are special in the sense that they can very well �and are indeed
supposed to� cut o� parts of the set covering polytope under investigation� They are only
valid under the condition that a solution that is better than the best currently known one
exists
 hence the name conditional cut�
A more precise description is the following� Suppose that an upper bound zu on the optimum
objective value of the set covering problem �SCP� is known and consider an arbitrary family
W � �n of column index sets v� If we can ensure that the disjunction

W
v�W x�v� ! � holds

for any solution x with a better objective value than zu
 the inequalityX
j�
S
v�W suppAr
v��nv

xj � 	

is valid for all x � QI�A� such that cTx 	 zu and can be used as a cutting plane� Here
 for
each column set v
 Ar
v�� is an arbitrary row of A�



�� Integer ��	 Programs

Conditional cuts are of �rank type�� the concept subsumes a number of earlier classes such
as the ordinal cuts of Bowman � Starr �	
�� and Bellmore � Ratli� �	
�	 �s cuts from
involutory bases� Balas � Ho �	
�� suggest a separation heuristic for conditional cuts that
is based on LP duality arguments� the procedure has been applied with success in a branch�
and�cut algorithm to set covering problems with up to ��� rows and �
��� columns�
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Chapter �

Set Packing Relaxations

Summary� This chapter is about set packing relaxations of combinatorial optimization
problems associated with acyclic digraphs and linear orderings
 cuts and multicuts
 multiple
knapsacks
 set coverings
 and node packings themselves� Families of inequalities that are valid
for such a relaxation and the associated separation routines carry over to the problems under
investigation�

Acknowledgement� The results of this chapter are joint work with Robert Weismantel��

��� Introduction

This chapter is about relaxations of some combinatorial optimization problems in the form
of a set packing problem and the use of such relaxations in a polyhedral approach�

Set packing problems are among the best studied combinatorial optimization problems with
a beautiful theory connecting this area of research to Fulkerson�s anti�blocking theory
 the
theory of perfect graphs
 perfect and balanced matrices
 semide�nite programming
 and other
�elds
 see the previous Chapter 	 of this thesis for a survey� Likewise
 the set packing polytope

i�e�
 the convex hull of all node packings of a graph
 plays a prominent role in polyhedral com�
binatorics not only because large classes of �facet de�ning� inequalities are known� Perhaps
even more important
 many of them can be separated in polynomial time
 in particular odd
cycle and orthogonality constraints
 see Gr�otschel
 Lov�asz � Schrijver �	
�� and Lov�asz �
Schrijver �	

	 �

�Otto�von�Guericke Universit�at Magdeburg� Fakult�at f�ur Mathematik� Institut f�ur Mathematische Opti�
mierung� Universit�atsplatz �� 	���� Magdeburg� Email robert�weismantel�mathematik�uni�magdeburg�de



�� Set Packing Relaxations

Our aim in this chapter is to transfer some of these results to other combinatorial optimization
problems� We show that the acyclic subdigraph and the linear ordering problem
 the max cut

the k�multicut
 and the clique partitioning problem
 the multiple knapsack problem
 the set
covering problem
 and the set packing problem itself have interesting combinatorial relaxations
in form of a set packing problem� Families of inequalities that are valid for these relaxations
and the associated separation routines carry over to the problems under investigation� The
procedure is an application of a more general method to construct relaxations of combinatorial
optimization problems by means of a�ne transformations�
The chapter contains seven sections in addition to this introduction� Section ��� describes our
method to construct set packing relaxations� Section ��� is devoted to a study of the acyclic
subdigraph and the linear ordering problem
 see Gr�otschel
 J�unger � Reinelt �	
��a
b � A
main result here is that a class of M�obius ladders with dicycles of arbitrary lengths belongs
to a �larger� class of odd cycles of an appropriate set packing relaxation� this superclass
is polynomial time separable� Section ��� deals with set packing relaxations of the clique
partitioning
 the k�multicut
 and the max cut problem
 see Gr�otschel � Wakabayashi �	

� 
and Deza � Laurent �	

� � We introduce two types of �inequalities from odd cycles of
triangles�� The �rst of these classes contains the ��chorded cycle inequalities
 the second
is related to circulant inequalities� Section ��� treats the set packing problem itself� We
show
 in particular
 that the wheel inequalities of Barahona � Mahjoub �	

� and Cheng �
Cunningham �	

� are odd cycle inequalities of a suitable set packing relaxation� We also
introduce a new family of facet de�ning inequalities for the set packing polytope
 the �cycle
of cycles� inequalities� This class can be separated in polynomial time� Section ��� deals
with the set covering problem� Again
 we suggest a set packing relaxation in order to derive
polynomially separable inequalities� We have implemented one version of such a separation
procedure for use in a branch�and�cut code for set partitioning problems� Implementation
details and computational experiences are reported in Section ��� of this thesis� Section ���
considers applications to the multiple knapsack problem
 see Martello � Toth �	

� and
Ferreira
 Martin � Weismantel �	

� � The �nal Section ��� relates some results of the
literature on set packing relaxations for ��	 integer programming problems with nonnegative
constraint matrices to our setting�
The following sections resort to some additional notation and two well known results for the
set packing or stable set problem� Let

�SSP� max wTx
Ax � �
x � f�� 	gV

be an integer programming formulation of a set packing problem on a graph G ! �V�E� with
nonnegative integer node weights w � ZV�
 where A ! A�G� � f�� 	gE�V is the edge�node
incidence matrix of G� Associated to �SSP� is the set packing or stable set polytope that we
denote in this section by

PSSP ! conv


�S � S is a stable set in G

�
! conv



x � f�� 	gn � Ax � �

�
or
 where convenient
 also by PSSP�G�� For reasons that will become clear in the next section

we will actually not work with the stable set polytope PSSP itself
 but with its anti�dominantb

P SSP �! PSSP�RV� !


x � RV � �y � PSSP � x � y

�
�
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P

b
P

Figure ��	� A Polyhedron and Its Anti�Dominant�

This construction allows to include vectors with arbitrary negative coordinates without de�
stroying the polyhedral structure of PSSP� Obviously
 the valid inequalities for

b
P SSP are

exactly the valid inequalities for PSSP with nonnegative coe�cients� Since the stable set poly�
tope PSSP is down monotone
 its nontrivial constraints all have nonnegative coe%cients
 and
we can thus work with

b
P SSP as well as with PSSP� Figure ��	 gives an illustration of a polytope

and its anti�dominant�
We will need two results about

b
P SSP that are summarized in the following two theorems�


���� Theorem �Edge� Clique� and Odd Cycle Inequalities� Padberg �����a�	

Let G ! �V�E� be a graph and let

b
P SSP be the anti	dominant of the associated set packing

polytope�

�i� If ij is an edge in G� the edge inequality xi ' xj � 	 is valid for

b
P SSP�

�ii� If Q is a clique in G� the clique inequalityX
i�Q

xi � 	

is valid for

b
P SSP� it is facet de�ning for

b
P SSP if and only if Q is a maximal clique �with

respect to set inclusion��

�iii� If C � V is the node set of an odd cycle in G� the odd cycle inequalityX
i�C

xi � �jCj � 	���

is valid for

b
P SSP�

Separation of clique inequalities isNP�hard
 see Garey � Johnson �	
�

 Problem GT 	
 � But
the clique inequalities are contained in the class of orthogonality inequalities
 see Gr�otschel

Lov�asz � Schrijver �	
�� 
 that can be separated in polynomial time� Odd cycle inequalities
are polynomial time separable
 see again Gr�otschel
 Lov�asz � Schrijver �	
��
 Lemma 
�	�		 �


���
 Theorem �Orthogonality � Cycle Inequalities� Gr�otschel et al� ������	

Let G ! �V�E� be a graph�

b
P SSP the anti	dominant of the associated set packing polytope�

and x � QV � Suppose that xi ' xj � 	 holds for all edges ij � E� Then�

�i� Orthogonality inequalities for

b
P SSP can be separated in polynomial time�

�ii� Odd cycle inequalities for

b
P SSP can be separated in polynomial time�
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��� The Construction

Our aim in this section is to describe a method to construct set packing relaxations of combi�
natorial optimization problems� The setting is as follows� We are interested in some combi�
natorial optimization problem that is given by an integer programming formulation

�IP� max wTx Ax � b� x � Zn�

Here
 A � Zm�n
 b � Zm
 and w � Zn are an integral matrix and vectors
 respectively� The
associated fractional and integer polyhedra are

P �A� b� �! fx � Rn j Ax � bg and PIP�A� b� �! conv fx � Zn j Ax � bg �

If the meaning is clear
 we also write P for P �A� b� and PIP for PIP�A� b��
Our method starts with an a�ne function

� � Rn � Rn � x �� )x� ��

given by a rational matrix ) � Qn�n and vector �� � Qn � note that the image space can be of
higher dimension than the preimage� We call such functions aggregation schemes or simply
schemes� A scheme is integer if it maps integer points to integer points
 i�e�
 ��Zn� � Zn
 or

equivalently
 if ) and �� are both integer
 i�e�
 ) � Zn�n and � � Zn� Finally
 the image ��P �
of a polyhedron P under the scheme � is called the ��aggregate or
 if there is no danger of
confusion
 simply the aggregate of P �
Our motivation for studying aggregations is that they give rise to valid inequalities for some
polyhedron P of interest� Namely
 if aTx � � is valid for an aggregate ��P �
 the expansion

aT��x� � � 
� aT)x � � ' aT��

of this inequality is a constraint in Rn which is valid for the original polyhedron P �
The facial structure of an aggregate is
 of course
 in general as complicated as that of the
original polyhedron� But it is often possible to �nd a relaxation

P � ��P �

of the aggregate ��P � that is of a well studied type� In this case
 one can resort to known
inequalities for the relaxation P to get an approximate description of the aggregate ��P � and

via expansion
 a description of a polyhedral relaxation of the original polyhedron P �
The crucial points in this procedure are the choice of the aggregation scheme and the iden�
ti�cation of a suitable relaxation� The subsequent sections resort to the following method
to construct set packing relaxations� Starting point is the observation that we are inter�
ested in combinatorial programs
 i�e�
 ��	 optimization problems �IP�� Associated to such
programs are integer polyhedra P ! PIP� Restricting attention to likewise integer schemes
�i�e�
 ��Zn� � Zn
 recall the above de�nition�
 the resulting aggregates are integer as well�

��PIP�IP ! ��PIP� � �integer� PIP and integer ��

The next step is to construct a con	ict graph G ! �V�E�� To do this
 we need a scheme that
is bounded from above by one on the polyhedron PIP of interest
 i�e�


��x� � � �x � PIP�
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PSSP�G�

b
P SSP�G�

��PIP� � PIP

Figure ���� Constructing a Set Packing Relaxation�

Such schemes give rise to a con�ict graph as follows� G has a node for every component of
the scheme
 i�e�
 V ! f	� � � � � ng� We draw an edge uv between two nodes if � can not attain
its maximum value of one in both components simultaneously�

uv � E � 
� �u�x� ' �v�x� � 	 �x � PIP�

In this case
 we say that u and v are in con	ict� The anti�dominant

b
P SSP�G� of the con�ict

graph is now a set packing relaxation of the ��aggregate ��PIP� in the sense thatb
P SSP�G� � ��PIP��

Note that it is not possible to replace

b
P SSP�G� with PSSP�G�
 because the scheme � can attain

negative values
 see Figure ��� for an illustration�
Once the set packing relaxation

b
P SSP�G� � ��P � is found
 inequalities and separation routines

for

b
P SSP�G� carry over to the polyhedron P of interest� Given some point x to be tested for

membership in PIP
 we simply �i� compute ��x�
 �ii� solve the separation problem for ��x�

and

b
P SSP�G�
 and
 if a separating hyperplane aTx � � has been found
 �iii� expand it� If all

of these three steps are polynomial
 this yields a polynomial time separation algorithm for a
class of valid inequalities for PIP
 namely
 for the expansions of all polynomial time separable
and polynomial time expandable inequalities of

b
P SSP�G�� Promising candidates for this are


in particular
 the odd cycle and orthogonality constraints for

b
P SSP�G��

The following sections present examples of set packing relaxations for a variety of combina�
torial optimization problems�
We remark that for convenience of notation
 we will occasionally consider paths
 cycles
 di�
paths
 dicycles
 etc� as sets of nodes
 edges
 or arcs
 and we will denote edges as well as arcs
with the symbols ij and �i� j�� the latter symbol will be used in cases like �i� i ' 	��

��� The Acyclic Subdigraph and the Linear Ordering Problem

Our aim in this section is to construct a set packing relaxation of the acyclic subdigraph and
the linear ordering problem in a space of exponential dimension� It will turn out that clique
and odd cycle inequalities of this relaxation give rise to �and generalize� several classes of
inequalities for the acyclic subdigraph and the linear ordering problem
 namely
 fence and
M�obius ladder inequalities� We suggest Gr�otschel
 J�unger � Reinelt �	
��a as a reference for
the ASP
 see also Goemans � Hall �	

�
 and references therein for a recent study of known
classes of inequalities
 and Gr�otschel
 J�unger � Reinelt �	
��b for the LOP�
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The acyclic subdigraph and the linear ordering problem involve a complete digraph Dn !
�V�A� on n nodes with integer weights wa on its arcs a � A� An acyclic arc set in A contains
no dicycle� The acyclic subdigraph problem �ASP� asks for an acyclic arc set with maximum
weight on its arcs� Acyclic arc sets that contain
 for any pair of nodes i and j
 either the
arc ij or the arc ji
 are called tournaments� The linear ordering problem �LOP� is to �nd a
tournament of maximum weight� IP formulations for the ASP and the LOP read as follows�

max
X
ij�A

wijxij

�ii�
X
ij�C

xij � jCj � 	 � dicycles C � A

�iii� x � f�� 	gA

�ASP�

max
X
ij�A

wijxij

�i� xij ' xji ! 	 �i� j � V� i 
! j

�ii�
X
ij�C

xij � jCj � 	 � dicycles C � A

�iii� x � f�� 	gA�

�LOP�

�ASP� is a relaxation of �LOP� and
 what is more
 the linear ordering polytope PLOP is a face
of the acyclic subdigraph polytope PASP� In particular
 all inequalities that are valid for PASP
are also valid for PLOP� Two such classes of inequalities for both the ASP and the LOP are
the k�fence and the M�obius ladder inequalities
 see Gr�otschel
 J�unger � Reinelt �	
��a �

l�

u� u� u� u�

l�

u� u� u� u�

l�

u� u� u� u�

l�

u� u� u� u�

Figure ���� A ��Fence�

C�C�

C�C�

C�

Figure ���� A M�obius Ladder of � Dicycles�

A �simple� k�fence involves two disjoint sets of �upper� and �lower� nodes fu�� � � � � ukg and
fl�� � � � � lkg that are joined by a set of k pales fu�l�� � � � � uklkg� All pales are oriented �down�
ward�� The k�fence is completed by adding all �upward� pickets liuj with the exception of the
antiparallel pales� We remark that one can also allow that pales and pickets consist not only
of a single arc
 but of an entire dipath
 thereby obtaining a larger class of general k�fences�
for simplicity of exposition
 however
 we want to restrict ourselves here and elsewhere in this
section to simple fences� Figure ��� shows a �simple� ��fence�
A M�obius ladder consists of an odd number �k ' 	 of dicycles C�� � � � � C�k such that Ci and
Ci�� �indices taken modulo �k ' 	� have a dipath Pi in common
 see Figure ���� this time

we want to consider also the non simple case�
Fences and M�obius ladders give rise to valid inequalities for PASP� For a k�fence Fk and a
M�obius ladder M of �k ' 	 dicycles we have

X
ij�Fk

xij � k� � k ' 	 and
�kX
i��

X
ij�CinPi

xij �

�
�kX
i��

jCi n Pij

�
� �k ' 	��
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Note that a M�obius ladder inequality as above has coe%cients larger than one if an arc is
contained in more than one of the dipaths Ci nPi� This is di�erent from Gr�otschel
 J�unger �
Reinelt �	
��a �s �original� de�nition
 where the coe%cients take only values of zero and one
and the M�obius ladder must meet a number of additional technical requirements to support
a valid inequality� The two de�nitions of a M�obius ladder inequality coincide if and only if
no two dipaths Ci n Pi have an arc in common �M�obius ladder without arc repetition��

We will show now that fences and M�obius ladders are cliques and odd cycles
 respectively
 in
an �exponential� con	ict graph G�Dn� ! �V�E�� G has the set of all acyclic arc sets of Dn

as its nodes� We draw an edge uv between two acyclic arc�set nodes u and v if their union
contains a dicycle� In this case
 we say that u and v are in con	ict because they can not be
simultaneously contained in �the support of� a solution to �ASP��

l�

u� u� u� u�

l�

u� u� u� u�

l�

u� u� u� u�

l�

u� u� u� u�

F�

l�

u� u� u� u�

F �
�

l�

u� u� u� u�

F �
�

l�

u� u� u� u�

F �
�

l�

u� u� u� u�

F �
�

Figure ���� A Fence Clique�

It is now easy to identify the fences and M�obius ladders with cliques and odd cycles of G�
To obtain a k�fence Fk
 we look at the k acyclic arc sets F i

k that consist of a pale uili and
the pickets liuj that go up from li for i ! 	� � � � � k� Any two such con�gurations F i

k and

F j
k 
 i 
! j
 are in con�ict �they contain a dicycle�� Hence
 all of them together form a clique�

Figure ��� illustrates this construction� Likewise
 the M�obius ladders correspond to odd cycles
of con�icting dipaths
 namely
 the dipaths Ci n Pi
 see Figure ����

C�C�

C�C�

C�

C� n P�C� n P�

C� n P�C� n P�

C� n P�

Figure ���� A M�obius Cycle of Dipaths�
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The next step to obtain the fence and the M�obius ladder inequalities from the clique and odd
cycle inequalities of the �anti�dominant of the� set packing polytope

b
P SSP�G� associated to

the con�ict graph G is to construct a set packing relaxation of the ASP� To this purpose

consider the aggregation scheme � � RA � RV de�ned as

�v�x� �!
X
ij�v

xij � �jvj � 	� � acyclic arc sets v � V�

��x� is integral for all integral x � RA � Moreover
 for every incidence vector x � PASP of an
acyclic arc set supp�x� � A in Dn
 we have that ��x� attains its maximum value of one in
component �v�x� if and only if v is contained in supp�x�� Since two con�icting acyclic arc
sets can not simultaneously be contained in supp�x�
 we have that

uv � E 
� �u�x� ' �v�x� � 	 �x � PASP � Z
A

and
 by convexity
 also for all x � PASP� This argument proves that

b
P SSP�G� is a set packing

relaxation of PASP�


���� Lemma �Set Packing Relaxation of the ASP	 � �PASP� �

b
P SSP

�
G�Dn�



�

Note that it is not possible to replace

b
P SSP with PSSP
 because the components of � can

take negative values� More precisely
 ��x� is in general not the incidence vector of a stable

set in

b
P SSP�G�
 but max f�� ��x�g is
 with the maximum taken in every component �recall

Figure �����
Lemma ����	 allows us to expand �see the de�nition on page ��� an inequality aTx � � that

is valid for

b
P SSP into the inequality aT��x� � � for PASP� Our next theorem states that

the fence and M�obius ladder inequalities are expansions of clique and odd cycle inequalities

respectively�


���
 Theorem �Fence and M�obius Ladder Inequalities	
Let Dn be the complete digraph on n nodes� PASP the corresponding acyclic subdigraph
polytope� G the con�ict graph associated to Dn� and

b
P SSP�G� the set packing relaxation of

PASP�

�i� Every k	fence inequality for PASP is the expansion of a clique inequality for

b
P SSP�G��

�ii� Every M�obius ladder inequality for PASP is the expansion of an odd cycle inequality forb
P SSP�G��

Proof�
�i� Let Fk be a k�fence� The acyclic arc sets F i

k
 i ! 	� � � � � k
 de�ned on the previous page

form a clique inG
 see the discussion on the previous page� An expansion of the corresponding
clique inequality yields the desired k�fence inequality�

kX
i��

�F i
k
�x� � 	


�
kX
i��

��X
ij�F i

k

xij � �jF i
kj � 	�

�A !

kX
i��

��X
ij�F i

k

xij � �k � 	�

�A !
X
ij�Fk

xij � k� ' k � 	


�
X
ij�Fk

xij � k� � k ' 	�
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�ii� Let M be a M�obius ladder consisting of an odd number �k'	 of dicycles C�� � � � � C�k such
that Ci and Ci�� have a dipath Pi in common� The argument on page �� showed that the
dipaths Ci nPi form an odd cycle of �k'	 acyclic arc sets in G� Expanding the corresponding

odd cycle inequality for

b
P SSP�G�
 one obtains the M�obius ladder inequality for M �

�kX
i��

�CinPi�x� � k


�
�kX
i��

�� X
ij�CinPi

xij � �jCi n Pij � 	�

�A � k


�
�kX
i��

X
ij�CinPi

xij �

�
�kX
i��

jCi n Pij

�
� �k ' 	��

�

Fence and M�obius ladder inequalities have been discussed in a number of di�erent frame�
works in the literature� Euler
 J�unger � Reinelt �	
�� interpret fences and M�obius ladders
without arc repetitions as generalized cliques and generalized odd cycles of an independence
system relaxation of the ASP� M�uller � Schulz �	

�
 	

� give cutting plane proofs of fence
and M�obius ladder inequalities in the context of transitive packing
 see also Schulz �	

�

Chapter � � Caprara � Fischetti �	

� give a derivation of M�obius ladder inequalities in
terms of f�� ��g Chv�atal�Gomory cuts� The last two constructions work for M�obius ladders
with arc repetitions and yield a class that is �in the middle� between Gr�otschel
 J�unger �
Reinelt �	
��a �s M�obius ladder inequalities and our�s
 depending on the number of dipaths
that contain a given repeated arc�
Separation of fence inequalities was shown to be NP�hard by M�uller �	

� � Looking at the
separation of M�obius ladder inequalities
 we notice that the construction that we presented to
prove Theorem ����� �ii� yields a class of odd cycle of dipath inequalities that subsumes the
M�obius ladder inequalities� Generalizing this class further by allowing the paths Ci n Pi to
intersect themselves on nodes and�or arcs
 i�e�
 by substituting in the de�nition of a M�obius
ladder on page �� diwalk for dipath and closed diwalk for dicycle
 we obtain an even larger
class of odd cycle of diwalk inequalities for the acyclic subdigraph polytope� Note that these
inequalities do in general not correspond to odd cycles in the acyclic arc set con�ict graph
G
 because diwalks may contain dicycles� This obstacle can be overcome by extending G in
a �nite way �including certain relevant diwalks�� At this point
 however
 we do not want to
enter this formalism and defer the details of the extension to the proof of Theorem ������
We can devise a polynomial time separation algorithm for odd cycle of diwalk inequalities

even though the number of diwalks is exponential and their length is arbitrary� The idea is to
construct a most violated cycle of diwalks out of properly interlinked longest diwalks� Suppose
that M is an odd cycle of diwalks �we want to denote these diwalks with a slight extension of
notation by Ci nPi� that induces a violated inequality
 and consider the diwalk Pi linking the
two �successive� closed diwalks Ci and Ci��� Rearranging
 we can isolate the contribution of
Pi in the constraint as

jPij �
X
ij�Pi

xij 	
X
j ��i��

�X
ij�CjnPj

xij � jCj n Pj j
�

'
X

ij�Ci��n
Pi�Pi���

xij � jCi�� n �Pi�� � Pi�j' �k ' 	�

�Here
 all sets are to be understood as multisets� Note also that we have 	 because the
constraint was
 by assumption
 violated��
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If we replace Pi by a diwalk P that is shorter with respect to the length function

jP j �
X
ij�P

xij !
X
ij�P

�	� xij�� ���	�

we get a more violated cycle of diwalks inequality� If we think of any closed diwalk Ci as being
composed out of four diwalks
 namely the diwalk P �

i �! Pi
 that Ci has in common with the
succeeding closed diwalk Ci��
 the diwalk P �

i from P �
i �s head to the diwalk P �

i �! Pi��
 that
Ci has in common with the preceeding closed diwalk Ci��
 and the remaining diwalk P �

i from
P �
i �s head to P �

i �s tail
 the same argument holds for any of these diwalks� This observation
allows us to show


���� Theorem �Polynomial Separability of Odd Cycle of Diwalk Inequalities	
Let Dn be the complete digraph on n nodes and PASP the associated acyclic subdigraph
polytope� Suppose that x � QA satis�es the constraints �ASP� �ii� and � � x � �� Then�

Odd cycle of diwalk inequalities can be separated in polynomial time�

Proof�
Using Dijkstra�s algorithm
 we can compute a shortest diwalk P �u� v� with respect to the
length ���	� from any node u to any node v of Dn� We can assume these diwalks P �u� v�
w�l�o�g� to be dipaths and
 in particular
 to be of polynomial length� This yields a polynomial
number of shortest diwalks of polynomial length and
 moreover
 �not every
 but� a most
violated cycle of diwalks will consist of a polynomial number of these shortest diwalks�
We can �nd a set of them forming an odd cycle of diwalks as follows� We think of all diwalks
P �u� v� as a possible common diwalk Pi of two successive closed diwalks Ci and Ci�� in a
cycle of diwalks� To get the diwalks Ci nPi as the pieces of the cycle
 we compute for any two
diwalks Pi and Pj the ���	��shortest diwalk PihPji that starts at Pi�s head
 contains Pj 
 and
ends at Pi�s tail� Such a diwalk PihPji will link �on Pj� properly with another diwalk PjhPki
to form a cycle of diwalks� Computation of the PihPji can be performed in polynomial time
and yields
 in particular
 a polynomial number of n�n� 	�

�
n�n� 	�� 	



! O�n�� diwalks of

polynomial length�
We can now construct a graph that has these diwalks PihPji as its nodes with node weights
equal to the walk lengths ���	� and that has all edges of the form �PihPji
PjhPki�� The node
weight on an edge never exceeds one because x satis�es the dicycle inequalities �ASP� �ii�
 a
most violated cycle of diwalks inequality corresponds to a most violated odd cycle inequality
in the PihPji�graph
 and we can �nd a most violated odd cycle inequality there with the
algorithm of Gr�otschel
 Lov�asz � Schrijver �	
��
 Lemma 
�	�		 � �


���� Corollary �Separation of M�obius Ladder Inequalities	
A superclass of the M�obius ladder inequalities can be separated in polynomial time�

To discuss the results on M�obius ladder separation of the literature
 we draw the reader�s
attention to a subtle di�erence between the ASP and the LOP� While the length of the
dicycles in a facet de�ning M�obius ladder inequality �as de�ned in this paper� for the acyclic
subdigraph polytope can be arbitrarily large
 the constraint can only de�ne a facet for the
linear ordering polytope if the length of each dicycle is at most four
 see Gr�otschel
 J�unger �
Reinelt �	
��a � For the LOP
 one can thus restrict Corollary ����� to the case jCij � � and
then it also follows from M�uller � Schulz �	

� and Caprara � Fischetti �	

� � For the ASP

Caprara � Fischetti �	

� showed polynomial time separability of M�obius ladder inequalities
where all dicycles have at most constant length�
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��	 The Clique Partitioning� Multi
� and Max Cut Problem

In this section
 we investigate set packing relaxations of combinatorial optimization problems
in connection with cuts� The clique partitioning
 the k�multicut
 and the max cut problem�
We will see that the ��chorded cycle inequalities for the clique partitioning polytope can be
seen as cycles of �lower triangle� inequalities� An analogous construction for cycles of �upper
triangle� inequalities is related to the circulant inequalities for the max cut polytope� As a
reference for the clique partitioning problem
 we suggest Gr�otschel � Wakabayashi �	

� 
 see
also Oosten
 Rutten � Spieksma �	

� for a recent report
 for the multicut and the max cut
problem Deza � Laurent �	

� �
The three cut problems of this section come up on a complete graph Kn ! �V�E� on n nodes
with integer weights w � E � Z on the edges� The clique partitioning problem �CPP� is to �nd
a partition of V into an arbitrary number k of cliques V ! C� 	� � � � 	� Ck �where 	� denotes
a union of disjoint sets�
 such that the sum of the weights of the edges that run between
di�erent cliques is maximal� In other words
 we are trying to �nd a multicut 
�C� � 	 	 	 � Ck�
of maximum weight
 where the number k of �non empty� members Ci of the clique partition
C� 	� � � � 	� Ck is arbitrary� One obtains the k�multicut problem �k�MCP� from this formulation
by restricting the number of cliques to be less than or equal to some given number k
 and the
max cut problem �MCP� by prescribing k ! �� Thus
 any �max� cut is a k�multicut �k � ��

and any k�multicut comes from a clique partition� We remark that the CPP is often stated
in an equivalent version to �nd a clique partition that minimizes the sum of the edge weights
inside the cliques�
Integer programming formulations of the clique partitioning and the k�multicut problem read
as follows �xij ! 	 indicates that ij is in the multicut��

max
X
ij�E

wijxij

�ii� xij � xjk � xik � � �fi� j� kg � V

�iii� x � f�� 	gE

�CPP�

max
X
ij�E

wijxij

�i�
X

ij�E
W �

xij � jE�W �j � 	 �W � V

with jW j ! k ' 	

�ii� xij � xjk � xik � � �fi� j� kg � V

�iii� x � f�� 	gE

�k �MCP�

Setting k to �
 inequalities �k�MCP� �i� turn out to be the �upper triangle� inequalities
xij ' xjk ' xik � � for all fi� j� kg � V and ���MCP� is an integer programming formulation
for the max cut problem �we speak of upper triangle inequalities because their normal vectors
are oriented �upward� such that the induced face is on the �upside� of the polytope�� For
k ! n
 on the other hand
 �k�MCP� �i� becomes void and �n�MCP� coincides with �CPP��
Hence
 �CPP� is a relaxation of �k�MCP� which in turn is a relaxation of �MCP� and the
associated polytopes PCPP
 Pk�MCP
 and PMCP satisfy

PCPP � Pk�MCP � PMCP�

In particular
 any valid inequality for the clique partitioning polytope is also valid for the
k�multicut and the max cut polytope� One such class is the family of ��chorded cycle inequal�
ities of Gr�otschel � Wakabayashi �	

� �
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A ��chorded cycle is an odd cycle C of Kn together with its set of ��chords C
 see Figure ����
The associated inequality states that

X
ij�C

xij �
X
ij�C

xij � �jCj � 	����

�

�

�

�	

C

C

Figure ���� A ��Chorded Cycle�

M�uller �	

� 
 and later Caprara � Fischetti �	

� 
 proved that �superclasses of the� ��chorded
cycle inequalities can be separated in polynomial time
 see also M�uller � Schulz �	

� � We
will show now that this class arises from odd cycle inequalities of a set packing relaxation
of the clique partitioning �or k�multicut or max cut� problem� Our arguments will yield an
alternative proof for the polynomial time separability of this class�
The relaxation involves a �lower triangle� con	ict graph G��Kn� ! �V��E��� V� consists
of all ordered triples �i� j� k� � V � of distinct nodes of Kn
 the edges E of G are of the form
�i� j� k��l� i� j�
 �i� j� k��l� j� i�
 �i� j� k��l� i� k�
 and �i� j� k��l� k� i� �the meaning of this de�nition
will become clear in a second��

i

j

�i� j� k�

k
'	 �	

�
i

j

�j� i� k�

k
'	 �

�	
i

j

�k� j� i�

k
�	 '	

�
i

j

�k� i� j�

k
�	 �

'	
i

j

�j� k� i�

k

� '	

�	
i

j

�i� k� j�

k

� �	
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Figure ���� Labeling Lower Triangles�

To construct a set packing relaxation of the clique partitioning problem with this graph
 we
de�ne an aggregation scheme �� � RE � RV� as

��
i�j�k�
�x� �! xij � xjk � ordered triples �i� j� k� � V��

��
i�j�k�
�x� is integral if x � RE is integral� Moreover
 for every multicut x � PCPP
 the

component ��
i�j�k�
�x� attains its maximum value of one if and only if the nodes j and k

belong to the same clique �xjk ! ��
 but node i does not �xij ! xik ! 	�� The reader may
think of the triples �i� j� k� as �edge�labeled triangles� as shown in Figure ���� Enumerating
all possible con�icts between these labeled triangles
 it is easy to see that

uv � E� 
� ��u�x� ' ��v�x� � 	 �x � PCPP � Z
E

and thus for all x � PCPP� In other words� E� was de�ned in such a way that two triples are
joined by an edge if and only if it is impossible that both triples attain their maximum value
of one under � simultaneously� This argument shows that PSSP�G�� is a �lower triangle� set
packing relaxation of PCPP�


���� Lemma �Set Packing Relaxation of the CPP	 ���PCPP� � PSSP
�
G��Kn�



�
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The construction is called a �lower triangle set packing relaxation� because one obtains the
components �
i�j�k��x� ! xij � xjk � 	 of � from the lower triangle inequalities �CPP� �ii�

xij � xjk � xik � � 
� xij � xjk � xik

by setting xik �! 	�

We are now ready to state our result that the ��chorded cycle inequalities are expansions of
odd cycle inequalities of

b
P SSP�G���


���
 Theorem �
�Chorded Cycle Inequalities	

Let Kn be the complete graph on n nodes� PCPP the corresponding clique partitioning poly	
tope� G� the lower triangle con�ict graph� and

b
P SSP �G�� the lower triangle set packing

relaxation of PCPP� Then�

Every �	chorded cycle inequality for PCPP is the expansion of an odd cycle inequality forb
P SSP �G���

�

�

�

�	

C

C

�

	 �

�	

�

'	

v�
	 �

�

�	

�
'	
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'	
�	
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�

�

�
'	

�	�v�

Figure ��
� An Odd�Cycle of Lower Triangles�

Proof�
Let C 	� C be a ��chorded cycle in Kn with node set f�� � � � � �kg� By de�nition
 C ! fij � i !
�� � � � � �k� j ! i' 	g and C ! fij � i ! �� � � � � �k� j ! i' �g �where indices are taken modulo
�k ' 	��

Consider the �k ' 	 triples vi �! �i� i � �� i � 	�
 i ! �� � � � � �k �indices modulo �k ' 	�� One
veri�es that vivi�� � E represents a con�ict and forms an edge of an odd cycle in G�
 see
Figure ��
 for an example� The associated odd cycle inequality expands to the ��chorded
cycle inequality in question�

�kX
i��

��
i�i���i���
�x� !

�kX
i��

x
i�i��� � x
i���i��� !
X
ij�C

xij �
X
ij�C

xij � �jCj � 	����

�
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Calling the expansions of odd cycle inequalities for

b
P SSP�G�� inequalities from odd cycles of

lower triangle inequalities and noting jV�j ! O�n��
 we obtain


���� Corollary �Separation of Ineq�s from Odd Cycles of Lower Triangle Ineq�s	
Let Kn be the complete graph on n nodes and PCPP the associated clique partitioning poly	
tope� Suppose x � QE satis�es the constraints �CPP� �ii� and � � x � �� Then�

Inequalities from odd cycles of lower triangle inequalities can be separated in polynomial time�


���� Corollary �Separation of 
�Chorded Cycle Inequalities	
A superclass of the �	chorded cycle inequalities can be separated in polynomial time�

Note that the con�icts between successive triples vi ! �i� i��� i�	� and vi�� ! �i'	� i�	� i�
in a ��chorded cycle stem from the common edge connecting nodes i and i � 	 that has a
coe%cient of �	 in �vi�� and � in �vi � But con�icts arise also from common edges with '	
and �	 coe%cients� Thus
 besides possible node�edge repetitions and the like
 odd cycles of
lower triangle inequalities give also rise to inequalities that do not correspond to ��chorded
cycle inequalities�
So far we have studied inequalities from pairwise con�icts of lower triangle inequalities� In
the case of the max cut problem
 the constraints ���MCP� �i� form a class of �upper triangle
inequalities�

xij ' xjk ' xik � � �i� j� k � V�

Analogous to the lower triangle case
 we will now construct �inequalities from odd cycles of
upper triangle inequalities� for the max cut polytope� These constraints are related to the
C��k ' 	� ���circulant inequalities of Poljak � Turzik �	

� �
A C��k ' 	� ���circulant is identical to a ��chorded cycle on an odd number of �k ' 	 nodes�
We distinguish circulants C��k'	� �� with odd k and with even k� The associated inequalities
are

X
ij�C
�k�����

xij � �k ' 	� if k mod � ! 	

C��� ��

�

	

�

��

�

�

Figure ��	�� The Odd�k Circulant C��� ���

X
ij�C
�k�����

xij � �k� if k mod � ! ��

C�
� ��

�
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��
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�

�

Figure ��		� The Even�k Circulant C�
� ���

Even�k circulant inequalities have been introduced by Poljak � Turzik �	

� � These con�
straints have a right�hand side of �k
 whereas the odd case requires an increase of one in the
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right�hand side� Figure ��	� shows the odd�k circulant C��� �� �k ! ��� the white and gray
nodes form the shores of a cut with 	� ! � 	 � ' 	 � � 	 � ! 
 edges highlighted� Alternatingly
putting pairs of successive nodes on the left and on the right shore of the cut except for the
�rst node
 one veri�es that the right�hand side �k ' 	 is best possible for odd k� Figure ��		
shows a tight con�guration for the case where k is even� �A rigorous proof for the validity of
these constraints will follow from the upcoming discussion��

We will show now that the circulant inequalities can be seen as �strengthened� odd cycle
inequalities of an appropriate �upper triangle� set packing relaxation of the max cut prob�
lem� strengthened means that for even k
 the right�hand side of the cycle of upper triangles
inequality exceeds the right�hand side of the corresponding circulant inequality by one� Our
considerations allow to design a polynomial time algorithm for separating inequalities from
cycles of upper triangle inequalities� Poljak � Turzik �	

� 
 on the other hand
 have shown
that separation of the exact class of C��k ' 	� ���circulant inequalities is NP�hard�
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j

k
'	 '	

�

�j� ik�
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j

k
'	 �

'	

�i� jk�

i

j

k

� '	

'	

�k� ij�

Figure ��	�� Labeling Upper Triangles�

As usual
 the upper triangle set packing relaxation is based on an upper triangle con�ict
graph G��Kn� ! �V��E��� This time
 V� consists of all ��tuples �i� jk� � V �E such that
i 
� jk
 while E� is the set of all �i� jk��j� kl�� To construct a set packing relaxation of PMCP

by means of this graph
 we introduce the aggregation scheme �� � RE � RV
�

de�ned as

��
i�jk��x� �! xij ' xik � 	�

One gets ��
i�jk��x� � 	 from the upper triangle inequality

xij ' xik ' xjk � � 
� xij ' xik � 	 � 	� xjk

by setting xjk �! �
 hence the name �upper triangle� con�ict graph� This rearrangement also
proves that ��
i�jk��x� attains its maximum value of one if and only if node i is on one side of
the cut
 while nodes j and k are on the other� Again
 one may think of the nodes i
 j
 and k
as forming triangles with the edges labeled as indicated in Figure ��	� and sees that

uv � E� 
� ��u �x� ' ��v �x� � 	 �x � PMCP � Z
E�

Thus


b
P SSP�G�� is an �upper triangle� set packing relaxation of PMCP�


���� Lemma �Set Packing Relaxation of the MCP	 ���PMCP� �

b
P SSP

�
G��Kn�



�

This construction yields the circulant inequalities for k mod � ! 	 as expansions of odd cycle
inequalities for the upper triangle set packing relaxation of the max cut polytope� The case
k mod � ! � can be settled by strengthening the associated odd cycle inequality
 i�e�
 one can
a posteriori decrease the right�hand side by one and the inequality remains valid�
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���� Theorem �Circulant Inequalities	
Let Kn be the complete graph on n nodes� PMCP the corresponding max cut polytope� G�

the upper triangle con�ict graph� and

b
P SSP�G�� the upper triangle set packing relaxation of

PMCP�

�i� Every odd	k circulant inequality for PMCP is the expansion of an odd cycle inequality

for

b
P SSP�G���

�ii� Every even	k circulant inequality for PMCP is the expansion of a strengthened odd cycle

inequality for

b
P SSP�G���
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Figure ��	�� An Odd Cycle of Upper Triangles�

Proof�
�i� Let C��k ' 	� �� be an odd�k circulant with node set f�� � � � � �k ' 	g� Consider the �k ' 	
��tuples vi �!

�
i� �i'	� i'��



�with indices taken modulo �k'	�� One veri�es that the tuples

vi and vi�� are in con�ict
 i�e�
 vivi�� � E�
 and form an odd cycle in G�
 see Figure ��	��
The associated odd cycle inequality expands to an odd�k circulant inequality�

�kX
i��

���
i�
i���i���


�x� � k


�
�kX
i��

�x
i�i��� ' x
i�i��� � 	� � k


�
X

ij�C
�k�����

xij � �k ' 	�
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�ii� The even case is analogous to the odd case� To see that one can reduce the right�hand side
of the odd cycle inequality by one and

P�k
i�� �

�

i�
i���i�����x� � k� 	 is still valid
 suppose this

is not so and let x � PMCP be the incidence vector of a cut that violates this constraint� Now

max f�� ���x�g is the incidence vector of a stable set in G�
 and
 clearly
 this vector must be
tight for the �unstrengthened� odd cycle inequality� This means that we have k ��tuples with
max f�� ��
i�
i���i�����x�g ! 	
 and k ' 	 ��tuples with max f�� ��
i�
i���i�����x�g ! �
 that are
arranged in such a way that the two types appear alternatingly except for one time
 where we
have two �zeros� next to each other� Looking at a tuple with max f�� ��
i�
i���i�����x�g ! 	

we see that node i must be on one side of the cut while nodes i' 	 and i' � must be on the
other� The next �one� max f�� ��
i���
i���i�����x�g ! 	 forces nodes i ' � and i ' � to be on

the same side as i� Starting without loss of generality at ��
��
����� ! 	 and continuing k times
like this
 all nodes of the circulant are assigned to one side of the cut or another in a unique
way� When k is even
 this results in nodes �k � 	
 �k
 and � ending up on the same side
such that ��
�k���
�k�����x�g ! �	
 see the right side of Figure ��	� for an example� but thenP�k

i�� �
�

i�
i���i�����x� � k � 	
 a contradiction� �

Calling the expansion of an odd cycle inequality for

b
P SSP�G�� an inequality from an odd cycle

of upper triangle inequalities
 we obtain


���� Corollary �Separation of Ineq�s from Cycles of Upper Triangle Ineq�s	
LetKn be the complete graph on n nodes and PMCP the associated max cut polytope� Suppose
x � QE satis�es the constraints ��	MCP� �i�� �ii�� and � � x � �� Then�

Inequalities from odd cycles of upper triangle inequalities can be separated in polynomial time�


���� Corollary �Separation of Circulant Inequalities	

�i� A superclass of odd	k C��k' 	� �� circulant inequalities can be separated in polynomial
time�

�ii� A superclass of even	k C��k ' 	� �� circulant inequalities with their right	hand sides
increased by one can be separated in polynomial time�

We remark again that Poljak � Turzik �	

� have shown that it is NP�complete to determine
whether a graph contains a C��k ' 	� �� circulant and thus
 separation of the exact class of
C��k ' 	� �� circulant inequalities is NP�hard�

��� The Set Packing Problem

We have demonstrated in the examples of the preceeding sections that certain combinatorial
optimization problems have interesting set packing relaxations� Perhaps a bit surprising
 we
show now that the set packing problem itself also has interesting set packing relaxations"
These considerations yield alternative derivations
 generalizations
 and separation techniques
for several classes of wheel inequalities
 including two classes introduced by Barahona �
Mahjoub �	

� and Cheng � Cunningham �	

� 
 as well as new classes such as
 e�g�
 certain
�cycle of cycles inequalities�� A survey on results for the set packing problem can be found
in Chapter 	 of this thesis�
The examples of this section are based on a �rank� set packing relaxation that we introduce
now� Given a set packing problem �SSP� on a graph G ! �V�E�
 the associated con�ict graph
G ! �V�E� of the relaxation has the set V �! fH � H � Gg of all �not necessarily node
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induced� subgraphs of G as its nodes� In order to de�ne the set of edges
 we consider the
aggregation scheme � � RV � RV de�ned as

�H�x� !
X

i�V 
H�

xi � ���H� � 	� � subgraphs H � V of G�

where ��H� denotes the rank
 i�e�
 the maximum cardinality of a stable set
 of H� We draw an
edge between two subgraphs H and W if there is no stable set in G such that its restrictions
to H and W are simultaneously stable sets of maximum cardinality in H and W 
 i�e�


HW � E 
� �H�x� ' �W �x� � 	 �x � PSSP�G� � ZV �

By de�nition
 the rank con�ict graph G depends only on G and this is why we occasionally
also denote it by G�G�� Well known arguments show that

b
P SSP�G� is a set packing relaxation

of PSSP in the exponential space RV �


���� Lemma �Rank Set Packing Relaxation of the SSP	 ��PSSP� �

b
P SSP�G��

����� Wheel Inequalities

One method to derive classes of polynomial time separable inequalities from the rank relax�
ation is to consider subgraphs of G of polynomial size� A natural idea is to restrict the set of
G�s nodes to

Vk �! fH � H � G � jV �H�j � kg�

the subgraphs H of G with bounded numbers of nodes jV �H�j � k for some arbitrary
 but
�xed bound k� The smallest interesting case is k ! �
 where H �jV �H�j � �� is either empty

a singleton
 an edge
 or a coedge �complement of an edge�� The odd cycle inequalities that

one obtains from this restricted relaxation

b
P SSP�G�Vk � contain
 among other classes
 the odd

wheel inequalities of the set packing polytope�

A �k ' 	�wheel is an odd cycle C of �k ' 	 nodes f�� � � � � �kg plus an additional node �k ' 	
that is connected to all nodes of the cycle� C is the rim of the wheel
 node �k ' 	 is the hub

and the edges connecting the node �k ' 	 and i
 i ! �� � � � � �k
 are called spokes� For such a
con�guration
 we have that

kx�k�� '

�kX
i��

xi � k�

�

�

	
�

��

�
�

�

Figure ��	�� A ��Wheel�

An odd wheel inequality can be obtained by a sequential lifting of the hub into the odd cycle
inequality that corresponds to the rim� Trying all possible hubs
 this yields a polynomial time
separation algorithm for wheel inequalities� An alternative derivation is
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�
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�
	
v�

�
v�

�

�
v�

�

v�

Figure ��	�� A Wheel and a Cycle of Nodes and Edges�


���
 Theorem �Odd Wheel Inequalities	
Let G ! �V�E� be a graph� PSSP the corresponding set packing polytope� G the rank con�ict

graph� and

b
P SSP�G� the rank set packing relaxation of PSSP� Then�

Every odd wheel inequality for PSSP is the expansion of an odd cycle inequality for

b
P SSP�G�V� ��

Proof�
Consider a �k ' 	 wheel with rim C ! f�� � � � � �kg and hub node �k ' 	� The subgraphs
vi �! G�fi� �k ' 	g 
 i ! 	� �� � � � � �k � 	
 induced by the spokes with odd rim nodes
 and the
subgraphs vi ! G�fig 
 i ! �� �� � � � � �k
 induced by the even rim nodes
 form an odd cycle in
G
 see Figure ��	�� Expanding the associated odd cycle inequality yields the wheel inequality�

�kX
i��

�vi
x� !
X

i����������k��

�xi ' x�k��� '
X

i����������k

xi ! kx�k�� '

�kX
i��

xi � k� �


���� Corollary �Separation of Ineq�s from Odd Cycles of Nodes� Edges� Coedges	
Ineq�s from odd cycles of nodes� edges� and coedges can be separated in polynomial time�

We show now two examples of cycles of nodes
 edges
 and coedges that give rise to facetial
inequalities that do not correspond to odd wheels� The cycle on the left side of Figure ��	�
consists of the nodes �
 �
 and � and the edges �	� �� and ��� ��
 the one on the right of the
edges �	� ��
 ��� ��
 ��� ��
 and ��� 
� and the coedge ��� ��� The associated inequalities are

x� ' �x� ' x�� ' x� ' x� ' �x� ' x�� � � 
�
P�

i�� xi � �

�x� ' x� � 	� ' �x� ' x�� ' �x� ' x�� ' �x	 ' x�� ' �x
 ' x�� � � 
�
P


i�� xi � ��

�X
i��

xi � �

�

�
	

��

�
� 
X

i��

xi � �

�

�

	
�

�

�

�

�

�



Figure ��	�� Two Generalizations of Odd Wheel Inequalities�

Another generalization of odd wheel inequalities was given by Barahona � Mahjoub �	

� and
Cheng � Cunningham �	

� � They introduce two classes of inequalities that have subdivisions
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of odd wheels as support graphs
 where each face cycle must be odd
 see Figure ��	�� Following
Cheng � Cunningham �	

� �s terminology and denoting the set of end nodes of the even
spokes �with an even number of edges� of an odd wheel W of this kind with some number
�k ' 	 of faces by E 
 the set of end nodes of the odd spokes �with an odd number of edges�
by O
 and the hub by h
 a wheel inequality of type I states that

kxh '
X

i�W�h

xi '
X
i�E

xi �
jW j' jEj

�
� 	� �����

A second variant of wheel inequalities of type II �associated to the same wheel� states that

�k ' 	�xh '
X

i�W�h

xi '
X
i�O

xi �
jW j' jOj � 	

�
� �����

We remark that these wheels do in general not arise from cycles of subgraphs of bounded size
because they contain potentially very long paths�


���� Theorem �Odd Wheel Inequalities	
Let G ! �V�E� be a graph� PSSP the corresponding set packing polytope� G the rank con�ict

graph� and

b
P SSP�G� the rank set packing relaxation of PSSP� Then�

Every odd wheel inequality of type I and II for PSSP is the expansion of an odd cycle inequality
for

b
P SSP�G��

�
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hub h ! �
even spoke ends E ! f�� �g
odd spoke ends O ! f�� 
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Figure ��	�� A ��Wheel and a ��Cycle of Paths of Type I�

Proof�
�i� Wheel inequalities of type I�
The idea of the proof is to obtain the wheel inequality ����� of type I as a cycle of paths�
Orienting a �k' 	�wheel clockwise
 it consists of �k' 	 spoke paths Si
 i ! �� � � � � �k
 and the
same number of rim paths Ri such that Ri connects the ends of spokes Si and Si�� �indices
in the proof are taken modulo �k ' 	�� We can then compose the wheel from the paths

Pi �! Si �

�
Ri� if Si�� is even

Ri n Si��� if Si�� is odd

�
n

�
�� if i is odd

fhg� if i is even�
i ! �� � � � � �k�
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see Figure ��	�� By de�nition
 a path Pi consists of the spoke Si �plus minus the hub depending
on i� and the full rim path Ri if the end node of the next spoke �in clockwise order� is even

or the rim path Ri without the end of the next spoke in case this spoke is odd� In this way

the even spoke�ends
 having a coe%cient of two in the wheel inequality
 appear in two paths

the odd spoke�ends in one� Finally
 the hub is removed from all paths with even index� It
is not hard to see that any two successive paths Pi and Pi�� are in pairwise con�ict� The
subpaths Pi n fhg �with the hub removed� are all odd and in pairwise con�ict
 and the hub is
in con�ict with any of these subpaths� The odd cycle inequality corresponding to the paths Pi
expands into the odd wheel inequality ������

�kX
i��

�Pi�x� � k


�
kX
i��

��X
j�P�i

xj � �jP�ij � 	���

�A'
k��X
i��

�� X
j�P�i��

xj � �jP�i��j � ����

�A � k


� kxh '
X

j�Wnfhg

xj '
X
j�E

xj �
jW j � 	 ' k ' jEj � �k ' 	�� �k

�
� k


� kxh '
X

j�Wnfhg

xj '
X
j�E

xj �
jW j' jEj � �k � �

�
' k !

jW j' jEj

�
� 	�

Here
 jPij denotes the number of nodes in the path Pi�
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Figure ��	�� A ��Wheel and a ��Cycle of Paths of Type II�

�ii� Wheel inequalities of type II�
The wheel inequalities ����� of type II can be derived in much the same way as their relatives
of type I� For the sake of completeness
 we record the path decomposition

Pi �! Si �

�
Ri� if Si�� is odd

Ri n Si��� if Si�� is even

�
n

�
�� if i is even

fhg� if i is odd�
i ! �� � � � � �k�
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One can verify that
 again
 any two successive paths are in con�ict� A �nal calculation to
expand the resulting odd cycle inequality yields the wheel inequality ����� of type II�

�kX
i��

�Pi�x� � k


�
kX
i��

��X
j�P�i

xj � �jP�ij � 	���

�A'
k��X
i��

�� X
j�P�i��

xj � �jP�i��j � ����

�A � k


� �k ' 	�xh '
X

j�Wnfhg

xj '
X
j�O

xj �
jW j � 	 ' �k ' 	� ' jOj � �k ' 	�� �k

�
� k


� �k ' 	�xh '
X

j�Wnfhg

xj '
X
j�O

xj �
jW j' jOj � �k � 	

�
' k !

jW j' jOj � 	

�
�

�

One can also derive polynomial time separation algorithms of much the same �avour as for
the M�obius ladder inequalities� such procedures are given in Cheng � Cunningham �	

� �

����� A New Family of Facets for the Set Packing Polytope

The rank relaxation of the set packing problem o�ers ample possibilities to de�ne new classes
of polynomially separable inequalities for the set packing problem� We discuss as one such
example a cycle of cycles inequality� cycle of cliques inequalities and certain liftings of them
are studied in Tesch �	

�
 Section ��� �
The way to construct a cycle of cycles inequality is to link an odd number �k'	 of odd cycles
C�� � � � � C�k to a circular structure such that any two successive cycles are in pairwise con�ict

i�e�
 �Ci

�x� ' �Ci���x� � 	 �indices taken modulo �k ' 	��
One way to do this is to select from each cycle Ci three successive nodes Li � Ci that will
serve as a part of the inter�cycle links yet to be formed� The link Li has the property that
�Ci

�x� ! 	 implies that at least one of the nodes in Li is contained in the stable set supp�x�

i�e�


�Ci
�x� !

X
j�Ci

xj �
�
jCij � 	



�� ! 	 !�

X
j�Li

xj � 	�

If we make sure that any two successive links Li and Li�� are joined by the edge set of the
complete bipartite graph K���
 we have that

�Ci
�x� ! 	 !�

X
j�Li

xj � 	 !�
X

j�Li��

xj ! � !� �Ci���x� � � �xPSSP�G� � ZV

and
 vice versa
 that �Ci���x� ! 	 !� �Ci
�x� � � holds for all incidence vectors x of

stable sets in G� But then
 every two successive cycles Ci and Ci�� are in con�ict
 i�e�

�Ci�x� ' �Ci���x� � 	
 and the cycles Ci form an odd cycle in G
 see Figure ��	
 �links are
colored gray��
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L�C�

L�

C�

L�

C�

L�

C�
L�

C�

Figure ��	
� A ��Cycle of ��Cycles�


���� Theorem �Cycle of Cycles Inequality	

Let G ! �V�E� be a graph and PSSP be the corresponding set packing polytope� Let Ci�
i ! �� � � � � �k� be an odd cycle in G and Li � Ci� i ! �� � � � � �k� a set of three successive nodes
in Ci� Assume further that Li and Li��� i ! �� � � � � �k� are joined by a complete K���� Then�

The cycle of cycles inequality

�kX
i��

X
j�Ci

xj �

�
�kX
i��

�jCij � 	���

�
� �k ' 	�

is valid for PSSP�

Proof�
�kX
i��

�Ci
�x� � k


�
�kX
i��

��X
j�Ci

xj �
�
�jCij � 	��� � 	


�A � k


�
X
j��Ci

xj �

�
�kX
i��

�
�jCij � 	��� � 	


�
' k !

�
�kX
i��

�jCij � 	���

�
� �k ' 	��

�


���� Theorem �Separation of Cycle Of Cycles Inequalities	

Cycle of cycles inequalities can be separated in polynomial time�

Proof�
The number of potential links Li is polynomial of order O�jV j��� We set up a link graph that
has the links as its nodes� this device will
 in a second
 turn out to be a subgraph of G� Two
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links are connected by an edge if and only if they are joined by a K���� To assign weights to
the links
 we calculate for each link Li the shortest even path Pi in G �with an even number
of nodes� that connects the two endpoints of the link� here
 shortest means shortest with
respect to the length function �	 � xi � xj��� for all edges ij � E� Li � Pi forms a shortest
odd cycle Ci through Li with respect to the length

P
j�Ci

�	 � xj � xj����� ! 	�� � �Ci
�x�


i�e�
 a longest odd cycle Ci through Li with respect to the length �Ci
�x�� We set the weight

of link Li to the value �Ci
�x�
 obtain the link graph as a subgraph of G�fCig �some edges

that correspond to �non�link con�icts� are possibly missing�
 and detect a violated odd cycle
inequality in the link graph if and only if a violated cycle of cycles inequality in G exists
�eventually
 we �rst have to separate the edge inequalities of the link graph�� �

A cycle of cycles inequality will in general not be facet inducing 
 for example
 if one of the
cycles has a chord that joins two non�link nodes� But one can come up with conditions that
ensure this property� The most simple case is where the cycles Ci are holes
 all node disjoint

and the only edges that run between di�erent holes belong to the links
 i�e�
 we have a �hole
of holes�� In this case
 the cycle of cycles inequality is easily shown to be facet inducing using
standard techniques
 like noting that every edge in a hole of holes is critical�


���� Proposition �Facet Inducing Cycle of Cycles Inequalities	

If every cycle in a cycle of cycles inequality is a hole� and the only edges that run between
di�erent holes emerge from the links� then the cycle of cycles inequality is facet inducing for
the set packing polytope PSSP�G� associated to the support graph G of the inequality�

We want to give now an alternative proof for the faceteness of the hole of holes inequality�
The technique that we are going to demonstrate works also for other constructions of this
type� It is our aim to give an example how aggregation techniques
 although not designed for
facetial investigations
 can sometimes lend themselves to results in this direction�

Proof �of Proposition 
����	�
The idea of the proof is to exploit the composition structure of a hole of holes C ! fC�� � � � � C�kg�
To this purpose
 it is convenient to consider C sometimes as a hole in the con�ict graph G
 in
which case we want to denote it by C
 and sometimes as a structure in the original graph G

and then we want to use the original notation C� The �rst step is to look at the inequality as
a linear form in the image space of the aggregation
 namely
 as the odd cycle inequalityX

v�C������C�k

xv � k �����

of the set packing polytope PSSP�C� associated to the odd hole C� As constraint ����� is a
facet of PSSP�C�
 there are �k ' 	 a%nely independent incidence vectors xr
 r ! �� � � � � �k
 of
set packings on the induced face� Likewise
 each of the individual holes Ci has a set of jCij
a%nely independent incidence vectors of set packings xis in the graph Ci
 s ! 	� � � � � jCij
 that
are tight for the odd cycle inequality associated to Ci
 i�e�
PjCij

j�� x
is
j ! �jCij � 	���� i ! �� � � � � �k� s ! 	� � � � � jCij�

Moreover
 there is an incidence vector xi� of a set packing in Ci such thatPjCij
j�� x

i�
j ! �jCij � 	��� � 	� i ! �� � � � � �k�
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Note thatPjCij
j�� x

is
j �

�
�jCij � 	��� � 	



! 	� i ! �� � � � � �k� s ! 	� � � � � jCij�PjCij

j�� x
i�
j �

�
�jCij � 	��� � 	



! �� i ! �� � � � � �k�

We will use the vectors xis to expand the vectors xr into a set of
P�k

i�� jCij a%nely independent
incidence vectors of stable sets in C that are tight for the hole of holes inequality in question�
To this purpose
 we can assume without loss of generality that

xrCr
! 	� r ! �� � � � � �k�

i�e�
 the r�th component of the r�th �aggregated� incidence vector xr is one� We now �blow
up� each vector xr into jCrj vectors yrs � RC 
 s ! 	� � � � � jCrj
 de�ned as

yrsCi
!

�����
xi�� if xrCi

! �

xi�� if xrCi
! 	 and i 
! r

xis� if xrCi
! 	 and i ! r�

i ! �� � � � � �k�

�yrsCi
indexes the subvector of yrs � RC with all components that correspond to the hole Ci��

In other words� We take each incidence vector xr and substitute for each of its components
xrCi


 i ! �� � � � � �k
 a vector xis� If xrCi
! �
 we take xi�
 if xrCi

! 	
 we take xi�� The only
exception to this procedure is coordinate r
 where we do not only substitute xr�
 but try all
possibilities xrs� In all cases
 however
 ��yrs� ! xr for all s ! 	� � � � � jCrj�
This results in a total of

P�k
i�� jCij vectors yrs� It is easy to see that these �expansions of

stable sets by stable sets� are incidence vectors of stable sets in C and that they are tight
for the hole of holes inequality under consideration� We claim that they are also a%nely
independent� For suppose not� then there are multipliers �rs
 not all zero
 that sum up to
zero such that

P
rs �rsy

rs ! �� But this implies that

X
rs

�rs��yrs� !
X
rs

�rsx
r !

�kX
r��

��jCrjX
s��

�rs

�Axr ! ��

and a%ne independence of the aggregated vector xr yields

jCrjX
s��

�rs ! �� r ! �� � � � � �k� �����

Considering the rows of
P

rs �rsy
rs ! � that correspond to the individual holes Cr
 we obtainX

is

�isy
is
Cr

! �� r ! �� � � � � �k�

As for i 
! r the vectors yisCr
! xi� are constant for all s
 these equations simplify to

X
is

�isy
is
Cr

!
X

i��������k

i��r

xi�
jCijX
s��

�is� �z �
��� see 
����

'

jCrjX
s��

�rsy
rs
Cr

!

jCrjX
s��

�rsx
rs ! �� r ! �� � � � � �k

and imply � ! �
 a contradiction� Thus
 the incidence vectors yrs were indeed a%nely
independent and the hole of holes inequality facet inducing for its support� �
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����	 Chain Inequalities

We have seen in the preceding subsections a variety of derivations of classes of inequalities
from cycle and clique inequalities of appropriate set packing relaxations� To give an example
of a di�erent combinatorial type
 we show in this subsection that a family of chain inequalities
that were introduced by Tesch �	

� can be seen as strengthened �see page ��� expansions
of Nemhauser � Trotter �	
�� �s antiweb inequalities
 see also Laurent �	
�
 �

A �k ' 	�chain C is similar to a ��chorded cycle with �k ' 	 nodes �� � � � � �k� the di�erence
is that the two chords ��� �k� 	� and �	� �k� are replaced with the single edge �	� �k� 	�
 see
Figure ����� An antiweb C�k� t� is a graph on k nodes �� � � � � k� 	
 such that any t successive
nodes i� i'	� � � � � i' t�	 form a clique
 see Figure ���	� Chains are very similar to ��chorded
cycles� these
 in turn
 coincide with the class of antiwebs C��k ' 	� ���

Chains and antiwebs give rise to inequalities for the set packing polytope� The chain and
antiweb inequalities state that

X
i�C

xi �

�
�k ' �

�
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Figure ����� A 	��Chain�
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�
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Figure ���	� The Antiweb C��� ���


���� Theorem �Chain Inequalities	

Let C be �k ' 		chain� PSSP the corresponding set packing polytope� G ! �V�E� the rank

con�ict graph� and

b
P SSP�G� the rank set packing relaxation of PSSP� Then�

Every chain inequality for PSSP is the expansion of a strengthened antiweb inequality forb
P SSP�G��

Proof�
Consider in G the �k � 	 nodes

v� �! G�f	� �kg vi �! G�fig � i ! �� � � � � �k � �� and v�k�� �! G�f�k � 	� �g �

and let W �! fv�� � � � � v�k��g� The reader veri�es that W induces an antiweb in G
 more
precisely


G�W ! C��k � 	� ���
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An expansion of the antiweb inequality corresponding to G�W yields

�k��X
i��

�vi�x� �

�
�k � 	

�

	

� �x� ' x�k � 	� '

�k��X
i��

xi ' �x�k�� ' x� � 	� �

�
�k � 	

�

	

�

�kX
i��

xi �

�
�k ' �

�

	
' 	�

A �nal strengthening of this inequality �reducing the right�hand side by one
 see page ���
yields the desired chain inequality� The validity of the strengthening can be inferred in a
similar way as in the proof of Theorem ������ �

����
 Some Composition Procedures

While the examples of the preceding subsections had analytic �avour
 we study in this sub�
section applications of set packing relaxations to constructive approaches to the stable set
polytope� Our result is that certain composition procedures of the literature have a natural
interpretation in terms of set packing relaxations�
The general principle behind composition approaches is the following� One considers some
graph theoretic operation to construct a complex graph G from one or more simpler ones

and investigates the polyhedral consequences of this operation� Such consequences can be
�i� to obtain analogous operations to construct valid or facet de�ning inequalities for G from
known ones for the original graphs
 or
 in rare cases
 �ii� to obtain a complete description

of

b
P SSP�G� from likewise complete descriptions of the anti�dominants of the set packing

polytopes associated to the original graphs� A survey on composition methods for the set
packing problem can be found in Section ��� of this thesis�
Operations of type �i� that give rise to facets are called facet producing procedures and we
study three examples of this type in the remainder of this subsection �we investigate only their
validity�� The graph theoretic composition technique behind all of them is node substitution
�in di�erent variants�� Given is some graphG� replacing one or several nodes by graphs and the
a�ected edges by appropriate sets of edges
 one obtains a new graph G� The facet producing
procedure associated to such a substitution translates valid�facet de�ning inequalities forb
P SSP�G� into valid�facet de�ning inequalities for

b
P SSP�G��

This concept has an obvious relation to expansion� Namely
 consider the expansion

aTx � � 
� aT��x� � �

of an inequality for the rank relaxation

b
P SSP�G� of some graph G� One obtains the support

graph G�suppaT) of the expansion from the support graph G�suppaT of the aggregated
inequality by a sequence of node substitutions and identi�cations� Constructing inequalities
in this way means thus to look at a given graph G as the con�ict graph �or a subgraph of it�
of some graph G that can be constructed from G�

construct G such that G ! G�G��

This technique �to start with the con�ict graph and construct a suitable original graph� is
our interpretation of composition in terms of aggregation�
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G

	

�

�

� �

� G

	

�

�

� �

�� �

Figure ����� Applying a Composition Procedure�

We turn now to the examples and start with a procedure of Wolsey �	
�� � Given a graph
G ! �V �E� with nodes V ! f	� � � � � ng
 the operation constructs a new graph G ! �V�E�
from G by replacing node n with a path �n' 	� n� n ' �� involving two new nodes n ' 	 and
n ' �
 such that n ' 	 is adjacent to some subset �� of neighbors of the �old� node n
 while
n' � is adjacent to the remaining neighbors� Figure ���� shows an example where node � of
a graph is replaced by the path ��� �� �� and the new node � is connected to the old neighbors

�� ! f�� �g of �� The procedure asserts that
 if aTx � � was a valid inequality for

b
P SSP�G�


the constraint

aTx ' anxn�� ' anxn�� � � ' an �����

holds for

b
P SSP�G�� This inequality can be obtained from a rank relaxation of G that involves

the aggregation scheme � � RV � RV de�ned as

�i�x� !

�
xi� i 
! n

xn�� ' xn ' xn�� � 	� i ! n�

� maps each node onto itself except for the path �n� n ' 	� n ' �� which is aggregated into a
single node� One easily checks


���� Lemma �Composition Procedure I	 G ! G�G��

An expansion of aTx � � yields inequality ������ We remark that this argument does not
show that this procedure translates facets into facets�
Our second example is due to Wolsey �	
�� and Padberg �	
�� � The procedure joins an
additional node �n ' 	 to all nodes 	� � � � � n of the given graph G ! �V �E�
 and the graph
G ! �V�E� arises from this join by subdividing each of the new edges ��n' 	� i� with a node

n'i� In this case
 the inequality aTx !
Pn

i�� aixi � � for

b
P SSP�G� gives rise to the constraint

nX
i��

ai�xi ' xn�i� '

�
nX
i��

ai � �

�
x�n�� �

nX
i��

ai �����

for

b
P SSP�G� �and is
 in fact
 even facet inducing
 if aTx � � was�� Figure ���� shows an

application of this technique to the graph G on the left side with nodes 	� � � � � � �adding the
grey node � in the middle results in a certain graph G

�
that will be explained in a second��
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Figure ����� Another Composition Procedure�

To obtain inequality ����� from a rank relaxation
 we consider the scheme � � RV � RV
�

de�ned as

�i�x� �!

�
xi ' xn�i ' x�n�� � 	� i ! 	� � � � � n

x�n��� i ! n ' 	�

where we have set G
�

�! �V
�
� E

�
� �! �V � fn ' 	g� E��


����
 Lemma �Composition Procedure II	 G
�

! G�G��

In other words
 the con�ict graph G
�

of G coincides with G augmented by an additional node
n' 	 that is not connected to any other node� Obviously
 any inequality

Pn
i�� aixi � � that

is valid for

b
P SSP�G� is also valid for

b
P SSP�G

�
��

It is now not true that an expansion of the inequality
Pn

i�� aixi � � for

b
P SSP�G

�
� yields the

desired inequality �����
 but we get it with one additional �strengthening type� argument�

This argument is that if
Pn

i�� aixi � � is valid for

b
P SSP�G

�
�
 the stronger inequality

nX
i��

aixi � xn���

is perhaps no longer valid for

b
P SSP�G

�
�
 but it is valid for ��

b
P SSP�G��� An expansion of this

inequality yields the inequality ����� of interest �but again no facetial result��
As an example of a much more general composition technique
 we consider now the substi�
tution of a node v of G by some graph Gv
 such that the resulting graph G ! �V�E� is the
union of G� v and Gv
 with all nodes of Gv joined to all neighbors of v in G� Substitutions
of this type were studied by Chv�atal �	
�� 
 who showed not only that if aTx � � is a facet

of

b
P SSP�G� and b

T
x � � a facet of

b
P SSP�Gv�
 the inequality

av
X

u�V 
Gv�

buxu '
X
u�V
u��v

au�xu � �� �����

is valid for

b
P SSP�G�
 but that all facets of

b
P SSP�G� are of this form� Note that this operation

subsumes the famous multiplication of a node to a clique of Fulkerson �	
�� and Lov�asz
�	
�	 
 that plays an important role in studying the polyhedra associated to perfect graphs�



�� Set Packing Relaxations

To derive the validity of inequalities ����� for �xed but arbitrary v � V and b
T
x � � as above

from a set packing relaxation
 we consider the aggregation scheme � � RV � RV given as

�u�x� �!

���xu� u 
! v
P

w�V 
Gv�
bwxw

�
! b

T
x
�
� u ! v�

� is bounded by one in every component
 integral in all coordinates di�erent from v
 but not
integral in v and in particular not a rank aggregation �� is our only non�rank example in this

section�� But if b
T
x � � is a support of

b
P SSP�Gv�
 i�e�
 there is an incidence vector x of a

stable set in Gv such that the inequality b
T
x � � is tight
 the aggregate ��

b
P SSP�G�� has not

only integer and thus zero�one vertices only
 but
 in fact


����� Lemma �Composition Procedure III	 ��

b
P SSP�G�� !

b
P SSP�G��

Once this relation is established
 an expansion of the inequality aT�x � �� yields Chv�atal�s
inequality ����� �but not an equivalent result about complete descriptions��

Proof �of Lemma 
�����	�

We prove �rst that ��

b
P SSP�G�� is integral� The proof is by contradiction
 i�e�
 suppose

��

b
P SSP�G�� is not integral� Then there must be a non integer vertex ��x��
 where x� is a

vertex of

b
P SSP�G�� Note that x� � � and so must be ��x��� The only fractional component

of ��x�� can be �v�x
�� and it must be nonnull� By assumption
 there exist incidence vectors

y� and y� of stable sets in Gv such that

b
T
y� ! � and b

T
y� ! ��

The vectors x� and x� that arise from x� by replacing x�
Gv

with y� and y� are again incidence

vectors of stable sets in G
 because x�
Gv

is nonnull and the stable set suppx� has a node in

Gv� But then

��x�� ! �� � b
T
x���� ��x�� ' �b

T
x���� ��x��

is not a vertex
 a contradiction�
The last step to establish ��

b
P SSP�G�� !

b
P SSP�G� is to note that �u�x� ' �w�x� � 	 holds for

any vertex ��x� � f�� 	gV of ��

b
P SSP�G�� if and only if uw � E�G�� �

��� The Set Covering Problem

We propose in this section a set packing relaxation of the set covering problem that gives
rise to polynomially separable classes of inequalities� This is important for two reasons�
�i� Set covering deals with general independence systems
 see Section 	�� of this thesis
 while
many problems in combinatorial optimization arise from special independence systems� hence

the set covering results carry over� Unfortunately
 however
 �ii� very few classes of �polynomial
time� separable inequalities for the set covering problem are known� we are only aware of the
odd hole inequalities
 see Subsection 	�
�	
 Nobili � Sassano �	

� �s k�projection cuts
 Balas
�	
�� �s conditional cuts
 and certain classes of f�� ��g Chv�atal�Gomory cuts
 see Caprara �
Fischetti �	

� 
 see also Schulz �	

�
 Section ��� for some classes of this type�



��� The Set Covering Problem �	

The need to develop cutting planes for the set covering polytope was the starting point for our
work on set packing relaxations� We have implemented one version of such a procedure for use
in a branch�and�cut algorithm for set partitioning problems� details about and computational
experience with this routine are reported in Chapter � of this thesis�
The set covering problem �SCP� is the integer program

�SCP� min wTx Ax � �� x � Zn��

where A � f�� 	gm�n and w � Zn�� The associated polyhedron is denoted in this section by
PSCP or PSCP�A�� For a survey on set covering
 see Chapter 	�
The set packing relaxation for �SCP� that we suggest is based on an exponential con�ict graph
G ! �V�E� that records pairwise con�icts of substructures of the matrix A� We take the set
V �! �f������ng �where �S denotes the powerset of some set S� of all subsets of column� indice�s
of A as the nodes of G and de�ne an aggregation scheme � � Rn � RV as

�J�x� �! 	�
X
j�J

xj �J � f	� � � � � ng�

We draw an edge between two �not necessarily disjoint� sets I and J of columns when their
union covers a row of A
 or
 equivalently
 some variable in I � J has to be set to one�

IJ � E 
� �i � I � J � Ai� 
� �I�x� ' �J�x� � 	 �x � PSCP �Z
n�


���� Lemma �Set Packing Relaxation of the SCP	 ��PSCP� �

b
P SSP�G��

This set packing relaxation has been considered by Sekiguchi �	
�� in a special case� He
studies ��	 matrices A with the property that there is a partition W of the column� indice�s
	
S
v�W v ! f	� � � � � ng into nonempty column sets v such that �the support of� each row Ar� is

the union of exactly two such column sets
 i�e�
 �Ar� � �u� v �W � u 
! v � suppAr� ! u 	� v�
Figure ���� shows an example of a ��	 matrix that has such a Sekiguchi partition�

� � � � � � � 
 	

�
�

A � �
�
�

�BBB�
� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

�CCCA W ! f	� �g 	� f�g 	� f�� �g 	� f�g
	� f�g 	� f�� 
g

Figure ����� A Sekiguchi Partitionable ��	 Matrix�

Using essentially the same technique as we did to prove Proposition ����� �about the faceteness
of hole of holes inequalities�
 Sekiguchi �	
�� shows that for a ��	 matrix A that has a
Sekiguchi partition W it is not only true that

��PSCP� !

b
P SSP�G�W ��

but
 even more
 that the facets of PSCP are exactly the expansions of the facets of

b
P SSP�G�W ��

We remark that Sekiguchi considers in his proof the
 as we would say
 aggregation scheme
� � Rn � RW de�ned as

�v�x� �!
X
i�v

xi �v �W�

that is �complementary� to ours in the sense that � ' � � ��



�� Set Packing Relaxations

We mention the odd hole inequalities for the SCP
 see
 e�g�
 Cornu�ejols � Sassano �	
�
 
 as
one example for a class of inequalities that can be obtained from a set packing relaxation in
the sense of Sekiguchi�
In this context of set covering
 the term odd hole is commonly used to refer to the edge�node
incidence matrix A��k'	� �� ! A�C��k'	� ��� � R
�k����
�k��� of the circulant C��k'	� ���

A��k ' 	� ��ij !

�
	� if j ! i or j ! i ' 	 �mod �k ' 	��

�� else�

The associated odd hole inequality asserts that

�k��X
i��

xi � k ' 	

is valid for PSCP�A��k ' 	� ����


���
 Proposition
Let A��k ' 	� �� be an odd hole� PSCP the corresponding set covering polyhedron� G the

con�ict graph associated to A��k ' 	� ��� and

b
P SSP�G�W � the Sekiguchi relaxation of PSCP�

whereW ! ffig j i ! 	� � � � � �k' 	g is the �unique� Sekiguchi partition of A��k' 	� ��� Then�

The odd hole inequality associated to PSCP is the expansion of an odd cycle inequality forb
P SSP�G�W ��

We omit the simple proof of this proposition and proceed with an example of an expanded
cycle inequality that can not be obtained from a Sekiguchi relaxation� we call this larger class
of �inequalities from expansions of� cycle inequalities for G aggregated cycle inequalities�

A !

�BBBB�

	 � � � � � � � 


	 	 	 	 	 � � � � �
� � � � 	 	 	 � � �
� � � � 	 	 	 	 � �
� � � � � � � 	 	 	
� 	 	 � � � � � 	 	

�CCCCA

f	� �� �g

v�

f�g

v�

f�� �g

v�

f�� �gv�

f�� 
g

v�

Figure ����� A Not Sekiguchi Partitionable ��	 Matrix and an Aggregated ��Cycle�

The matrix A on the left of Figure ���� gives rise to a ��cycle C in G formed by the nodes v� !
f	� �� �g
 v� ! f�g
 v� ! f�� �g
 v� ! f�� �g
 and v� ! f�� 
g� A is not Sekiguchi partitionable

because row A�� calls for the sets suppA�� n suppA�� ! f�� �g and suppA�� � suppA�� ! f�g
as elements of the partition
 but these sets are not disjoint� An expansion of the odd cycle
inequality corresponding to C yields

�X
i��

�vi�x� � �


� �	� x� � x� � x�� ' �	� x�� ' �	� x� � x�� ' �	� x� � x�� ' �	� x	 � x
� � �


� x� ' x� ' x� ' �x� ' x� ' x� ' x� ' x	 ' x
 � ��



��� The Multiple Knapsack Problem ��

Turning back to general case and looking at the separation of inequalities for PSCP from the
set packing relaxation

b
P SSP�G�
 we can obtain polynomially separable classes by restricting

attention to node induced subgraphsG�W of the con�ict graph of polynomial size� A heuristic
way to do this is to split the support of each row Ai� into two �equal sized halves�

suppAi� !� I 	� I

with respect to a given fractional covering x
 i�e�
 we split such that AiIxI � AiIxI 
 and take
W as the set of these �halves��

W �! fI� I j i ! 	� � � � �mg�

The idea behind this procedure is to �i� obtain a �reasonable� �polynomial� number of �m
nodes �in fact
 in our computations a lot of these always turned out to be identical� with values
of �I�x�� �I�x� close to �

� that lead �ii� with some probability not only to a signi�cant number
of edges at all
 but �hopefully� even to �tight edges� of the set packing relaxation
 which
in turn �iii� o�ers some potential to identify violated inequalities� We have implemented
this procedure to separate aggregated cycle inequalities in a branch�and�cut code for set
partitioning problems� for more implementation details and computational experience with
this routine see Chapter � of this thesis�

Another separation idea that suggests itself would be to derive inequalities from submatrices
of A� But in contrast to the set packing case
 such inequalities are in general only valid for
their row and�or column support� They have to be lifted to become globally valid and we do
not know how to derive e%ciently separable classes of inequalities in this way�
We close this subsection with an attempt to demonstrate the 	exibility of the concept of the
set packing relaxation

b
P SSP�G� by stating a result of Balas � Ho �	
�� on cutting planes

from conditional bounds in �set packing relaxation terminology��
Balas � Ho assume that some upper bound zu on the optimum objective value of the set
covering program �SCP� is known� In this situation
 they consider some family of variable
index sets W � V and investigate conditions that ensure that at least one of the corresponding
aggregated variables �v�x�
 v �W
 has a value of one for any solution x with a better objective
value than zu� If this condition can be established �Balas � Ho �	
�� suggest arguments and
algorithms based on LP duality�
 the conditional cutX

i�
S
v�W suppAr
v��nv

xi � 	

can be used as a cutting plane� Here
 for each column set v
 Ar
v�� is an arbitrary row of A�
Note that conditional cuts are again of set covering type�

��
 The Multiple Knapsack Problem

In this section
 we investigate a set packing relaxation of the multiple knapsack problem in
an exponential space� It will turn out that the validity of certain classes of extended cover
and combined cover inequalities can be explained in terms of a single con�ict of two �item�
knapsack con�gurations�� As references to the multiple knapsack problem we give Wolsey
�	

� 
 the textbook Martello � Toth �	

�
 Chapter � 
 Ferreira
 Martin � Weismantel �	

� 

see also the thesis of Ferreira �	

� 
 and the survey article Aardal � Weismantel �	

� �



�� Set Packing Relaxations

The multiple knapsack problem �MKP� is the integer program

�MKP� max
X
i�I

X
k�K

wixik

�i�
X
i�I

aixik � � �k � K

�ii�
X
k�K

xik � 	 �i � I

�ii� x � f�� 	gI�K �

Here
 I ! f	� � � � � ng is a set of items of nonnegative integer weights and pro�ts a�w � ZI�

that can be stored in a set K of knapsacks of capacity � each� Associated with the MKP is
the multiple knapsack polytope PMKP�
The set packing relaxation that we propose involves the following con�ict graph G ! �V�E��
G has the set V ! �I�K �where �S denotes the powerset of some set S� of all sets of possible
�item�knapsack pairs� as its nodes� We will call such a set of item�knapsack pairs a�n item�
knapsack� con�guration� To de�ne the edges of the con�ict graph
 we consider the aggregation
scheme � � RI�K � RV de�ned as

�v�x� !
�X
ik�v

xik

�
�
�
jI�v�j � 	



�

Here
 I�v� ! fi � I � �k � K � ik � vg denotes the set of items that appear somewhere in the
con�guration v� �v�x� is one for some solution x of �MKP� if and only if x assigns all items
in v to feasible knapsacks with respect to v
 i�e�
 all items i � I�v� of the con�guration satisfy
xik ! 	 for some �i� k� � v� Two con�gurations u and v are in con�ict and we draw an edge
between them if �u�x� ' �v�x� � 	 holds for all x � PMKP � ZI�K
 i�e�
 it is not possible to
simultaneously assign all items in u and v to feasible knapsacks�


���� Lemma �Set Packing Relaxation of the MKP	 ��PMKP� �

b
P SSP�G��

We show now that the classes of extended cover inequalities and combined cover inequalities
of Ferreira
 Martin � Weismantel �	

� arise from expansions of edge inequalities of this set
packing relaxation� our discussion refers to Ferreira �	

� �s description of these inequalities�
An extended cover inequality involves two con�gurations v� and v�� of the form

v� ! I � � fk�� k�g and v�� ! I �� � fk�g

with two knapsacks k� and k� and two sets of items I � and I ��� In this situation
 it is in general
not true that �v��x� ' �v���x� � 	 holds
 but one can look for combinatorial conditions that
ensure this inequality� Ferreira �	

�
 page �� assumes that

�i� I � forms a cover for knapsack k�
 i�e�
 the items in I � do not all �t into k�
 and that

�ii� I �� � fig forms a cover for knapsack k� for each item i � I ��

�Actually
 he assumes also I � � I �� ! ��� �i� means that if �v��x� ! 	
 i�e�
 all items I � of
the �rst con�guration are assigned to the knapsacks k� and k�
 then at least one item of I �

must be assigned to k�
 and then �v���x� � � due to �ii�� This implies the validity of the edge
inequality �v��x� ' �v���x� � 	 that expands into the extended cover inequalityX

i�I�

xik� '
X
i�I�

xik� '
X
i�I��

xik� � jI �j' jI ��j � 	�



��� The ��	 Programming Problem with Nonnegative Data ��

Of similar �avour are the combined cover inequalities� This time
 the con�gurations are

v� ! �I� � fk�g� � �I� � fk�g� � �I � � fk�g� and v�� ! I �� � fk�g�

with three di�erent knapsacks k�
 k�
 and k� and satisfying �confer Ferreira �	

�
 page �� �

�i� I � ! I� � I� and jI� � I�j ! 	


�ii� I� is a cover for k�
 I� a cover for k�
 and

�iii� I �� � fig is a cover for knapsack k� for each item i � I ��

�Ferreira �	

� assumes again I � � I �� ! ��� �v��x� ! 	 and �i� together imply that at least
one item from I � must be assigned to knapsack k�
 and then �ii� results in �v���x� � � as for
the extended cover inequalities� Expanding the edge inequality �v��x�'�v���x� � 	
 we obtain
the combined cover inequalityX

i�I�

xik� '
X
i�I�

xik� '
X
i�I�

xik� '
X
i�I��

xik� � jI �j' jI ��j � 	�

The following theorem summarizes our results on extended and combined cover inequalities�


���
 Theorem �Extended and Combined Cover Inequalities	
Let MKP be a multiple knapsack problem� PMKP the associated multiple knapsack polytope�
and

b
P SSP�G� the set packing relaxation of PMKP�

�i� Every extended cover inequality for PMKP is the expansion of an edge inequality forb
P SSP�G��

�ii� Every combined cover inequality for PMKP is the expansion of an edge inequality forb
P SSP�G��

��� The ��� Programming Problem with Nonnegative Data

We have seen in the previous sections examples of set packing relaxations for special combi�
natorial optimization problems� To give a perspective in a more general direction
 we want
to draw the reader�s attention now to a set packing relaxation for a class of ��	 integer pro�
gramming problems that was suggested by Bixby � Lee �	

� � This construction assumes
only nonnegativity of the constraint matrix
 but no particular structure� it yields clique
 odd
cycle
 etc� inequalities in the natural variables�
Set packing constraints of this type form one of the rare families of structural cuts for general
integer programming problems
 i�e�
 cuts that are derived by searching
 detecting
 and utiliz�
ing some combinatorial structure in an a priori unstructured constraint system� Set packing
relaxations try to set up a con�ict graph
 the famous single knapsack relaxation of Crowder

Johnson � Padberg �	
�� analyzes the diophantine structure of an individual row
 Padberg

van Roy � Wolsey �	
�� �s �ow covers are based on combinatorial properties of �xed charge
problems
 and the feasible set inequalities of Martin � Weismantel �	

� come from inter�
sections of several knapsacks� These classes of structural cuts are the �rst of only three types
of tools to solve ��	 integer programs by branch�and�cut� Enumeration is
 unfortunately
 the
second and the third consists of general cutting planes for ��	 integer programs� Gomory
�	
�� �s cuts
 see Balas
 Ceria
 Cornu�ejols � Natraj �	

� for an exciting recent renaissance

lift�and�project cuts
 see Balas
 Ceria � Cornu�ejols �	

� 
 or Lov�asz � Schrijver �	

	 �s
matrix cuts� To put it brief� There is signi�cant interest in identifying further families of
structural cuts for general integer programs�



�� Set Packing Relaxations

One class of integer programs with an embedded set packing structure consists of ��	 programs
with nonnegative constraint systems

�IP�� max wTx A�x � b�� x � f�� 	gn�

Here
 A� � Zm�n� and b� � Zm� are a nonnegative integral matrix and right�hand side vector

and w � Zn is an integer objective� no further structural properties are assumed� The polytope
associated to this program is denoted by PIP� �
Bixby � Lee �	

� propose for such programs the following �natural� set packing relaxation�
The con�ict graph G ! �V�E� of the relaxation has the column� indice�s of the matrix A�

or
 if we want
 the variables
 as its nodes
 i�e�
 V ! f	� � � � � ng� The edges are de�ned in terms
of the identity aggregation scheme � � Rn � Rn that has

�i�x� �! xi� i ! 	� � � � � n�

There is an edge between two columns i and j if and only if not both of them can be contained
in a solution to �IP�� at the same time
 i�e�


ij � E 
� A�
i� ' A�

j� 
� b� 
� �i�x� ' �j�x� � 	 �x � PIP� � Z
n�


���� Lemma �SetPackingRelaxation of IP�� Bixby�Lee������	 ��PIP�� �

b
P SSP�G��

The natural set packing relaxation yields clique
 odd cycle
 and other set packing inequalities
in the original variables� An extension of the natural set packing relaxation to the mixed
integer case is currently studied by Atamturk
 Nemhauser � Savelsbergh �	

� �
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Chapter �

An Algorithm for Set Partitioning

Summary� We document in this chapter the main features of a branch�and�cut algorithm
for the solution of set partitioning problems� Computational results for a standard test set
from the literature are reported�

Acknowledgement� We thank Robert E� Bixby� for many discussions about out�pivoting
and for making this method available in the CPLEX callable library�

��� Introduction

This chapter is about the design and the implementation of a branch�and�cut algorithm for
the solution of set partitioning problems� Our code BC� We assume for our exposition that the
reader is familiar with the features of such a method� In particular
 we do neither discuss the
theoretical background of cutting plane algorithms
 see Gr�otschel
 Lov�asz � Schrijver �	
�� 

nor the basic features and the terminology of branch�and�cut codes
 see Nemhauser � Wolsey
�	
�� 
 Padberg � Rinaldi �	

	 
 Thienel �	

� 
 and Caprara � Fischetti �	

� � In fact
 our
algorithm BC is to some extent a reimplementation of Ho�man � Padberg �	

� �s successful
code CREW OPT� The �owchart of BC coincides with the one of CREW OPT
 and the same applies
to the primal heuristic
 pool and searchtree management
 and even to the data structures�
Thus
 we elucidate only those parts of our implementation where we see some contribution�
This applies to the mathematical core of the algorithm� Separation and preprocessing�
Our description is intended to give enough information to allow a reimplementation of the
routines in BC� We do
 however
 neither discuss software engineering and programming issues

nor do we report the computational tests that guided our design decisions�

�Robert E� Bixby� Dept� of Math�� Univ� of Houston� TX ����
�	
��� USA� Email bixby�rice�edu�
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Our �rst contribution is a separation routine� We have implemented a new family of cutting
planes for set partitioning problems� The aggregated cycle inequalities of Section ���� Re�
call that these inequalities stem from a set packing relaxation of the set covering problem�
Together with Nobili � Sassano �	

� �s k�projection cuts and the odd hole inequalities for
the set covering polytope
 see page �� in Subsection 	�
�	 of this thesis
 that have report�
edly been implemented by Ho�man � Padberg �	

� 
 these cuts form one of the very few
families of combinatorial inequalities for the set covering polytope that have been used in a
branch�and�cut algorithm�
Our second contribution concerns preprocessing� We have extended some known techniques
of the literature and explored their performance with probabilistic methods� We have also
investigated the interplay of iterated use of preprocessing operations with a dual simplex
algorithm� It turns out that much of the potential of preprocessing can only be realized after
certain degeneracy issues have overcome� We have developed a novel pivoting technique that
resolves this problem completely�
Pointers to other recent computational work on set partitioning problems are Atamturk

Nemhauser � Savelsbergh �	

� �Lagrangean relaxation with iterated preprocessing�
 Wedelin
�	

� �Lagrangean relaxation with a perturbation technique�
 and Chu � Beasley �	

� �pre�
processing and genetic algorithms��
This chapter is organized as follows� In Section ��� we discuss preprocessing� We give a
list of preprocessing operations from the literature and perform a probabilistic analysis of
their running time� The iterated application of such techniques in a simplex based branch�
and�cut algorithm runs into an unexpected obstacle� Degeneracy problems prevent us from
removing large redundant parts of the problem without destroying a dual feasible basis� We
show how to overcome this problem� Separation procedures are treated in Section ���� We
discuss implementation details of our routines for the detection of violated clique
 cycle
 and
aggregated cycle inequalities� Computational results are presented in Section ����
The subsequent sections resort to the following notation� We consider set partitioning prob�
lems of the form

�SPP� min w� 'wTx
Ax ! �
x � f�� 	gn�

where A � f�� 	gm�n and w � Zn are an integer matrix and a nonnegative integer objective
function
 respectively� � is the density of the matrix A
 � is supposed to be the maximum
number of nonzero entries in a column
 and � is the average number of entries in a column�
G ! G�A� is the column intersection graph associated to A� this graph gives rise to termi�
nology like �the neighbors ��j� of a column A�j� etc� The real number w�
 the o�set
 is a
positive constant that plays a role in preprocessing� We denote by x� an arbitrary but �xed
optimal basic solution of the LP relaxation of �SPP�
 its objective value by z�
 the reduced
costs by w
 and by F the set of fractional variables of x��
Associated to �SSP� are the set packing and set covering relaxations

�SSP� max w� ' wTx
Ax � �
x � f�� 	gn

�SCP� min w� ' wTx
Ax � �
x � f�� 	gn�

It is well known that all of these problems are NP�hard
 see Garey � Johnson �	
�
 � We do
not discuss further complexity issues here �see Emden�Weinert et al� �	

� for this topic��
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��� Preprocessing

Preprocessing or presolving is the use of automatic simpli�cation techniques for linear and
integer programs� The techniques aim at �improving� a given IP formulation in the sense
that some solution method works better� We are interested here in preprocessing for branch�
and�cut algorithms� These algorithms have LP �re�optimizations as their computational bot�
tleneck and their presolvers try to make this step more e�ective by �i� reducing the size of
and �ii� �tightening� IP formulations
 and by �iii� identifying �useful substructures�� Here

tightness is a measure for the quality of an IP formulation� We say that �IP� is a tighter for�
mulation than �IP�� if the integer solutions of both programs are the same
 but the solution
set of the LP relaxation of �IP� is contained in that of �IP���
There are many ways to put �i�*�iii� into practice� Fixing of variables
 removing redundant
constraints
 tightening bounds
 reduced cost �xing
 probing
 and constraint classi�cation
are just a few popular examples of reductions
 as preprocessing techniques are also called�
Surveys on preprocessing for IPs can be found in Crowder
 Johnson � Padberg �	
�� 
 the
textbook Nemhauser � Wolsey �	
��
 Section I�	�� and the references therein
 Ho�man �
Padberg �	

	 
 and Suhl � Szymanski �	

� 
 while Brearley
 Mitra � Williams �	
�� 
 the
lecture notes of Bixby �	

� 
 and Andersen � Andersen �	

� review �closely related� LP
presolving techniques� Most of these methods are simple � but amazingly e�ective
 as the
above publications� computational sections document�
Special problems o�er additional potential for preprocessing
 and set partitioning is one of
the best studied classes of integer programs in this respect� The following subsections sur�
vey preprocessing techniques for set partitioning
 discuss e%cient implementations
 analyse
expected running times
 and report some computational results�

	���� Reductions

We give next a list of reductions for set partitioning problems that subsumes �as far as we
know� all suggestions of the literature� Each technique describes
 in principle
 a transforma�
tion and a back transformation of a given set partitioning problem into another one and a
correspondence of �optimal� solutions
 but as the reductions are quite simple
 we state them in
a shortcut informal way as in Andersen � Andersen �	

� � These reductions will be discussed
in more detail in Subsections �����*����	��

P
 �Empty Column	 �j � A�j ! �
If column j is empty� one can

�i
 eliminate column j if wj � �

�ii
 eliminate column j and add wj to w� if wj 	 ��

P� �Empty Row	 �r � Ar� ! �
If row r is empty� the problem is infeasible�

P
 �Row Singleton	 �r� j � Ar� ! eTj
If row r contains just one column j� one can ��x xj to one�� i�e��

�i
 eliminate column j and add wj to w��

�ii
 eliminate all columns i � ��j� that are neighbors of column j� and

�iii
 eliminate all rows s � suppA�j that are covered by column j�
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P� �Dominated Column	 �i� J � A�i !
P

j�J Aj� � wi �
P

j�J wj � i 
� J
If column i is a combination of other columns j � J and wi �

P
j�J wj� one can eliminate

the �dominated� column i�

P�� �Duplicate Column	 �i� j � A�i ! A�j � wi � wj � i 
! j
If two columns i 
! j are identical and wi � wj� one can eliminate column i�

P� �Dominated Row	 �r� s � Ar� � As�� r 
! s
If row r is contained in row s� one can

�i
 eliminate all columns j � supp�As� �Ar�� and

�ii
 eliminate the �dominated� row r�

P�� �Duplicate Row	 �r� s � Ar� ! As�� r 
! s
If two rows r 
! s are identical� one can eliminate the �duplicate� row r�

P� �Row Clique	 �r� j � suppAr� � ��j� � j 
� suppAr�

If all columns in row r are neighbors of a column j not in row r� one can eliminate column j�

P� �Parallel Column	 �r� s� i� j � Ar� �As� ! eTi � eTj � r 
! s� i 
! j
If two rows r 
! s have a common support except for two elements i 
! j� one of them contained
in row r and the other in row s� the variables xi ! xj are �parallel�� and one can

�i
 eliminate columns i and j if they are neighbors� i�e�� ij � E�G��

or

�ii
 merge column i and j into a �compound� column A�i 'A�j with cost wi 'wj otherwise�

P� �Symmetric Di�erence	 �r� s� t� j � Ar� � As� �At� ' �eTj � r 
! s� r 
! t� s 
! t
If row r contains all columns that are in row s� but not in t� and some column j that is in
row t� but not in s� one can eliminate column j�

P�� �Symmetric Di�erence	 �r� s� t � suppAr� � supp�As� �At��� r 
! s� r 
! t� s 
! t
If row r covers the symmetric di�erence of rows s and t� one can

�i
 eliminate all columns j � supp�As� �At�� in the symmetric di�erence and

�ii
 eliminate row s�

P� �Column Singleton	 �r� j � A�j ! er � �j suppAr�j ! � � �s � Ar� � eTj � As��
If column j is a unit column er and either row r is a �doubleton� �has only two nonzero
elements
 or row r� with arj set to zero� is covered by some other row s� one can

�i
 substitute xj ! 	�
P

i��j arixi in the objective to obtain �w� ' wj� ' �wT� wjAr��x�

�ii
 eliminate column j� and

�iii
 eliminate row r�

The next two reductions assume knowledge of an upper bound zu

zu � min wTx
Ax ! �
x � f�� 	gn

on the optimal objective value of the set partitioning problem and knowledge of LP infor�
mation� P
 requires an optimal basis of the LP relaxation of �SPP� and associated data
 in
particular the objective value z�
 the solution x�
 and the reduced costs w
 P	� lower bounds z
on the values of certain LPs� For these reasons
 rules P
 and P	� are called LP based�
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P� �Reduced Cost Fixing	 �j � �x�j ! � � zu � z� ' wj� � �x�j ! 	 � zu � z� � wj�

�i
 If x�j ! � and zu � z� ' wj� one can eliminate column j�

�ii
 If x�j ! 	 and zu � z� � wj� one can �x xj to one�

P�
 �Probing	 �j� z� xj � zu � z � min cTx�Ax ! �� � � x � �� xj ! xj� xj � f�� 	g

�i
 If zu � z � min wTx�Ax ! �� � � x � �� xj ! �� one can �x xj to one�

�ii
 If zu � z � min wTx�Ax ! �� � � x � �� xj ! 	� one can eliminate column j�

Some of these reductions are �folklore� and do not have a genuine origin in the literature� But
however that may be
 P�*P� appear in Balinski �	
��
 page ��� �in a set covering context�

P	*P� and P� in Gar�nkel � Nemhauser �	
�
 
 and P	*P� in Balas � Padberg �	
�� � P�
is due to Ho�man � Padberg �	

� 
 substitution techniques like P� are discussed by Bixby
�	

� � P
 was introduced by Crowder
 Johnson � Padberg �	
�� 
 probing techniques like
P	� are mentioned in Suhl � Szymanski �	

� 
 some related procedures of similar �avour in
Beasley �	
�� �for set covering problems��
Given all these reductions
 the next point is to devise a good strategy for their application�
As the application of one rule can result in additional possible simpli�cations for another
rule
 one usually applies reductions P�*P� in a loop
 doing another pass until no further
simpli�cations can be achieved� P
 and P	� can be applied at any other point� Once the
LP and�or bounding information is computed
 these reductions are independent of the other
rules�
Table ��	 gives an impression of the signi�cance of preprocessing for the solution of set
partitioning problems� The �gures in this table were obtained by preprocessing the Ho�man
� Padberg �	

� acs test set of �� set partitioning problems from airline crew scheduling
applications with the preprocessing routines of our code BC
 that uses a subset of reductions
P	*P	�� The �rst column in Table ��	 gives the name of the problem
 and the next three
columns its original size in terms of numbers of rows
 columns
 and matrix density �
 i�e�

the percentage of nonzero elements in the matrix� Applying some of the non LP�based
preprocessing rules P	*P�
 the problems are reduced as indicated in the three succeeding
�Presolved� columns� The remainder of the table goes one step further� After solving the
LP relaxation of the preprocessed problem and calling some primal heuristic
 the problem is
preprocessed again� This time
 knowledge of the LP lower bound z� and the upper bound zu
from the heuristic allows also the use of LP�based techniques
 in this case reduced �xing �P
��
The results of this second round of preprocessing
 using a subset of reductions P	*P

 are
reported in the �Presolved� LP�based� section of the table� The success of the LP based
methods depends on the size of the gap between the heuristic upper bound zu and the LP
lower bound z�
 and this gap �zu � z���zu
 given as a percentage of the upper bound �the
possible improvement of zu�
 is reported in column �Gap�� A value of '� means that no
valid solution is known� Sometimes
 the LP relaxation is already integral and the problem is
solved� In this case
 indicated by the entry �LP� in the Gap column
 it is not necessary to
compute a further upper bound or perform a second round of preprocessing
 hence the dashes
in the corresponding preprocessing columns� One problem
 nw��
 was even solved in the �rst
preprocessing phase such that not a single LP had to be solved� this outcome is indicated by
the entry �PP� in column Gap� The �nal �Time� column gives the sum of the preprocessing
times for
 depending on the problem
 one or two calls to the preprocessor in CPU seconds on
a Sun Ultra Sparc 	 Model 	��E�
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Original Presolved Gap Presolved� LP�based Time
Name

Rows Cols � Rows Cols � � Rows Cols � Sec�

nw�� �� �
� ���� �� ��� ���� ���� �� �� ���� ����

nw�� �
 �
� ���� �� ��� ���� ���� �� �� ���� ����

nw�� �
 ��� ���� �
 ��� ���� ��
� �� �� ���� ����

nw�� �� ��� ���� �
 ��
 ���	 LP � � � ����

nw�� �� ��� ���� �
 ��� ���� LP � � � ����

nw�� �� ��� ���� �� ��� ���� 
�
� �
 �� ���� ����

nw�� �� ��
 ���� �� ��� ���� ���� �� �	 ���� ����

nw�� �� ��� ���� �� ��� ���� LP � � � ����

nw�	 �� ��� ���� �� ��� ���� 	��� �� �
 ���
 ����

nw�� �� �	� ���� �� ��� ���� ���� �� �	 ���� ����

nw�� �
 ��� ���� �� ��� ���	 ���� �� �� ���� ����

nw�
 �
 ��� ���� �
 ��
 ���� ���� �� �� ���� ����

nw�� �� ��� ���� �� ��� ���� ��	� �� �� ���� ����

nw�� �� 	�� ���� �� ��� ���� LP � � � ����

nw�� �� 	

 ���	 �� ��� ���	 ���	 �� �� ���� ����

nw�� �	 ���� ���
 �	 �

 ���� ��
� �� �� ���	 ����

nw�� �� ���� ���� �� 	�� ���� ����� �� ��� ���� ����

nw�� �� ���� ���� �� 		� ���� ���� �� �	 ���� ����

nw�
 �� ���� ���� �� 
�� ���� ���� �� �
 ���� ����

nw�� �
 ���� ���� �
 
�� ���� ����� �� �� ���	 ����

nn�� �	 ���� ���� �� 
	� ���� 	��� �� 
	� ���� ����

nn�� �� ���
 ���� �
 	�� ���� ���� �� �
 ���	 ����

nw�� �� ���
 ���� �� ���� ���� 	��� �
 
� ���	 ����

nw�� �� ��	� ���� �� ���	 ���� �
 �� ���	 ���� ����

nw�	 �	 ���� ���� �	 ���� ���� ����� �� �		 ���� ���	

nw�� �� ���� ���� �� �		� ���� �
�	� �� �		� ���� ����

nw�� �� ���� ���
 �� �	�� ���
 ���� �� �� ���� ����

nw�	 �� �	�
 ���� �� ���� ���� LP � � � ����

nw�� �� ���	 ���� �� ���� ���� ��
� �� �
 ���� ����

nw�	 �� ���� ���� �� ��
� ���
 LP � � � ����

nw�
 �� ���� ���� �� ���� ���� LP � � � ����

aa�� ��� ��
	 ���� ��� �
�	 ���� LP � � � ����

nw�� �� ���� ���	 �� �
�� ���� �	�
	 �� 		� ���	 ���	

aa�� ��� ��
� ���� ��� ���� ���� ���� ��
 	
� ���� ���	

kl�� �� ���
 ���� �� �
�� ���� ���� �� ���� ���� ����

aa�� 	�� 	��	 ���� ��� ���� ���� ���� ��� ���� ���� ����

aa�� 	�� 	��� ���� ��	 �
�� ���� ���� ��	 �	�� ���� ���


nw�� �
 		�� ���� �	 �
�� ���� ���� �� �� ���
 ����

nw�� ��� ����� ���� 	� �
�� ���	 	��� 	� ��
	 ���	 ����

us�� ��� ����� ���� �� 	
�� ���� LP � � � ����

nw�� �� ����� ���� �	 ��
�� ���� ���� �� ��� ���� ����

us�� ��� �	��� ���� 
	 ��	� ���	 ���� �
 	� ���� ����

nw�� �
 ����
 ���� �� �	
�� ���� ���� �� ��� ���� ����

nw�� ��� ��
�� ���� ��� ����
 ���� LP � � � ����

us�� �� 	���� ���	 �� ����� ���� LP � � � ����

nw�� ��� 	�	�
 ���� ��� 	���	 ���� LP � � � ���


nw�
 �� ��	��� ���� �� �	��� ���� ����	 �� ����� ���� ��	�

nw�� �� �����
 ���� �	 
���
 ���� LP � � � ����

nw�� ��
 ��	��� ���� � � ���� PP � � � ����

nw�� �� �		��� ���� �	 ����	� ���� LP � � � 
���

kl�� �� ���

 ���	 �
 ����� ���	 ���� �� ���� ���	 ����

us�� ��� ������� ���
 	� �����	 ���� ���
 	� ����� ���� ���
�

nw�� �� 	��	� ���� �� ���	
 ���� 
��� �� ����� ���� ����

aa�� ��� ��
� ���� ��� ���� ���� ���� ��� ��	
 ���� ����

aa�� 	�� 	
�� ���� ��� ���� ���� ���� ��� ��	� ���� ����
P

�� ���	 ������
 � ���� �����
� � � ���� ��
��
 � ����	�

Table ��	� Preprocessing Airline Crew Scheduling Problems�
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The �gures in Table ��	 show that already without LP�based information
 the problem size can
often be reduced substantially by rules P	*P�� Using additional LP and heuristic information
leads often �but not always� to a further reduction in problem size of about an order of
magnitude
 and the preprocessing can be performed in a short time� Note that the matrix
density is essentially una�ected by preprocessing
 i�e�
 it is not true that �only very sparse or
dense parts are removed�� The extent of the reductions can be explained as a consequence of
the generation of the acs problems� The instances are the output of an automatic
 heuristic

and randomized column generation process that tends to produce redundant formulations for
various reasons that we can not discuss here�
The second goal of preprocessing
 namely
 tightening of the formulation
 could
 however
 not
be achieved� In all cases �except nw���
 the optimal objective values of the LP relaxations of
the original and the preprocessed problem are identical� �The values are not reported in the
table�� And in fact
 �strictly� dominated columns
 for example
 can not become basic in an
optimal solution anyway and neither does their identi�cation provide information that is not
also given by the LP solution
 nor does elimination of dominated columns help in the sense
that it leads to a di�erent LP solution� One can check that similar conclusions hold also for
most of the other preprocessing rules� only P�
 P��
 and P	� can potentially �x variables to
values that would not automatically be assigned to them by an optimal LP solution�
The last two paragraphs argued that the e�ect of preprocessing set partitioning problems is
less a tighter LP relaxation than a reduction is problem size� There are three main advantages
of solving smaller problems in a branch�and�cut context� First
 a better use of the cache� If
large contiguous parts of the problem data can be transferred into high�speed memory
 list
processing operations
 like the computation of inner products
 can be carried out much more
e%ciently� Note that some care has to be taken to pro�t from this e�ect� it is in particular
not enough to �x or eliminate variables just by adjusting bounds
 because this can result in
useless data being not only transferred into and out of the cache
 but also in �clogging� it�
Instead
 �xed columns must be purged from memory that is accessed for calculations in the
cache� A second advantage is that a reduction in the number of rows results in a smaller basis
and this speeds up the simplex algorithm� Third
 it is of course also true that elimination
reduces the number of arithmetic operations� Considering problem us��
 for example
 it is
clear that pricing out ��
��� columns is much faster than pricing out one million
 even if all
of the redundant ones are �xed by bound adjustments� To illustrate these e�ects
 we can
compare the total time to solve the LP relaxations of the �� original acs problems with the
time needed to solve the presolved instances� Preprocessing halves LP time from �������
to ����
�� seconds
 just as it halves the number of nonzeros
 and this trend can safely be
extrapolated� But simplex iterations
 as expected in the light of the above discussion
 are
nearly unchanged� 	�
��� with in comparison to 	�
	�� without preprocessing �using the dual
simplex algorithm of CPLEX �	

� 
 steepest edge pricing
 and turning o� the preprocessing
capabilities of this code
 again on a Sun Ultra Sparc 	 Model 	��E�� The numbers for problem
us�� are 		����� seconds��
� iterations to ����		� seconds���� iterations
 i�e�
 this problem
�that makes up about half of the test set in terms of nonzeros� does not bias the results of the
above comparison into a misleading direction� A rule of thumb for practical set partitioning
solving is thus that after solving the �rst one or two LPs
 the bulk of the data will have been
eliminated
 and the remainder of the computation deals with comparably small problems�
We close this introductory section with some general remarks on algorithmic aspects� At �rst
glance
 preprocessing appears to be completely trivial
 because it is so easy to come up with
polynomial time procedures for all rules except P� and indeed
 straightforward implementa�
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tions work well for small and medium sized problems� The only essential issue is to keep an
eye on exploiting the sparsity of the constraint matrix �e�g�
 by storing columns and rows as
ordered lists of their nonzero entries� and this is the only implementation detail mentioned in
most of the literature� For large scale problems
 however
 naive implementations will not work
any more� For example
 searching for duplicate columns by comparing all pairs is out of the
question for problems with 	��
��� or more columns
 although this algorithm has a polyno�
mial complexity of O�n�� operations �assuming that each column has at most some constant
number of nonnull entries�� Recent algorithms for large scale set partitioning problems of
Ho�man � Padberg �	

� and Atamturk
 Nemhauser � Savelsbergh �	

� thus �i� use only
simple preprocessing rules that are �ii� implemented in a more sophisticated way� Both of
these articles contain discussions on design and implementation of preprocessing routines�

The remainder of this section describes the design and implementation of the preprocessing
module of our set partitioning solver BC� Subsection ����� contains some preliminaries on data
structures� Subsections ����� to ����	� investigate the individual preprocessing rules P	*P	��
We describe and discuss our particular implementations and do a probabilistic analysis of the
expected running times� Subsection ����	� draws the readers attention to a con�ict that comes
up in repeated calls of preprocessing routines in a branch�and�cut framework� Elimination
of variables and�or rows can destroy the dual feasibility of the basis� We argue that this
phenomenon is a signi�cant obstacle and develop a pivoting technique that overcomes the
problem completely� The �nal Subsection ����	� puts the pieces together and describes the
global layout of the complete preprocessing module�

	���� Data Structures

We will see in the discussions of individual routines in the following subsections that the whole
task of preprocessing consists of doing various kinds of loops through the columns and rows
of the constraint matrix
 occasionally deleting some of the data� The data structures of the
preprocessing module must allow to perform these basic operations e%ciently and we discuss
in this subsection some basic issues that come up in this context� These explanations are a
preparation for the probabilistic analysis of the following subsection�

�
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� � � � � �

� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � �

� � � � � � �
� � � � � � �

� � � � � � �

�
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beg�� ! � � � � 		 		

cnt�� ! � � 	 � � �

ind�� ! 	 � � � � � � 	 � � � 	 �

Figure ��	� Storing Sparse ��	 Matrices in Column Major Format�

We use a representation of the matrix in row and column major format as ordered and
contiguous lists of the nonzero entries of the columns and rows� Figure ��	 gives an example
of column major format
 row major format is obtained by storing the transposed matrix in
column major format� The matrix in the example has � rows and � columns that are numbered
starting from �� Its 	� nonzero entries are stored by row index column wise
 in ascending
order
 and contiguously in an array ind��� The �rst three entries 	
�
 and � give the row
indices of the nonzero entries of column �
 the next four entries correspond to column 	
 and
so on� the empty column � has
 of course
 no entry� The arrays cnt�� and beg�� are used
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to locate the data for a particular column in the ind�� array� cnt�i� gives the number of
nonzero elements in column i
 and beg�i� denotes the starting index for data of this column
in the array ind� For more details
 see
 e�g�
 the manual CPLEX �	

� �
Column major format allows fast loops through columns� As an example
 consider the fol�
lowing C�type pseudocode to scan column i�

int nne�

register int �colpnt � ind � beg�i��

register const int �colend � colpnt � cnt�i��

for �� colpnt 	 colend� colpnt��
 f
nne � �colpnt�

� � � �� some further operations

g

Note that this loop requires per nonzero just one comparison of two pointers that can be
kept in registers
 one increment of a pointer in a register
 and one memory dereference
 i�e�

only three operations� The slowest of these is the dereference
 but this operation can bene�t
from loading the ind�� array
 or large contiguous parts of it
 into the cache� Note that this
doesn�t work for pointer oriented data structures if data got fragmented in the computer�s
main memory
 at least not if no additional precautions are taken� Note also that a pointer
oriented structure requires at least one additional pointer dereference�

The structure also o�ers various kinds of possibilities to eliminate columns conveniently� The
simplest method is to just set the cnt to zero� This technique results in some super�uous
data in the cnt and beg arrays
 and chunks of �dead� data in the ind array
 with the already
mentioned negative e�ects� At some point
 it hence pays to re�store the matrix
 eliminating
garbage of this type� this can be done in time linear in the number of remaining nonzeros�

Column major format is
 of course
 unsuited for any kind of row oriented operations� To
perform these e%ciently as well
 we store the matrix a second time in row major format� We
like to point out that this is still more memory e�cient than a pointer oriented representation

because only two entries are required for each nonzero �one ind entry for each nonzero in the
row and one in the column representation��

We have to pay for the simplicity of row and column major format when it comes to keeping
the two copies of the matrix synchronized � Eliminating columns with any one of the above
mentioned methods renders the row representation invalid �and vice versa�
 and the only
method to make them match again is to transpose the matrix
 i�e�
 to set up the row repre�
sentation from scratch� This can be done in time linear in the number of nonzeros in two
passes through the matrix� The �rst pass determines the number of entries per row
 and the
second pass puts the elements in their places� To keep this bookkeeping e�ort at a minimum

it is of course advisable to �rst perform all column oriented operations
 then transpose once

do row computations
 transpose once
 and so on� This strategy yields reasonable results� The
�rst round of preprocessing in Table ��	 spends 	���	� seconds out of a total of ������ in
transposition and these numbers are also representative for later stages of the computation�
This means that we pay a price of about 	�, in computation time for using the simple row
and column major format� It is not so easy to estimate how this compares to other possible
data structures because of the e�ect of additional operations performed in a row or column
scan and we have not implemented an alternative version
 but we feel that the above consid�
erations together with our computational �ndings justify the use of row and column major
format for preprocessing purposes�
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	���	 Probabilistic Analyses

We estimate in this subsection the expected running time of two basic list processing operations
that we will use frequently in the sequel� These results will allow us to compute expected
running times for the preprocessing rules of Subsection ����	� Our results are summarized in
the following Table ���� Here
 each number gives the expected running time for the application
of an entire rule
 i�e�
 the value O�n logn� for rule P�� gives the expected running time for
removing all duplicate columns and so on� A � means that we have not analyzed the rule�

Operation Expected Running Time

P� Empty Columns O�n�
P	 Empty Rows O�m�
P� Row Singletons O�mn� �amortized�
P� Dominated Columns �
P�� Duplicate Columns O�n log n�
P� Dominated Rows O�m���
P�� Duplicate Rows O�m logm�
P� Row Cliques �
P�M Row Clique Heuristic O

�
M�n��e�n��n��M��	� ��M



P� Parallel Columns �
P� Symmetric Di�erences �
P�� Symmetric Di�erences O�n���
P� Column Singletons O�n���
P
 Reduced Cost Fixing O�n�
P	� Probing �

Table ���� Estimating Running Times of Preprocessing Operations�

The �rst list processing operation that we consider is the lexicographic comparison of two
random ��	 sequences of in�nite length
 which is supposed to model a test whether two
columns or rows of a random ��	 matrix are identical or not� We will show that �under
certain assumptions� this test takes constant expected time� The second operation is the
iterative intersection of random ��	 sequences of �nite length� This time
 we think of a
situation where we want to �nd common rows in a set of columns or common columns in a
set of rows� Again
 it will turn out that the intersection of random ��	 sequences becomes
empty �fast��

Lexicographic Comparison of Two Random In�nite 
�� Sequences� We compute
in this paragraph the expected number of operations for a lexicographic comparison of two
in�nite random ��	 sequences in a certain uniform probabilistic model� Our analysis will be
based on the following assumptions�

�i� We look at in�nite random sequences of zeros and ones
 where the ones appear inde�
pendently with some probability � � ��� 	��

�ii� The sequences are stored in a sparse format as ordered lists of the indices of their
nonnull entries�

�iii� Two sequences �from f�� 	g
� are compared lexicographically by scanning their index
lists from the beginning
 doing as many comparisons as there are common entries in the
two index lists plus one additional comparison to detect the �rst di�erence�
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We have already pointed out that we want to use this setting as a model for a lexicographic
comparison of two columns or rows in a ��	 matrix �of a set partitioning problem�� In this
context
 assumptions �ii� and �iii� are canonical� �i� assumes identically and independently
distributed ones in the sequences� Formally
 such a sequence a belongs to a probability space

�f�� 	g
�A� P �

that has as its groundset the set of all ��	 sequences with an associated ��algebra A and a
probability distribution P such that the border distributions are binomial with parameter �

i�e�
 the two probabilities P �ai ! �� ! 	 � � and P �ai ! 	� ! �
 i � N
 exist and have the
stated values� This is certainly unrealistic� The model results in low probabilities for the
existence of duplicate columns and this obviously contradicts the computational �ndings of
Table ��	� But
 for want of something better
 we will nevertheless work with �i�� Making
the best of it
 we can be happy about the technical advantage that this model has only one
parameter
 the probability �
 which is to be identi�ed with the matrix density� Our goal will be
to obtain the expected number of operations to compare two ��	 sequences lexicographically
as a function of �� Considering in�nite sequences for this purpose has the advantage that the
analysis becomes independent of the number of rows or columns� As it takes certainly more
time to compare two in�nite sequences than two �nite ones
 this results in a model that is
valid for lexicographic comparisons of rows and columns�

In this �not completely speci�ed model� �f�� 	g
�A� P � consider the following random exper�
iment � Choose two ��	 sequences at random and perform a sparse lexicographic comparison
according to �iii�� Let the random variable Y� � f�� 	g
 � f�� 	g
 � N � f�g denote the
number of comparisons until the �rst two indices di�er� Assumptions �i�*�iii� suggest that the
probability that such a lexicographic comparison takes k comparisons of individual indices of
nonzeros �k � 	� should be

P �Y� ! k� !

X
j�k

�
j � 	

k � 	

�
��
k����	� ���

�

j����
k���



���	� ��� k � N� ���	�

In this expression
 �� is the probability that a common nonzero appears at a random position
in both ��	 sequences
 and �	 � ��� is the probability for a common zero� There are

�j��
k��



possibilities to distribute k � 	 common ones over the �rst j � 	 positions in both sequences
that account for the �rst k � 	 comparisons
 and�

j � 	

k � 	

�
��
k����	� ���

�

j����
k���



is the corresponding probability� The �nal term ���	 � �� is the probability for a di�erence
in position j that is detected in the kth and last comparison� The following theorem assumes
that the model �f�� 	g
�A� P � has property ���	��

��
�� Lemma �Lexicographic Comparison of Two Random 
�� Sequences	
Let � � ��� 	� and �f�� 	g
�A� P � be a probability space� Let further Y� be a random variable
that counts the number of index comparisons in a lexicographic comparison of two random
elements a� b from �f�� 	g
�A� P �� If condition ���
� holds� then�

E�Y�� ! ��� ����� � ��� � 	�
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Proof� The term P �Y� ! k� can be simpli�ed to

P �Y� ! k� !

X
j�k

�
j � 	

k � 	

�
��
k����	� ���

�

j����
k���



���	 � ���

! ��
k������	 � ��


X
j�k

�
j � 	

k � 	

��
	� ���� ��



j�k�
! ��
k������	 � �� 	

	�
���� ��


k
!

��	 � ��

�

�
�

�� �

�k
!

�� ��

�� �

�
�

�� �

�k��
! ��	� ��k���

where � �! ��� ������ � ��� In this calculation
 the identity

	�
���� ��


k !


X
j�k

�
j � 	

k � 	

��
	� ���� ��



j�k�
arises from considering the Taylor series around t� ! � of the function

f � ��	� 	� � R� t �� �	� t��k !

X
j��

�
j ' k � 	

k � 	

�
tj !


X
j�k

�
j � 	

k � 	

�
t
j�k�

at t ! 	� ���� ���

Since � ! �� � ������ � �� � ��� 	� for � � ��� 	�
 the function p � N � ��� 	 � k �� P �Y� ! k�
is the density of the geometric distribution Geo	 on �N with parameter �� If we consider

motivated by the above arguments
 the term Geo	�fkg� ! P �Y� ! k� as the probability that
exactly k comparisons of indices are necessary to compare two in�nite ��	 sequences that
are stored in sparse format
 with the ones occurring independently at each position with
probability �
 the expected number of individual index comparisons is simply the expectation
of this distribution

E�Y�� ! E�Geo	� ! 	�� ! ��� ����� � ����

�

The number E�Y�� ! ��� ����� � ��� tends fast to one as matrix density decreases

E�Y�� !
�� �

�� ��
! 	 '

�

�� ��
��
���

	�

even though the we are considering sequences of unbounded length� For a comparably high
density of � ! ��� �cf� Table ��	� we would expect 	�	�� comparisons
 for � ! ��	 only 	���

and for � ! ���	 only 	���� comparisons�
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Iterated Intersection of Finite Random 
�� Sequences� The in�nite sequence model
of the previous paragraph is not suited for an analysis of iterated intersections of ��	 se�
quences
 because �under any reasonable assumptions� a �nite number of such sequences will
have an empty intersection with probability zero� Thus
 we modify our model to deal with
�nite sequences� We look at the sequences as the result of m independent repetitions of a ��	
experiment where the one has probability �� Formally
 this model can be stated as�

f�� 	gm�
Nm

i�� �f���g�Bim��


�

the m�fold product of the model
�
f�� 	g� �f���g �Bi���



that describes a single experiment �here


Bim�� denotes the binomial distribution with parameters m and ��� This �nite model is
 of
course
 subject to the same criticism as its in�nite brother�
To analyze the sequence intersection algorithm
 consider the following random experiment�
Initialize an index set R as R �! f	� � � � �mg
 draw one sequence from f�� 	gm after the other
at random
 and update the set R by intersecting it with the sequence�s support� this process
is continued forever� Let a random variable Xm�� count the number of sequence intersections
until R becomes empty for the �rst time�

��
�
 Lemma �Iterated Intersection of Random 
�� Sequences	

Let � � ��� 	� and
�
f�� 	gm�

Nm
i�� �f���g�Bim��



be a probability space� Let further Xm�� be a

random variable that returns for an in�nite number of randomly drawn sequences a�� a�� � � �
from

�
f�� 	gm�

Nm
i�� �f���g�Bim��



the smallest number k�	 such that �ki�� suppai ! �� Then�

E�Xm��� � m���	� �� � m� ! ��

Proof� The �rst step to compute E�Xm��� is to note that the probability for k sequences to
have a common one in some place is �k
 not to have a common one in some place is 	 � �k

to have empty intersection in all places is �	 � �k�m
 and the probability for k sequences to
have nonempty intersection in some of their m places is

P �Xm�� � k� ! 	� �	� �k�m� k � N�

The expectation can now be computed as

E�Xm��� !

X
k��

kP �Xm�� ! k�

!


X
k��

P �Xm�� � k� !


X
k��

	� �	� �k�m !


X
k��

	m � �	� �k�m

�

X
k��

m	m��
�
	� �	� �k�



!


X
k��

m�k ! m

�
	

	� �
� 	

�
! m���	� ���

Here
 the inequality

	m � �	� �k�m � m 	m��
�
	� �	� �k�



follows from applying the mean value theorem to the function f � R � R� t �� tm� �

Considering the term 	��	 � �� as a constant
 we arrive indeed at about m� ! � sequences
that have to be intersected� Note that this number does not count the number of operations
in the iterated sequence intersection algorithm
 but the number of intersections�
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	���
 Empty Columns� Empty Rows� and Row Singletons

Reductions P�
 P	
 and P� are trivial and there is not much to say about their implementation�
To �nd empty columns it is enough to go once through the objective and through the cnt��

array of the matrix�s column representation
 which can be done in O�n� time� Empty rows
are identi�ed analogously in O�m� time� The neighbors of a row singleton j are identi�ed as
follows� Scan column j� each nonzero entry identi�es a row and all entries in this row
 except
for the singleton j itself
 denote neighbors of the singleton and can be eliminated� Note that
a nonzero in a row is used at most once to identify the neighbor of a row singleton
 i�e�
 the
routine has linear amortized running time over all passes�

	���� Duplicate and Dominated Columns

Elimination of duplicate columns is a striking example for the e�ectiveness of even very
simple preprocessing rules� Table ���
 that gives statistics on the success of BC�s individual
non LP based preprocessing subroutines when applied to the Ho�man � Padberg �	

� 
airline crew scheduling test set �in �Pass� many passes�
 shows the impact of this simple
reduction� A quick glance at the table is enough to see that removing duplicate columns is
the most signi�cant preprocessing operation in terms of reduction in the number of nonzeros
and columns �but not in rows
 of course�� One reason for this was already mentioned earlier�
The acs problems
 as many other �real world� set partitioning instances
 were set up using
automatic column generation procedures that produce the same columns more than once� A
second reason is that identical columns can very well correspond to di�erent activities� In
airline crew scheduling
 for example
 two rotations may service the same �ight legs
 but on
di�erent routes at di�erent costs�

The implementations of the literature seem to identify duplicate columns by comparisons of all
pairs of columns enhanced by hashing techniques� Ho�man � Padberg �	

� compute a hash
value for each column
 quicksort the columns with respect to this criterion
 and compare all
pairs of columns with the same hash value� The hash value itself is the sum of the indices of the
�rst and the last nonnull entry in a column� Atamturk
 Nemhauser � Savelsbergh �	

� use
the same algorithm
 but a more sophisticated hash function� They assign a random number to
each row and the hash value of a column is the sum of the random numbers corresponding to
its nonnull entries� Both procedures do
 in the worst case
 a quadratic number of comparisons
of two columns�

BC�s algorithm does an �expected� number of O�n log n� comparisons by simply �quick�sorting
the columns lexicographically� We remark that this strategy is particularly easy to implement
calling
 e�g�
 the C�library�s qsort�	�function� In practice
 one can slightly improve the run�
ning time by applying some linear time presorting operation to the columns using
 e�g�
 some
hashing technique� BC puts the columns into �buckets� according to the column cnt �see
Subsection ������
 i�e�
 the number of nonnull entries
 and sorts the individual buckets as
described above�

To estimate the expected running time of BC�s quicksorting procedure
 we resort to Lemma ����	
that states that in a certain uniform probabilistic model the expected number of operations
to compare two random columns is constant �for bounded matrix density�� Since uniform dis�
tribution of the sorted items in the partitions is an invariant of the quicksort algorithm
 this
results in an expected complexity of the complete procedure for removing duplicate columns
of O�n logn� operations�
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Original P� P��
Name

Rows Cols
P�� Pass

Rows Cols
P�� P� P���

Rows Cols
P	

nw�� �� �
� �� � � � � � � � � �

nw�� �
 �
� �� � � � � � � � � �

nw�� �
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nw�� �� ��� ��� � � � � � � � � �
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nw�
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nw�� �� ���
 ��� � � � � � � � � �
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aa�� ��� ��
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Table ���� Analyzing Preprocessing Rules�
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Elimination of dominated columns is a generalization of removing duplicate columns� The
latter reduction is the special case where the set J is restricted to contain just a single
member� The main di%culty in implementing the general rule is
 of course
 to �nd this set J
in an e%cient way� The only known algorithm seems to be enumeration
 which is out of the
question even for medium sized problems� This and the already mentioned property of the LP
relaxation to keep dominated columns at zero values in optimal solutions anyway can explain
the apparent lack of implementations of this rule in the literature and the preprocessor of our
algorithm BC does also not search for dominated columns� We remark that there are heuristic
procedures for the set covering variant of the reduction
 see Beasley �	
�� �

	���
 Duplicate and Dominated Rows

Removing duplicate rows of a ��	 matrix is equivalent to removing duplicate columns from
the transpose� Hence
 the implementation of this operation is governed by exactly the same
considerations as for the columns� The probabilistic analysis carries over as well
 since it
assumes only the independent random occurrence of ones in the matrix with probability
equal to the density� The result is an expected number of O�m logm� index comparisons to
remove all duplicate rows�

This favorable running time does not entirely show up in our computations for the acs test
set� The reason is that these instances come ordered in a �staircase form� with sequences
of consecutive ones in the rows
 which increases the probability of common nonzeros in two
rows� This does not �t with the analysis and leads to an increase in running time of the
procedure�

Figure ���� Bringing Set Partitioning Problem nw�� �	� � 	
�� into Staircase Form�

A simple way out of this problem would be to permute rows and columns randomly
 but
staircase form also has its advantages elsewhere� Since removing duplicate rows is not a
bottleneck operation
 we opted to leave the matrices as they are and employ more elaborate
presorting techniques instead� We use a two level hashing
 �rst assigning the rows to �buckets�
according to the number of nonzero entries �as we did for the columns� and then subdividing
these buckets further into subbuckets of rows with the same sum of nonzero indices� The
individual subbuckets are sorted using shakersort �an alternating bubblesort with almost
linear expected running time for small arrays� for �small� buckets �� � elements in our
implementation� and quicksort else� With this tuning
 removing duplicate rows takes about
the same time as removing duplicate columns�

As was already pointed out earlier
 removing rows from a set partitioning problem is partic�
ularly advantageous for branch�and�cut solvers
 because it reduces the size of the LP basis
which has a quadratic impact on parts of the LP time like factorization� For this reason

extending the removal of duplicate rows to dominated rows is of signi�cant interest� Use of
the latter reduction is reported by Ho�man � Padberg �	

� and Atamturk
 Nemhauser �
Savelsbergh �	

� �
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BC�s procedure to remove dominated rows is based on the sequence intersection algorithm of
Subsection ������ It exploits the simple observation that the set of rows that dominate some
row Ar� can be expressed as the �intersection of the columns in this row��

j�suppAr�

suppA�j�

The method is simply to compute this set by intersecting the columns iteratively
 stopping
as soon as either r is the only row left in the set or when there is exactly one additional last
candidate row
 that is compared directly to r�
We will argue in the next paragraph that one can expect the stopping criterion in this proce�
dure to apply after about � intersections of columns� Considering about � nonzero elements
in each column and
 if necessary
 one more �see Subsection ������ in the �nal comparison of
two columns
 this results in an expected O���� operations per row� Doing this m times for
m rows
 we expect to remove all dominated rows in O�m���
 or
 if one likes this better
 in
O�m���� steps�
To estimate the number of column intersections until the stopping criterion applies
 we will
make use of Lemma ������ We claim that E�Xm����� is an upper bound on the expected num�
ber of intersections in the column intersection algorithm� To see this
 note that all columns
considered in the algorithm have an entry in row r
 but their remainders are distributed

according to the model
�
f�� 	gm���

Nm��
i�� �f���g�Bim����

�
for one row less
 namely
 row r�

In this m� 	�row model
 E�Xm����� counts the number of intersections until no row is left

which corresponds
 in the original m�row model
 to the number of intersections until only
row r is left� This ignores
 of course
 the possibility to stop earlier if jRj � � �in the m�row
model�
 and hence E�Xm����� is an upper bound on the number of columns considered by
the algorithm�

	���� Row Cliques

Elimination of columns that extend a row clique seems to have been used for computation by
Chu � Beasley �	

� � Using the same rules as Ho�man � Padberg �	

� �P	
P�
P��
P��

and P�� otherwise
 they report a slightly bigger reduction in problem size� A straightforward
way to implement the rule would be to tentatively set each variable to one
 all its neighbors
to zero and check whether this contradicts some equation� This algorithm requires
 however

one row scan for each nonzero element of the matrix� This is not acceptable
 and as far as
we know
 nobody has suggested a better method to implement this reduction� But we will
argue now and give some computational evidence that an exact implementation of this rule
is not worth the e�ort�
We would expect from the analysis of the sequence intersection algorithm in Subsection �����
that the probability of a column to intersect many other columns �in a row� is extremely small
such that the chances to eliminate such a column are at best questionable� This argument
can be made more precise using the probabilistic model of Subsection ������ As we computed
in the proof of Lemma ����� ibidem
 the probability for k columns to intersect in some of their
m rows is P �Xm�� � k� ! 	� �	��k�m� This probability
 which increases with larger � values
and larger m and decreases with larger k
 respectively
 is almost zero for the applications that
we have in mind� Considering �unfavorable� settings like a rather high density of � ! ��	 and
a comparably large number m ! 	��� of rows �cf� Table ��	�
 and a tiny row clique of just
� columns
 this number is 	� �	� 	��	����� � 	����
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For this reason
 and for the sake of speed
 BC implements a heuristic version of P� that consid�
ers only rows with at most some constant number M of entries �	�
 in our implementation��
The rule is denoted by P�M and the e�ect of P��� on the Ho�man � Padberg �	

� test set
can be seen from Table ���� To satisfy our curiosity
 we have tested the full rule P� as well�
Applying P� instead of P��� resulted in 	� more rows and �
	�� more columns removed by
the preprocessor
 at the expense of several days of computation time�
BC�s implementation of rule P�M is based on the formula

�
j�suppAr�

��j� !
�

j�suppAr�

�� �
s�suppA�j

suppAs�

�A �

Here
 the neighbors of �all columns in� row r are determined by intersecting the neighbor sets
��j� of the individual columns and these are computed by scanning all corresponding rows�
The complete routine determines
 for some given matrix A
 all rows with at most M nonzeros

and applies the above procedure to each of these rows�
To compute the expected complexity of this algorithm
 we consider again the probabilistic
model of Subsection �����
 that looks at each row of the m� n ��	 matrix A as the result of
n independent ��	 experiments with a probability of � for one� If the random variable Yn��
counts the number of nonzeros in a row
 we would expect P�M to take

O
�
mP �Yn�� �M� 	M 	mn��



! O

�
Mn��P �Yn�� �M�



operations� The �rst term mP �Yn�� � M� in this expression is the expected number of rows
with at most M nonzeros� Each of these M nonzeros �term two� corresponds to a column
with m� entries on average
 and for each of these entries
 we have to scan a row with about
n� entries�
Arguments in the next paragraph suggest that P �Yn�� �M� � �M ' 	�e�n��n��M��	� ��M �
This results in a total of

O
�
M�n��e�n��n��M��	� ��M



expected operations to perform P�M � For a numerical example
 consider �unfavorable� pa�
rameters of M ! 	�
 m ! 	��
 n ! 	���
 � ! ��	� the result is less than 	����
The upper bound on the probability P �Yn�� �M� can be computed as follows�

P �Yn�� �M� !

MX
i��

�
n

i

�
�i�	� ��n�i

� �	 � ��n
MX
i��

�
n�

	� �

�i
� �	 � ��n�M ' 	�

�
n�

	� �

�M
assuming n���	� �� � 	

! �M ' 	��	 � ��m�m�n
m 	

�
n�

	� �

�M
� �M ' 	� e��n
m�n��M��	� ��M

! �M ' 	� e�n��n��M��	� ��M �
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	���� Parallel Columns

Elimination or merging of parallel columns has been used by Ho�man � Padberg �	

� � The
rule requires some book keeping to be able to undo the merging of columns into compound
columns once a solution has been found� note that repeated merging can result in compound
columns that correspond to sets of original variables� BC does not implement this rule
 and
we do not analyze it here�

	���� Symmetric Di�erences

The symmetric di�erence rule P�� is particularly attractive
 because it leads to the elimination
of both rows and columns� An implementation based on checking all triples of rows is a
disaster
 but the column intersection technique of Subsection ����� can be used to design an
e%cient procedure� The algorithm in BC computes for each row s the column j with the
smallest support� Now we distinguish two cases�

�i� Column j is supposed to be contained in the symmetric di�erence of row s and some

not yet known
 row t� The only possible rows to cover the symmetric di�erence are the
rows in suppAj� n fsg� For each such row r
 the potential rows t are limited to the set�

i�suppAs�nsuppAr�

suppA�i

that agree with s on the columns that are not covered by r� This set is computed using
iterative column intersection and each of the resulting candidates t is checked�

�ii� Column j is supposed to be contained in the intersection of row s with some row t 
! s�
clearly
 s � suppA�j � For each such row t
 the symmetric di�erence supp�As� � At�� is
computed and a row r covering this di�erence
 i�e�
 from the set�

i�supp
As��At��

suppA�i

is determined by means of iterative column intersection�

A heuristic estimate of the running time of this procedure is as follows� In case �i�
 we expect
to consider a column with less than the mean of � ! m� nonzeros� For each nonzero
 we apply
the column intersection algorithm which takes O���� operations and yields �less than� O���
candidate rows t� For each of these candidate rows
 we scan three rows which takes O�n��
operations� We would thus expect that performing �i� once for each of m rows takes a total
of O

�
m 	 � 	 ��� ' �n��



! O

�
m���	 ' n�m�



operations� In case �ii�
 we consider the same

column with expected � nonzeros� For each of these entries
 we scan two rows to compute a
symmetric di�erence
 which takes O�n�� operations� Then the column intersection algorithm
with O���� operations is applied
 and
 eventually
 � candidate rows checked
 taking another
O��n�� operations� This results in O

�
m 	 � 	 �n� ' �� ' �n��



overall operations
 which is

of the same order as in the �rst case� Thus
 the total expected number of operations in this
procedure is an acceptable

O
�
�m ' n���



! O�n����

The same technique could also be used to implement the generalization P� of this rule
 but

unfortunately
 this was not done for the preprocessing module of BC�
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	����� Column Singletons

Elimination of rows and columns using column singletons is a special case of a more general
substitution operation� This technique works as follows� Consider an integer program

min w� 'wTx Ax ! b� Cx � d� l � x � u� x � Zn

with an objective that contains a constant o�set term w�
 some equations
 inequalities
 and
lower and upper bounds �possibly ��� on the variables� Without loss of generality we can
assume a�� to be positive and bring the �rst equation into the form

x� ! b��a�� �
X
i��

a�i�a��xi�

This equation can be used to eliminate x� by Gaussian elimination in the objective
 the other
constraints
 and the bounds� The result of this operation is one variable �x�� and one con�
straint �A��x ! b�� less
 potential �ll in the equations and inequalities
 and a transformation
of the two bounds l� � x� � u� and the integrality stipulation x� � Z into the form

b� � a��u� �
X
i��

a�ixi � b� � a��l� and b��a�� �
X
i��

a�i�a��xi � Z� �����

Sometimes these constraints will be redundant� One restrictive but relevant and easily de�
tectable case is when the transformed integrality stipulation on the right of ����� holds because
the equations Ax ! b have integer data
 i�e�
 A � Zm�n and b � Zm
 and a�� ! 	
 i�e�
 the
pivot is one and there is no division in the Gaussian elimination
 and when
 in addition
 the
transformed bounds are redundant because

b� � u� �
X
i��

min fa�ili� a�iuig �
X
i��

max fa�ili� a�iuig � b� � l�� �����

Under these circumstances
 the substitution results in a reduction in the number of rows and
columns of the program and we speak of preprocessing by substitution� This technique is
widely used in LP and MIP solvers
 e�g�
 in CPLEX �	

� � To control �ll
 implementations
generally restrict substitution to columns with few entries
 like singleton columns
 or to rows
with few entries
 like doubleton rows
 see Bixby �	

� �
An obstacle to the application of this rule to set partitioning problems is that the bound
redundancy criterion ����� is computationally useless in this application� Namely
 assum�
ing that all �xed variables have already been removed earlier
 condition ����� reads � �
j supp�A�� � e��j � 	� This can and will hold exactly for the trivial case of a doubleton row�
Another criterion is thus needed for set partitioning problems
 and

As� � Ar� � e�

for another row s 
! r
 as suggested in rule P�
 is a suitable choice to guarantee ������
Row s can be identi�ed by column intersection
 and this yields a running time of at most

O�m 	 �� 	 n�� ! O�n���

operations� At most m singletons can be eliminated
 each candidate requires one application
of the column intersection algorithm with O���� operations
 and the resulting candidate row
is checked and substituted into the objective in O�n�� operations�
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Note that the result of a sequence of substitutions is independent from the elimination order

but the amount of work is not� The three equation example in Figure ��� illustrates how this
is meant� In the example
 column singleton x� can be eliminated from equation �	�� After
the �rst row and column have been deleted
 x� can be eliminated using equation ���
 and
�nally x� from ���� Doing the substitutions in this order �x� from �	�
 x� from ���
 and
x� from ���� produces no �ll� Given the original matrix A and this ordered �substitution
history� list
 one can reproduce a P��processed problem in time proportional to the number
of nonzeros in the substitution equations by substituting these equations in the given order
into the objective and by eliminating rows and columns� Using some other order leads to
additional work� For example
 substituting in Figure ��� for x� �rst using ��� produces two
nonzeros in equation �	� at x� and x� and continuing to substitute in any order results in a
worst possible �ll�

x� ' x� ! 	 �	�
x� ' x� ' x� ! 	 ���

x� ' x� ! 	 ���

Figure ���� Eliminating Column Singletons in the Right Order to Avoid Fill�

This phenomenon can become relevant in a branch�and�cut context on two occasions� First

when a solution to a preprocessed problem has been found and substitutions have to be re�
versed
 this should be done in reverse order of the substitution history by computing the
values of the substituted variables from the corresponding original equations� note that this
does in general not work with some other elimination order� And second
 when a preprocessed
subproblem in the searchtree has to be reproduced� BC does not store the objectives of pre�
processed subproblems
 because this would require an array of O�n� double variables at each
node� Instead
 the objective is recomputed from scratch each time� Doing this without mak�
ing any substitutions in the matrix requires a zero �ll substitution order� The consequence is
to store the order of column singleton substitutions on a �history stack��
A �nal word has to be said about the impact of substitution on the objective function and the
solution of the LP relaxation� Many set partitioning problems from scheduling applications
have nonnegative objectives
 and so do the acs problems� Substitution destroys this property
by producing negative coe%cients� Unexpectedly
 the LP relaxations of problems that were
preprocessed in this way become di%cult to solve
 probably because the start basis heuristics
do not work satisfactory any more� But fortunately
 there is a simple way out of this dilemma�
The idea to counter the increase in LP time is to make the objective positive again by adding
suitable multiples of the rows� BC�s procedure implements the formula

w� ' wTx ' ��Ax� ���

where

�r �! max j�suppAr��wj�� jwj j�j suppA�jj� r ! 	� � � � �m�

The impact of rule P� on the acs test can be read from Table ���� A nice success is that
problem nw�� can be solved by preprocessing with this rule� P� has also proved valuable in
dealing with set packing constraints �see the vehicle availability constraints in Chapter �� in
a set partitioning solver� Transforming such inequalities into equations introducing a slack
variable produces column singletons that can potentially be eliminated�
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	����� Reduced Cost Fixing

Reduced cost �xing is another example of a strikingly simple and e�ective preprocessing opera�
tion� We draw the reader�s attention to Table ��	
 where a comparison of the �Presolved� and
�Presolved� LP�based� columns indicates that reduced cost �xing �based on the knowledge
of a good upper bound from the primal heuristic� accounts for a reduction in the number of
columns and nonzeros of one order of magnitude�

	����� Probing

Probing �a rule that we have not completely speci�ed� belongs to a group of expensive prepro�
cessing operations in the sense that they require the exact or approximate solution of linear
programs� There is additional information gained in this way that makes these operations
powerful �P	� is
 for example
 stronger than P��
 but there is of course a delicate trade�o�
between time spent in preprocessing and solving the actual problem�

An implementation of probing by tentatively setting variables to their bounds can be done
with postoptimization techniques
 using advanced basis information� Having an optimal basis
at hand
 one sets one variable at a time to one of its bounds and reoptimizes with the dual
simplex method� after that
 one reloads the original basis and continues in this way� This
method has the disadvantage that there is no control on the amount of time spent in the
individual LPs� Some control on the computational e�ort is gained by limiting the number
of simplex iterations in the postoptimization process at the cost of replacing the optimal LP
value with some lower bound� If the iteration limit allows only �few� iterations
 this o�ers the
additional possibility to avoid basis factorizations using an eta �le technique� In each probe

the basis is updated adding columns to the eta �le� when the iteration limit is exceeded �or the
problem solved�
 the original basis is restored by simply deleting the eta �le� This technique
is implemented in CPLEX �	

� 
 but despite all these e�orts
 probing is still expensive�

BC uses probing of variables in its default strong branching strategy
 �cf� Bixby
 personal
communication�� Some set of candidate variables for probing are determined �the 	� most
fractional ones�
 each of these is probed �� dual simplex iterations deep
 and any possible
�xings are carried out� the remaining bound information is used to guide the branching
decision�

	����	 Pivoting

We have seen in the introduction to this section that preprocessing is an e�ective tool to
reduce the size of a given set partitioning problem and that techniques of this sort can help
to solve these IPs faster� There is no reason to believe that this does not also work in the
same way for the subproblems created by a branch�and�bound algorithm� Rather to the
contrary
 one would expect iterated preprocessing on subproblems to be even more e�ective
since subproblems contain additional �xings due to branching decisions and the lower bound is
better� To exploit this information
 one would like to preprocess not only the original problem
formulation
 but also subproblems repeatedly throughout the branch�and�bound tree�

LP�based methods
 on the other hand
 live on maintaining dual feasibility of the basis� Instead
of solving an LP from scratch each time a variable has been �xed in a branching decision
or a cutting plane has been added
 the dual simplex method is called to reoptimize the LP
starting from the advanced basis obtained in the preceding optimization step�
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These two principles �repeated problem reduction and maintenance of a dual feasible basis�
can get into con�ict� Reductions that do not interfere with a dual feasible basis are�

�i� Eliminating nonbasic columns�

�ii� Eliminating basic rows
 i�e�
 rows where the associated slack or arti�cial variable is basic�

�i� it does obviously neither a�ect the basis itself nor its dual feasibility� �ii� is possible since
the multiplier �dual variable� associated to a basic row r is zero� But then the reduced costs
wT ! wT� �TA ! wT�

P
s��r �sAs� are not a�ected by removing row r and
 moreover
 if -AB

denotes the matrix that arises from the basis matrix AB by deleting row r and column er

this reduced basis -AB is dual feasible for the reduced problem�
Rule �ii� can be slightly extended with a pivoting technique to

�iii� Eliminating rows with zero multipliers�

The method is to reduce �iii� to �ii� by performing a primal pivot on arj ! 	
 where row r with
�r ! � is supposed to be eliminated and j the unit column corresponding to its slack�arti�cial�
�primal pivot� means that the slack�arti�cial column er is entering the basis� As �r ! wj ! �

this pivot will be dual degenerate� We are interested here in the case where row r is known to
be a �linearly� redundant equation� then
 its arti�cial variable is zero in any feasible solution
and the pivot will also be primal degenerate� This in�pivoting procedure was developed
by Applegate
 Bixby
 Chv�atal � Cook �	

� for the solution of large scale TSPs and is
implemented in CPLEX V��� and higher versions�
One possible strategy for iterated preprocessing in a branch�and�cut algorithm is thus the
following� Apply the preprocessor as often as you like and eliminate rows and columns using
�i�*�iii�
 doing in�pivoting prior to the actual elimination of rows where necessary� If a basic
column was eliminated or �xed to one by the preprocessor
 change its bounds
 but leave it in
the formulation
 and do also not remove rows with nonzero multipliers form the formulation

even if the preprocessor detected their redundancy� If too much �garbage� accumulates

eliminate everything
 discard the �useless� basis
 and optimize from scratch�
One might wonder whether it is at all possible that redundant rows can have nonzero mul�
tipliers� Do not all row elimination rules �except for the column singleton rule P��
 after
elimination of certain columns
 result in sets of duplicate rows where at most one represen�
tative can have a nonzero multiplier# The following simple example shows that this is not so
and why� Consider the set partitioning problem

min �x	 ' x� ! �

�c	� x	 ' x� ' y	 ! 	
�c�� x	 ' y� ! 	

x	� x� � f�� 	g�

�����

Here
 the variables y� and y� denote the arti�cial variables of the constraints c	 and c�

respectively� The �rst two columns of the constraint matrix correspond to the variables x�
and x� and constitute an optimal basis for ������ the corresponding simplex tableau reads

min � y	 � y� ! ��

�c	� x� ' y	 � y� ! �
�c�� x	 ' y� ! 	

x	� x� � f�� 	g�

The values of the dual variables are both nonzero� �� ! �� ! 	�
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Suppose that in this situation a preprocessor investigates formulation ����� and �nds out that
variable x� can be eliminated� �Consider the example as a part of a bigger problem and
ignore the possibility to solve the problem by �xing also x� to one�� Eliminating x� �in the
preprocessing data structures
 not in the LP� results in two identical rows c	 and c�� Suppose
the preprocessor �nds this out as well and suggests to eliminate one of them� But whether
we try to eliminate c	 or c�
 neither of these suggestions is compatible with dual feasibility
of the basis and we can not eliminate rows and columns that we know are redundant� Since
linear dependent and much less duplicate rows can not be contained in a basis
 there must
be some �xed variable in the basis� Clearly
 there must be alternative optimal bases that do
not contain one
 or some
 or all �xed variables� We su�er from primal degeneracy�

The degeneracy phenomenon that we have just described does not only appear in theory
 but
is a major obstacle to the solution of set partitioning problems by branch�and�cut� Unexpect�
edly
 it turns out that for the airline test set often almost half of the basis matrices consist
of �xed variables
 �blocking� the same number of rows from possible elimination� It is clear
that a larger number of rows and a larger basis has a negative impact on LP time�

This problem can be overcome by a novel out�pivoting technique that forces �xed variables to
leave the basis� The method is to perform one �dual pivot� with the �xed basic variable leaving
the basis �allowing slacks�arti�cials to enter�� As the leaving variable is �xed
 this pivot is
primal degenerate
 but the dual solution changes
 and the entering variable is determined in
such a way that optimality is re�established
 i�e�
 by a ratio test�

Out�pivoting is available in CPLEX release V��� and higher version� Its use to eliminate �xed
variables from the basis allows for signi�cant additional problem reductions while at the same
time maintaining dual feasibility� We remark that although the method is best possible in the
sense that it requires just a single dual pivot for each �xed basic variable
 out�pivoting is not
cheap� Table ��� shows that �, of the total running time that our branch�and�cut algorithm
BC needs to solve the airline test set is spent in out�pivoting �column Pvt under Timings��
And the number of out�pivots exceeds the number of other pivots by a factor of about �ve"

	����
 The Preprocessor

Combining the routines of the previous subsections yields the preprocessor of our set parti�
tioning solver BC� The module consists of �� kilobytes of source code in 	�
��� lines�

The module does not work on the LP itself
 but on a �possibly smaller� auxiliary representation
of the problem where reductions can be carried out no matter what the LP basis status is�
The preprocessor is called for the �rst time prior to the solution of the �rst LP� All later
invocations involve pivoting to maintain the dual feasibility of the basis� First
 the basis is
purged by pivoting out �xed variables �from previous invocations�� Preprocessing starts with
reduced cost �xing according to rule P
� Then the main preprocessing loop is entered that
calls
 in each pass
 all the individual rules� First
 a couple of column oriented reductions
are carried out� P� �row singletons� and P��� �row clique heuristic�� Then the matrix is
transposed
 and row oriented operations follow� P�� �duplicate rows�
 P� �dominated rows�

P�� �symmetric di�erence�
 and P� �column singletons�� The matrix is transposed again for
the next pass� This loop continues as long as some reduction was achieved� When no further
reductions can be achieved
 as many of the found ones as possible are transferred to the LP�
Arti�cials of redundant rows are pivoted in and redundant nonbasic columns and redundant
basic rows are eliminated from the LP� The reader can infer from Table ��� that the running
time for this module is not a computational bottleneck for the entire branch�and�cut code�
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��� Separation

�Branch�and�cut� � this term lists the two sources of power of the algorithms of this class�
The second of these
 the computation of cutting planes
 aims at improving the quality of the
current LP relaxation in the sense that the lower bound rises� If this can be achieved
 it
helps in fathoming nodes and �xing variables by preprocessing techniques
 provides criteria
for intelligent searchtree exploration
 and
 ideally
 �pushes� the fractional solution toward
an integral one� This
 in turn
 can be exploited for the development of heuristics by trac�
ing histories of fractional variables etc�
 and there are certainly more of such practitioner
s
arguments in favor of cutting planes that are all based on the many algorithmically useful
degrees of freedom in �as the name says� a generic branch�and�cut method� The theoretical
justi�cation for the use of cutting planes is perhaps even more convincing� By the general
algorithmic results of Gr�otschel
 Lov�asz � Schrijver �	
�� we know that polynomial time
separation allows for polynomial time optimization
 and even if we give here the dual simplex
algorithm�s reoptimization capabilities �not to speak of the availability of suitable implemen�
tations� preference over the ellipsoid method�s theoretical power
 there is no reason to believe
that not some of this favorable behaviour will show up in codes of the real world� And in fact

the number of implementations of this principle with successful computational experience is
legion
 see
 e�g�
 Caprara � Fischetti �	

� for a survey�

The separation routines for set partitioning problems are based on the relation

P�
I �A� ! PI�A� �QI�A�

between the set partitioning
 the set packing
 and the set covering polytope� To solve set
partitioning problems
 we can resort to cutting planes for the associated packing and covering
polytopes� We have already pointed out in Section 	�� why the polyhedral study of the latter
two bodies is easier than the study of the �rst
 and we have also listed in the Sections 	��
 	�


���
 and ��� many known types of valid and often even facet de�ning inequalities that qualify
as candidates for cutting planes in a branch�and�cut code for set partitioning problems�

But not only these classes are available� General cutting planes suggest themselves as well�
Gomory �	
�� cuts
 lift�and�project cuts
 see Balas
 Ceria � Cornu�ejols �	

� 
 or Martin �
Weismantel �	

� �s feasible set cuts�

We have selected only a small number of them for our implementation� Clique inequalities

because they give facets
 are easy to implement
 numerically stable �only ��	 coe%cients�
 and
sparse
 cycle inequalities for the same reasons and because they can be separated exactly
 and
the aggregated cycle inequalities from the set packing relaxation of the set covering problem
of Section ��� because we wanted to evaluate the computational usefulness of our aggregation
technique� These cuts are all simple
 but as the duality gaps in real world set partitioning
problems are usually quite small
 there is some justi�cation for a strategy that opts for
�whatever one can get in a short time��

We discuss in the following subsections the individual routines of our separation module�
All of the procedures work with intersection graphs that we introduce in Subsection ����	�
Separation and lifting routines for inequalities from cliques are treated in Subsection �����

for cycles in Subsection �����
 and for aggregated cycles in Subsection ������ A word on our
strategies to call these routines can be found in the following Section ����
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	�	�� The Fractional Intersection Graph

All of our separation routines will be combinatorial algorithms that work on intersection
graphs� Namely
 we look for our set packing inequalities on subgraphs of G�A�
 the intersection
graph of the set packing relaxation
 and we identify aggregated cycle inequalities on subgraphs
of the con�ict graph G�A� that is associated to the aggregation�

A quick calculation is enough to see that it is completely out of the question to set up G�A�
completely
 and much less G�A�
 and even if we could do this it is very unlikely that we could
make any use of these gigabytes of information� But luckily
 it follows from the nonnegativity
of all nontrivial facets of set packing polytopes and the ��connectedness of their support
graphs
 is well known
 and was mentioned
 for example
 in Ho�man � Padberg �	

� 
 that
one can restrict attention to the �fractional parts�

G�A��F  ! G�A�F � and G�A��F ! G�A�F �

of these structures for separation purposes� These graphs are the fractional intersection
graph and the aggregated fractional intersection graph
 respectively� As there can be at most
as many fractional variables as is the size of the basis as is the number of equations of the
LP relaxation
 this reduces
 for �typical� real world set partitioning problems like the airline
instances
 the number of nodes from ten� to hundred thousands in G�A� to some hundreds in
G�A�F � by two to three orders of magnitude
 and the number of edges even more� This is not
so for the graph G�A�F �
 which is exponential by construction� We cope with this di%culty
in a heuristic way by using only some subgraph of G�A�F �� Note that the above mentioned
��connectedness of the support graphs of facets makes it possible to restrict separation to
individual ��connected components of G�A�F � and of G�A�F ��

Separating on the fractional variables only has the disadvantage that the resulting cutting
planes have a very small support in comparison to the complete set of variables� One way
to counter the stalling e�ects of �polishing� on a low dimensional face of the set partitioning
polytope is to extend the support of cutting planes by lifting� Our overall separation strategy
will be to reduce the e�ort to identify a violated inequality as much as possible by working on
fractional intersection graphs
 and we enhance the quality of whatever we were able to obtain
in this �rst step a posteriori by a subsequent lifting step�

We turn now to the algorithmic construction of the fractional intersection graph� We treat
only G�A�F � and do not discuss here how we set up a subgraph of G�A�F �
 because this is so
intimately related to the separation of aggregated cycle inequalities that it is better discussed
in this context in Subsection ������

The procedure that we have implemented in BC sets up a new column intersection graph
G�A�F � after the solution of every single LP
 i�e�
 G�A�F � is constructed �on the �y�
 as
Ho�man � Padberg �	

� say� Our routine uses two copies of the matrix A�F 
 one stored
in column and the other in row major format� A�F can be extracted from the column major
representation of the �global� matrix A in time that is linear in the number of nonzeros of
A�F � Next
 we compute the neighbors of each column j � F by scanning its rows and store
the result in a forward star adjacency list �see
 e�g�
 Ahuja
 Magnanti � Orlin �	
�
 �� Under
the assumptions of Subsection ����� we expect that this will take about O���jF j�� operations
on average � fast enough to just forget about� We do not use a procedure to decompose
G�A�F � into two connected components�



��� Separation 	��

	�	�� Clique Inequalities

We have already mentioned in the introduction of this section why we use clique inequalities
as cutting planes in our branch�and�cut code BC� This class yields facets
 it is easy to come up
with separation and lifting heuristics
 and such inequalities are sparse and pose no numerical
di%culties� One must admit
 however
 that these appealing properties are strictly speaking
outmatched by the unsatisfactory theoretical behaviour of these simple cutting planes� Clique
separation is not only NP�hard
 see Garey � Johnson �	
�
 
 but
 even worse
 this class is
contained in polynomial separable superclasses like orthogonality inequalities or matrix cuts�
One could argue somewhat around the �rst di%culty
 namely
 we have implemented an exact
clique separation routine as well and found that
 even without any tuning
 our heuristics
already found nearly every violated clique inequality there was
 and it is a little thing to tune
the heuristic routines such that containment becomes equality� But we feel nevertheless that
the above arguments show that it is not the right way to compensate the conceptual weakness
in clique inequality separation by additional computational e�ort�

Our branch�and�cut code BC goes thus to the other extreme and concentrates on the compu�
tational advantages of heuristic clique detection by using only simple separation and lifting
routines� We compute violated inequalities with a row lifting and a greedy heuristic
 and a
�semiheuristic� �the meaning of this term will become clear in the description of this method�
recursive smallest last �RSL� procedure
 and we lift the cutting planes that they return with
tailor made procedures that �t with the separation routine�s �philosophy� �these statements
have been evaluated in computational experiments�� These separation and lifting routines
are described in the next paragraphs�

Row Lifting� Ho�man � Padberg ������� The idea of this separation routine is to
exploit the knowledge of those cliques that are already encoded in the rows of the matrix A
to design a very fast procedure� The details are as follows�

One considers each row ArF of the matrix A�F �that consists of the columns of A with
fractional variables in the current solution x�� in turn� note that the sum over the fractionals
in a row is either zero �there are no fractional variables because some variable has a value of
one� or one�

ArFx
�
F � f�� 	g �r ! 	� � � � �m�

In the latter case
 this row induces a minimal clique Q �! suppArF such that the clique
inequality

P
j�Q xj � 	 is tight for the current LP solution x�� If one additional fractional

variable can be lifted �sequentially� into Q
 a violated clique inequality is detected� Lifting
more fractional variables increases violation
 and one can lift some additional variables with
zero values in the end as well to extend the cut�s support� Hence
 the procedure has three
steps� �i� Determining the �core� clique Q ! suppArF 
 �ii� sequential lifting of fractional
variables into the core
 and �iii� supplementary sequential liftings of zero variables�

Here are some implementation issues� While �i� is clear
 one can come up with numerous
strategies for the lifting steps �ii� and �iii�� The method that we have implemented in BC

opts for speed
 because we do not expect to �nd many additional neighbors of �a part of�
a matrix row clique
 that is usually of substantial size � a philosophy that �ts with the
idea behind the row lifting method and that is supported by the probabilistic results of the
previous Section ��� and by our computational experiments� For each of the steps �ii� and
�iii�
 we set up a list of candidate variables that we arrange in a �xed lifting order
 and this
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candidate sequence is used for every row� In step �ii�
 the candidate set consists of some
constant number kF of the fractional variables with the largest x��values �we use kF ! �� in
our implementation� which are tried greedily in order of decreasing x� values
 and another
constant number kL of zero variables �we use kL ! 	�� for step �iii� that we simply select at
random�
Turning to the expected running time
 we note that one sequential lifting of a variable xj can
be done by checking whether all variables in the current clique Q are neighbors of j� Using a
forward star representation of G�A�F � this takes O�j��j�j� � O�jF j� steps �where jF j denotes
the number of fractional variables in the current LP solution x��� Doing this kF 'kL � O�jF j�
times for m rows results in a total of O�mjF j�� operations for this routine � which is as fast
as one could possibly hope�
The apparent disadvantage of the method is
 however
 that the cutting planes that one com�
putes with such a technique do
 by construction
 resemble much subsets of rows with a small
extension here and there� Generally speaking
 the row lifting clique separation routine is
a good starting method in the initial phase of a branch�and�cut run and yields reasonable
results there� it is less useful in later stages of the computation�

Greedy Algorithm� The greedy method is certainly the most obvious and simple to im�
plement separation strategy that one can come up with and our branch�and�cut algorithm BC

also uses a clique detection method of this type�
Our routine is implemented in the following way� The greedy criterion is to go for a most
violated clique inequality and it makes sense to do so by considering the fractional variables
in order of decreasing x� values �where x� denotes the current fractional solution��

x�
� � x�
� � 	 	 	 � x�
jF j
� where f��� � � � � �jF jg ! F�

Our greedy does now jF j trials
 one for each fractional �seed� variable x�j � In trial j
 we
initialize a clique Q �! f�jg
 that will �hopefully� be grown into the support of a violated
clique inequality
 and try to lift into Q all variables x
j�� � � � � � x
jF j

of smaller x� value in this
order� The motivation behind this is to give variables with small x� values also a �chance�
to foster a violated clique� We do not restrict the number of fractional lifting candidates this
time
 because we expect for familiar reasons that the cliques that we can compute in this
way will not be very large� Note that this is di�erent from row lifting
 where we start a
priori with a �large� clique� This inspires the di�erent lifting philosophy that we should �at
least lift such small cliques reasonably�
 to put it nonchalantly� But how can we get a large
extension when all our probabilistic analyses and computational experience indicates that we
can not obtain it sequentially# Our idea is to use the large cliques that we already know and
to do a simultaneous lifting with matrix rows
 similar to the row lifting separation routine�
Namely
 we do the following� Given some fractional clique Q
 we determine its common
neighbors ��Q� �! �j�Q��j� �note that it is not clever to compute this for a large clique
 but
no problem for a small one"� and then we look for the largest intersection ��Q� � suppAr� of
this set with the support of some row r� this set is added to Q�
Looking at running times
 we have again that one sequential lifting of a fractional variable
takes O�jF j� operations� Lifting at most jF j variables in the greedy clique growing phase
results inO�jF j�� steps� The common neighbors of at most jF jmembers of such a clique can be
determined in O�jF j 	m� 	n�� steps using the matrix A�s row representation �not the complete
intersection graph G�A� which we did not set up"�
 and the maximum intersection of this set
with a matrix row in O�m� 	n�� steps
 which is smaller� Assuming O�jF j 	m� 	n�� � O�jF j��
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and doing all of these steps jF j times
 once for each of the seed variables
 amounts to a
total of O�jF j�mn��� expected steps � which does not look very good� But our analysis is
a very conservative estimate
 because the expensive simultaneous lifting step is only called
when a violated inequality is found
 which �unfortunately"� is not the case for every starting
candidate� The method can be tuned further using obvious break criteria based on the �tail
sums�

x�
j ' 	 	 	 ' x�
jF j
� j ! 	� � � � � jF j�

that make the routine bail out whenever there is no more chance of �nding a violated clique
inequality� With this and other improvements of this type
 one obtains a separation procedure
that displays a reasonable behaviour in computational practice�

Recursive Smallest First� One of the most popular branch�and�bound approaches to the
maximum weight clique problem is based on the recursion

max
Q clique in G

x��Q� ! max fx�j ' max
Q clique in G��
j��

x��Q�� max
Q clique in G�j

x��Q�g� �����

Here
 G is some graph with node weights x� and j one of its nodes� The �rst successful
implementation of ����� is
 as far as we know
 due to Carraghan � Pardalos �	

� and since
then this branching rule has turned into the progenitor of a large family of algorithms that
di�er by node selection and clever bounding criteria that try to reuse information that is
computed once as often as possible�
Recursive smallest �rst �RSF� is one member of this class� It uses the special branching
strategy to select in each step a node j that attains the minimum degree in the current graph�
The idea is obviously that one of the two subproblems
 namely
 the one on the neighbors of j

i�e�
 on the graph G���j� 
 will hopefully be �small� and can be fathomed or solved fast� For
fathoming
 we can develop simple criteria in terms of sums of node weights of the current
graph� And the subproblem can surely be solved fast if the number of nodes in the current
graph is small
 say
 smaller than some constant k� When such circumstances supervene in
every subdivision step
 the RSF algorithm solves the maximum weight clique problem to
proven optimality in time that is polynomial of order k� The worst case running time is
exponential
 however�
The observations of the previous paragraph suggest a simple way to combine
 under favorable
conditions
 the advantage of RSF �a certi�cate of optimality� with a polynomially bounded
running time� The idea is to turn the algorithm dynamically into a heuristic whenever we are
about to walk into the complexity trap� Namely
 we pursue the following strategy� We use
in principle the generic RSF algorithm as described above
 but whenever the current graph
has more than k nodes and our fathoming criteria fail
 we solve the associated subproblem
heuristically� We call such a hybrid method with both exact branch�and�bound and heuristic
components a semiheuristic� A scheme of this type has the advantages that it �i� is able
to exploit some structural properties of the graph
 namely
 to reduce it systematically by
cutting o� low degree parts
 �ii� it allows to control the tradeo� between exactness and speed
by tuning the parameter k
 and �iii� it sometimes even proves optimality of the result�
In our implementation of the RSF method
 we set the parameter k �! 	�� When the current
graph has less than this number of nodes
 we determine the maximum clique by complete
enumeration� The heuristic that we apply in subproblems that involve graphs with more than
k nodes is the greedy procedure that we have described in the previous paragraph� To �nd a
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node with smallest degree in each branching step
 we store the nodes of the graph in a binary
heap that is sorted with respect to node degrees� For familiar reasons
 we do not expect
the RSF algorithm to return a large clique� In this vein
 RSF has the �avour of an improved
greedy algorithm� Therefore we apply the same strategies to lift variables that have a value of
zero in the current LP solution� Ho�man � Padberg �	

� describe a similar implementation
of the RSF method�
The running time of RSF is O�jF jk�� The time to compute lower bounds is O�jF j��
 the
greedy heuristic takes O�jF j��
 enumeration takes O�jF jk�
 and the heap updates require
O�jF j� log jF j� operations� �nally
 lifting results in O�jF jm�n�� steps� This gives a total
running time of O�jF jk ' jF jmn���
 which we assume to be of order O�jF jk��
To evaluate the quality of the RSF method we have implemented an exact branch�and�bound
algorithm for the maximum clique problem as well� It turned out that
 even without any
tuning
 RSF almost always produced a largest clique� Our computational experiments showed
that the choice k ! 	� was the optimal tradeo� between speed and quality� In fact
 with k !
	�
 RSF produces always the largest clique on the airline test problems� For this reason
 and
because of the arguments mentioned in the introduction of this section
 we do not use the exact
branch�and�bound algorithm for clique separation
 although this method is implemented�

	�	�	 Cycle Inequalities

Cycle inequalities are the second separation ingredient in our branch�and�cut algorithm� Like
the clique inequalities
 cuts of this type have small support
 and they tend to have a nice
numerical behaviour �only ��	 coe%cients in unlifted versions�� An additional bonus is that
they can be separated in polynomial time with the GLS algorithm of Gr�otschel
 Lov�asz �
Schrijver �	
�� � We use this cycle detection algorithm in our branch�and�cut algorithm�
The GLS algorithm works on a bipartite auxiliary graph B �! B�G�A�F �� that is constructed
from the fractional intersection graph G�A�F � ! �V�E� as follows� The nodes of B are two
copies V � and V �� of V � There is an edge u�v�� in B if and only if uv is an edge of G� To each
such edge u�v�� we associate the weight wuv ! 	� x�u � x�v
 where x� is the current fractional
LP solution� Note that � � w � ��
The main steps of the procedure are as follows� One computes for each node u� � V � the
shortest path Pu in B to its pendant u��� Each such path Pu
 interpreted as a set of nodes

corresponds to an odd cycle Cu in G through u
 possibly with node repetitions� The weight
of Cu is

w�Cu� ! w�Pu� !
P

u�v���Pu
�	� x�u � x�v� ! jPuj � �x��Pu� ! jCuj � �x��Cu��

Hence

w�Cu� 	 	 
� jCuj � 	 	 �x��Cu� 
� �jCuj � 	��� 	 x��Cu��

Thus
 a path Pu in B with weight less than one corresponds to a violated odd cycle inequality�
Conversely
 a shortest odd cycle through a node u corresponds to the path Pu� This proves
that the GLS algorithm solves the separation problem for cycle inequalities in polynomial
time�
Our implementation of the GLS algorithm computes the shortest paths Pu using Dijkstra�s
algorithm� When the distance labels of the nodes are kept in a binary heap
 this results in a
running time of O�jF j� log jF j ' jF jjEj� ! O�jF j� log jF j ' jF j��� here
 jEj is the number of
edges in the fractional intersection graph�



��� Separation 	��

We use a number of implementation tricks to make this method work in practice� First note
that it is not necessary to set up the auxiliary graph explicitly because adjacencies in B can
be read o� from the neighbor lists of G�A�F �� The only place where the auxiliary graph shows
up explicitly is the heap
 where we have to store a distance label for each of the two copies
of a node� Second
 one can exploit the special form of the distance function 	 � x�u � x�j for
computing expressions of the form

dist�v ! min fdist�v � dist�u ' �	� x�u � x�v�g

that come up in the relabeling step� The three arithmetic operations that are required to
compute the term dist�u ' �	 � x�u � x�v� for every neighbor v of u can be reduced to one
by a precomputation of the term dist�u ' 	 � x�u� A minor speed up can be achieved by
turning double x� values into integers �this saves about 	�, of the running time�� Third

Dijkstra�s algorithm is a dynamic program� As we are interested in paths of length smaller
than one only
 we can fathom a node as soon as its distance label dist�v attains a value of
one or more� Fourth
 note that the generic GLS algorithm computes the shortest path Pu for
every node u � G�A�F �� Once this path Pu is computed for a particular node u
 this node
can be deleted from the graph without loosing the exactness of the method� This is correct
because a most violated cycle inequality passes through the node u or not� In the �rst case

the path Pu yields such a most violated inequality� In the second case
 u is not relevant and
can therefore be removed� Note that this elimination strategy has the additional advantage
that it tends to produce violated cycle inequalities with disjoint support� It also paves the
way for a �fth implementation trick that is based on a special ordering of the starting nodes
for which we call Dijkstra�s algorithm� We order the nodes with respect to decreasing x�

value

	 � x�
� � x�
� � 	 	 	 � x�
jF j
� ��

If we denote by Gi the graph G�A�F ��f�i� � � � � �jF jg obtained from G�A�F � by deleting the
nodes f��� � � � � �i��g �the starting nodes for the previous i� 	 calls of Dijkstra�s algorithm�

all edge distances in Gi satisfy

wuv ! 	� x�u � x�v � 	� �x�
i �

Any odd cycle C in Gi must contain at least three such edges and we have for its weight

w�C� ! jCj � �
P

v�C x
�
v � jCj � �jCjx�
i �

The last value in this sequence exceeds 	 if and only if

�	� 	�jCj��� ! 	���	 � 	�jCj� � x�
i �

This will be the case if x�
i � 	��
 i�e�
 we can stop computation as soon as the maximum
x��value drops below 	��� We compute with the GLS algorithm and these tricks paths Pu
that correspond to odd closed walks in G�A�F � and extract from these a cycle without node
repetitions�
Lifting odd cycle inequalities is a bit more complicated than lifting clique inequalities�
Let us �rst turn to sequential lifting� Note that it is not di%cult to lift a constant number of
variables into a cycle� We tried an implementation that does this for the �rst two variables
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such that
 in each of the two steps
 a maximum additional violation of x�j times the lifting
coe%cient is achieved� More fractional variables were lifted heuristically� This sequential
method turned out to be slow
 taking more time than the separation of the pure cycles�
Moreover
 it did not produce many nonzero lifting coe%cients�
Therefore
 a simultaneous lifting method was implemented� This method identi�es for each
edge ij in the cycle C a row r ! rij in the matrix A�F such that fi� jg � suppArij � �breaking
ties arbitrarily�� These rows are used to compute a Chv�atal�Gomory cut that can be seen as
a lifting of the cycle inequality that corresponds to C� We add up the rows Arij �
 divide by
two
 and round the coe%cients down� Exploiting sparsity
 this method can be implemented
in O�jCjn�� time and exhibits a satisfactory computational behaviour�
One �nal issue on cycle separation is that it is possible that a violated inequality can result
from a lifting of a pure cycle inequality which is not tight� We exploit this heuristically in our
routine by increasing the �target length� of the paths in the GLS algorithm form one to some
larger value in a dynamic and adaptive fashion depending on the number of cycle inequalities
found in the previous call�

	�	�
 Aggregated Cycle Inequalities

The third class of inequalities that we try to separate are the aggregated cycle inequalities
of Section ���� Recall that these inequalities stem from a set packing relaxation of the set
covering problem�
Set packing inequalities tend to have the disadvantage of �smearing� the values of the LP
solution over their support� This tends to increase the number of fractional variables with
small values
 which has all kinds of negative impacts on the solution process� To counter
these e�ects
 one would like to use cutting planes for the set covering polytope that gather
some x� value on their support and prevent the LP solution from dilution� Unfortunately

little algorithmically useful knowledge about such cutting planes is available� This was our
motivation for the development of the aggregated cycle inequalities�
Aggregated cycle inequalities are separated with the implementation of the GLS algorithm
that we have described in the previous subsection� The only di�erence is that the input graph
is a �small� subgraph G� ! �V��E�� of the aggregated fractional intersection graph G�A�F �

which is of exponential size� The selection is guided by the desire to �nd a subgraph of �reason�
able� polynomial size and with many edges uv with small weights 	� �u�x

��� �v�x
�� ! wuv�

Such edges make it likely that cycles in G give rise to violated aggregated cycle inequalities�
We do not lift aggregated cycle inequalities�
Our heuristic to generate the subgraph G� is the following� We generate two nodes I and I
for each row AiF of the matrix A�F � Namely
 we subdivide the support of each row AiF into
two �equal sized halves�

suppAiF !� I 	� I

with respect to a given fractional LP solution x�
 i�e�
 we split �in some way� such that
AiIx

�
I � AiIx

�
I

and take V as the set of these �halves��

V �! fI� I j i ! 	� � � � �mg�

Two such nodes u and v are in con�ict if their union contains some row of the matrix A�F �
These con�icts de�ne the edges of the graph G�
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��	 Computational Results

We report in this section on computational experiences with our branch�and�cut code BC� We
intend to investigate the following questions�

�i� Performance� What is the performance of BC on a standard test set of set partitioning
problems from the literature� The acs test set of Ho�man � Padberg �	

� �

�ii� Branching versus Cutting� Do cutting planes make a signi�cant contribution to the
solution of the problems in our test set#

�iii� Aggregated Cycle Inequalities� What is the e�ect of the aggregated cycle inequalities#

We have chosen the airline crew scheduling problems of Ho�man � Padberg �	

� as our test
set �see this reference for a thorough discussion of these instances� because they are publicly
available� and well known to the community� This makes it possible to compare our results
with those of the literature
 see
 e�g�
 Ho�man � Padberg �	

� 
 Atamturk
 Nemhauser �
Savelsbergh �	

� 
 and Chu � Beasley �	

� �
According to the guidelines of Crowder
 Dembo � Mulvey �	
�
 and Jackson
 Boggs
 Nash
� Powell �	

	 for reporting about computational experiments
 we state that all test runs
were made on a Sun Ultra Sparc � Model ���E workstation with �	� MB of main memory

running SunOS ���
 that our branch�and�cut code BC was written in ANSI C compiled with
the Sun cc compiler and switches 
fast 
xO�
 and that we have used the CPLEX �	

� 
Callable Library V��� as our LP solver�
The results of the following computational experiments are documented in tables that have
the following format� Column 	 gives the name of the problem
 columns ��� its size in terms of
numbers of rows
 columns
 and nonzeros� These sizes are reduced by an initial preprocessing
to the numbers that appear in the next three columns� Columns � and 
 report solution values�
z is the value of the best solution that the algorithm has computed� The �s in the succeeding
�Gap� column indicate that all of the problems have been solved to proven optimality� The
following � columns give details about the branch�and�cut computation� We list
 from left
to right
 the number of in� and out�pivots �Pvt� that are performed by the preprocessor
 the
number of cutting planes �Cut� added
 the number of simplex iterations to solve the LPs
�Itn�
 the number of LPs solved �LP�
 and the number of branch�and�bound nodes �B�B��
Running times �as a percentage of the total time� for these routines are contained in columns
	�*	
� Problem reduction �PP�
 pivoting �Pvt�
 separation �Cut�
 LP�solution �LP�
 and
primal heuristic �Heu�� The last column gives the total running time in CPU seconds�

If not explicitly stated otherwise
 all of our computations use the following default parameter
settings and strategies for our code BC� We use a best �rst search on the branch�and�bound
tree
 the branching rule is strong branching �cf� Bixby
 personal communication�
 i�e�
 we select
a set of fractional candidate variables close to ��� �we try 	� candidates�
 �x them tentatively
to � and 	
 and perform a couple of dual simplex iterations with these �xings �we do ��
iterations�� The variable that yields the largest increase in the smaller of the corresponding
two lower bound values is the branching variable� Our primal heuristic is a plunging method
that iteratively rounds fractional variables to the nearest integer and reoptimizes the linear
program �we round to 	�� all variables with values above ��� or
 if no such variable exists

the one with the largest value
 breaking ties arbitrarily�� This heuristic is called once after
the solution of the initial LP relaxation and once at each node of the searchtree� The default

�Anonymous ftp from happy�gmu�edu��pub�acs
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strategy for separation is to call the row clique lifting routine
 the greedy clique detection

the RSF semiheuristic
 and the GLS cycle algorithm� All of these procedures are called after
each individual LP� Among the violated inequalities that we have found
 we select the most
violated ones up to a threshold that depends on the size of the LP and the number of cuts
found� In each iteration
 cuts with positive slack �of more than ��	� are removed from the
present LP� To avoid tailing o�
 we use an early branching strategy that stops the cutting
plane phase if the duality gap does not decrease signi�cantly from one iteration to the next
�to ���� within any four successive iterations�� Like the separation routines
 the preprocessor
is invoked after each solution of an LP� The LPs themselves are solved with the dual simplex
algorithm and steepest edge pricing�
We have performed three computational experiments to answer the questions �i�*�iii�� Our
Experiment � applies BC with the default strategy to the acs test set� In Experiment �
 we
also separate aggregated cycle inequalities
 all other parameter settings are identical� For
Experiment �
 we turn o� the cut generation module of BC completely
 i�e�
 we apply branch�
and�bound with preprocessing� Our results are summarized in Tables ���*����
The statistics in these tables have quite some similarities and not only at �rst glance� We will

in fact
 argue in our analysis that the outcome of the three experiments is essentially the same
except for three �hard instances�
 namely
 nw��
 aa��
 and aa��� the other problems fall into
a number of categories of readily solvable instances� Our discussion will try to explain the
di�erences in the computational behavior of the instances in terms of two measures of problem
di%culty� Response to and�or size after preprocessing and the initial duality gap� Note that
these are a priori criteria
 i�e�
 they are available prior to the solution of the problem and
can be used to predict expected solution e�orts� We remark that we found these indicators
satisfactory not only for the acs problems
 but also for two sets of �Telebus clustering and
chaining instances� �of di�erent characteristics� from a vehicle scheduling application
 confer
Section ��� for a discussion of computational results for these instances�
A �rst similarity is that the initial preprocessing does not depend on the di�erent parameter
settings of the experiments
 i�e�
 the reductions are always the same
 see the �Preprocessed�
columns �*� in Tables ���*���� We have already given more detailed statistics on the initial
preprocessing step in Table ��	� Taking another look at this data
 we see that the �rst
�� instances up to nw�� are reduced to very small problems with less than �� rows� all of
these simple instances can be solved in well under a second with all strategies�
Many of the remaining �� problems are also fairly small and�or display minimal initial duality
gaps already after the �rst invocation of the primal heuristic and without adding any cutting
planes
 see column �Gap� in Table ��	� In fact
 all but 
 of the instances ��*�� have a duality
gap of 	��, or less� One would hope that the solutions of the initial LP relaxations of these
problems are close to integrality
 i�e�
 they have only few fractional variables �one can not see
this from the tables�
 and this is indeed the case� 		 of the instances ��*�� have integral LP
solutions
 the remaining fractional solutions are rounded to optimal ones at the root node
in all but 
 cases by BC�s simple plunging heuristic �this data is also not in the tables�� It
is thus not surprising that those 	
 of instances ��*�� with gap � 	��, can be solved in
about �� seconds with all strategies� Note that the solution statistics for the �hardest� of
these 	
 problems
 instances aa��
 kl��
 aa��
 and aa��
 see the �Branch�and�Cut� columns
in Table ���
 �t with our di%culty indicators in terms of size and gap� The di%culty of the
three aa instances is due to a large number of rows which leads to large bases and a relatively
large number of pivots in the LP solution process
 see column �Itn� in Table ���
 while kl��

displays the largest initial duality gap of 	��,
 see column �Gap� in Table ��	�
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The remaining nine instances nw��
 nw�

 nw��
 nw��
 kl��
 us��
 nw��
 aa��
 and aa�� are
the ones that require the use of cutting planes
 see column �Cut� in Table ���
 several LPs

see column �LP�
 and some branch�and�bound
 see column �B�B�� The �rst �ve of these
can again be solved fast in about �� CPU seconds no matter if many or no cutting planes at
all are used� This behavior is due to the fast decrease of the duality gap in the root section
of the searchtree� In Experiment 	
 e�g�
 the optimum is not found in the �rst rounding of
the solution of the initial LP relaxation
 but it comes up rapidly in trial �
 �
 �
 �
 and �

respectively
 �recall that the plunging heuristic is called once after the solution of the initial
LP and once at each node
 i�e�
 a � means that the optimum is found rounding the second
LP at the root node
 while � refers to the �rst LP at node number ��� Comparing these
numbers with the size of the searchtree in column �B�B� reveals that the problems were
solved immediately after this happened�
The analysis of the previous paragraph applies also to problem us��� The optimum is found
at the root node with the second call to the heuristic
 and then the problem is essentially
�nished in all three experiments� us�� is not a hard problem
 but a large one
 accounting
for about ��, of both nonzeros and columns of the entire test set
 and it just takes some
� minutes to process all this data� The initial LP alone takes about � minutes�
We are thus indeed left with only three instances where the di�erent use of cutting planes
in our experiments can make a di�erence� nw��
 aa��
 and aa��� Note that these problems
account for ��� out of a total of ��� branch�and�bound nodes in Experiment 	 �similar
statements hold for the other experiments�
 for 	
	�	 out of 	
��� LPs
 for ��
��� out of
��
��	 dual simplex iterations
 for �
�
��� out of �	�
��� in� and out�pivots
 and for �	
�


out of 	�����
 CPU seconds
 i�e�
 the performance of our algorithm BC on these four problems
determines the outcome of our computational experiments completely� We would
 however

like to stress that the hitherto treated �simple instances� are formulations of real world
problems and that the ability to solve airline crew scheduling problems to proven optimality
in such short times is one of the most remarkable successes in operations research� To put it
in a pointed way� It is the computational well�behaviour that makes set partitioning models
so useful� As even the hard problems in the acs test set can be solved in about � minutes with
the default strategy
 we answer question �i� about the performance of BC on the acs problems
with a con�rmation of Ho�man � Padberg �	

� �s conclusion that �it is possible to solve very
large set�partitioning problems to proven optimality� and that �by using the �branch�and�cut 
technology described above and solving larger set�partitioning problems exactly � � � than is
done today
 the airline industry could see immediate and substantial dollar savings in their
crew costs��
The three hard instances themselves fall again into two di�erent categories
 namely
 instance
nw�� on the one and aa�� and aa�� on the other hand� The di�erence between them is that
nw�� has few rows and many columns
 while the aa problems have the opposite property� We
will give now a number of heuristic arguments that suggest that set partitioning problems
with many rows tend to be more di%cult for a branch�and�cut algorithm than problems with
many columns� In fact
 there are only two occasions where BC examines the complete set of
columns� In the pricing step of the dual simplex algorithm and in the preprocessing� But these
steps take linear or log�linear time only� The more expensive modules work on data structures
whose size depends on the number m of rows� Refactorization works on a matrix of size O�m��
and has quadratic running time
 separation works on a fractional intersection graph of the
same size and has at least the same order of running time
 and we expect the primal heuristic
to perform O�m� rounding steps requiring the same number of LP reoptimizations�
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In light of these arguments
 it is not surprising that nw�� can be solved �ve to six times
faster than aa�� and aa��� In fact
 the solution time for nw�� is at most �� seconds with
any strategy such that one could even question the classi�cation of nw�� as a hard instance�
Looking at the solution statistics in the �Branch�and�Cut� columns 		*	� of Tables ���*���

however
 shows that nw�� has the same complexity as the aa problems� Its solution requires
a number of nodes
 LPs
 simplex iterations
 and cutting planes that is in the same order of
magnitude as the �gures for the aa problems� The three hard problems have in common that
the initial LP solution does not immediately reveal the optimum nor a proof of optimality

and that the solution takes some algorithmic e�ort� The smaller running time for nw�� is
solely due to the smaller amount of computation at the individual nodes of the searchtree�
Recalling how the �simple instances� nw��
 nw�

 nw��
 nw��
 kl��
 and us�� could be
solved easily once the optimal solution was found
 one might wonder if the hard problems are
di%cult because BC�s simple plunging heuristic is unable to �nd good solutions# To answer
this question
 we have run our code with the optimal solution as an additional input� It
turns out that primal knowledge does not make the problems much easier� For the default
strategy
 e�g�
 we still needed ���	�	�	�	 nodes
 �����
���	� LPs
 �
��
�	�
�����	

�� dual
simplex iterations
 ��
�	
����	
��� cuts
 and ���		��	�	�
�����
���� CPU seconds to solve
nw���aa���aa��
 respectively �the decrease in the running times of nw�� and aa�� is mainly
due to a more e�ective reduced cost �xing
 while aa�� takes
 in fact
 even longer to solve"��
Closing the gap from the dual side thus seems to be what makes instances nw��
 aa��
 and
aa�� hard� Here is where cutting planes come into play and where the di�erent separation
strategies in Experiments 	*� make a di�erence� We �rst turn to question �ii� about the
signi�cance of cutting planes for the solution process� Comparing the results of Experiment 	
in Table ��� with the default strategy to the outcome of the branch�and�bound Experiment �
in Table ��� gives the disappointing result that the negligence of the cuts is not punished
with an increase in running time� There is only a redistribution away from cut generation
and the LP to the other modules of BC� Hence
 our timing statistics give no arguments in
favor of cutting planes� The �Branch�and�Cut� parts of Tables ��� and ���
 however
 provide
some justi�cation for the use of cutting planes� Cuts reduce the size of the searchtree from
������	�	�	 nodes in Experiment 	 to only ���	�	�
� in Experiment �
 and similar albeit
smaller reductions apply to the number of LPs
 dual simplex iterations
 and in� and out�pivots�
These �ndings do certainly not speak against the use of cutting planes in computational set
partitioning�
Experiment � was designed to investigate another step in this direction� Do the aggregated
cycle inequalities of Section ��� yield a computational advantage# The answer to question �iii�
is similar to our �ndings for question �ii�� Comparing the results of Experiment 	 in Table ���
with the statistics on Experiment � in Table ��� displays an increase in running time by a
factor of three when aggregated cycle inequalities are used� This outcome is
 however
 solely
due to the experimental status of our aggregated cycle separation routine� An examination
of the �Cut� column in the �Timings� section of Table ��� shows that about ��, of the
running time is spent in this module� The �Branch�and�Cut� statistics show some encouraging
e�ects of aggregated cycle separation� The searchtrees are reduced from ���	�	�
� nodes to
�
�	���			 nodes
 and similar savings can be observed for the number of LPs and dual simplex
iterations� We feel that these results indicate some potential for aggregated cycle inequalities
and strongly believe that cuts of such aggregation types are valuable for solving hard integer
programming problems �not only set partitioning problems�� The separation module itself
leaves ample room for improvement and this is one of the issues of future research�
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Vehicle Scheduling at Telebus

Summary� This chapter is about set partitioning methods for vehicle scheduling in dial�a�
ride systems� We consider the optimization of Berlin�s Telebus for handicapped people that
services 	
��� requests per day with a �eet of 	�� mini buses� Our scheduling system is in
use since June �
 	

� and resulted in improved service and signi�cant cost savings�
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	�� Introduction

This chapter is about set partitioning methods for vehicle scheduling in dial�a�ride systems
and their application at Berlin�s Telebus for handicapped people�
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Dial�a�ride systems give rise to challenging optimization problems that involve strategic as
well as operational planning
 uncertainty and on�line aspects
 decisions in space and time

complicated feasibility constraints and multiple objectives
 �soft� data
 �fuzzy� rules
 and
applications of large scale� This colorful manifold of topics is matched by the wide variety
of methods that have been developed to solve the planning questions of this area� Dynamic
programming algorithms
 network models
 set partitioning�set covering and other integer
programming approaches
 and all kinds of combinatorial heuristics
 single and multi�phased

cluster��rst schedule�second and vice versa
 etc� For surveys on dial�a�ride problems and
solution methods we refer the reader to Desrosiers
 Dumas
 Solomon � Soumis �	

� and
the thesis of Sol �	

�
 Chapter 	 
 see also Hamer �	

� for a recent description of a modern
large�scale dial�a�ride system for handicapped people in Toronto and the thesis of Tesch �	

� 
�German� for the example of the German city of Passau�

We discuss in this chapter the application of some of these optimization methods to vehicle
scheduling in a speci�c dial�a�ride system� Berlin�s Telebus for handicapped people� Our
approach is based on a decomposition of this dial�a�ride problem into a �clustering� and a
�chaining� step� Both of these steps lead to set partitioning problems that we attack with
heuristic and branch�and�cut methods� These procedures form an optimization module that
is the heart of a computer system that integrates and automates the complete operation of
the Telebus center� This system is in use since June �
 	

� and lead to improvements in
service
 cost reductions
 and increased productivity of the center�

This chapter is organized in seven sections in addition to this introduction� Section ��� de�
scribes Berlin�s Telebus transportation system for handicapped people and our project to
optimize the operation of this service� The core of the project was the development of mathe�
matical optimization methods and software to solve the vehicle scheduling problem that comes
up at Telebus� this particular dial�a�ride problem is discussed in Section ���� Section ��� in�
troduces our two�phase clustering and chaining solution approach and the associated set par�
titioning models� The approach involves cluster and tour generation steps that are discussed
in Sections ��� and ���� Computational experiences with our vehicle scheduling method are
discussed in Section ��� and some possible future perspectives in the �nal Section ����

Figure ��	� A Telebus Picks Up a Customer�
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Accessibility of the public transportation system for mobility disabled people has become an
important political goal for many municipalities� They introduce low��oor buses
 install lifts
in subway stations
 etc� But many handicapped and elderly people still have problems because
they need additional help
 the next station is too far away
 or the line they want to use is not
yet accessible� Berlin
 like many other cities
 o�ers to these people a special transportation
service� The so�called Telebus provides �i� door�to�door transportation and �ii� assistance at
the pick�up and the drop�o� point� The system is operated by the Berliner Zentralausschu�
f�ur Soziale Aufgaben e�V� �BZA�
 an association of charitable organizations
 and �nanced
by the Berliner Senatsverwaltung f�ur Soziales �SenSoz�
 the city of Berlin�s Department for
Social A�airs� Figure ��	 on page 	�� shows a Telebus that picks up a customer�

Telebus is a dial�a�ride system� Every entitled user �currently about ��
��� people� can order
up to �� rides per month through the BZA�s telephone center� If the order is placed one
day in advance
 Telebus guarantees to service the ride as requested
 later �spontaneous�
requests are serviced as possible� The advance orders
 about 	
��� during the week and
	
��� on weekends
 are collected and scheduled into a �eet of mini�buses that Telebus rents
on demand from service providers like charitable organizations and commercial companies�
These buses pick up the customers at the requested time �modulo a certain tolerance� and
transport him�her to the desired destination� if required
 the crew provides assistance to leave
the apartment
 enter the vehicle
 etc� This service is available every day from ���� am in the
morning to 	��� am in the night� Figures ��� and ��� illustrate operation and organization of
the Telebus system�

order customer

telephone center BZA

bus scheduling BZA

bus renting BZA

transportation service provider

�nancing
 goals SenSoz

Figure ���� Operation of the Telebus System�

Telebus was established in 	
�	 and ever since then the number of customers and requests has
been rapidly increasing� Figure ��� on page 	�	 gives an impression of the dramatic history of
Telebus in this period of time� the numbers for the years up to 	

� are taken from T ��� of
the report of the Rechnungshof von Berlin �Berlin�s audit division� for the year 	

�
 the other
data was provided by the BZA� We see �rst that there is a constant growth in the number of
entitled users� But not all registered persons drive� The number of customers
 i�e�
 persons
that order rides
 was basically constant and started to increase only after the reuni�cation
of Germany in 	

�� the delay until 	

� is due to the initial lack of private telephones in
the East� Costs got out of control in 	
��
 when a taxi voucher system was introduced that
allowed for a certain number of spontaneous rides with taxis in addition to the bus rides�
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Figure ���� Organization of the Telebus System�
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When costs topped �� million DM in 	

	
 drastic service reductions were taken to stop this
trend� The voucher system was replaced by a taxi account system that limits taxi rides to
��� DM per person and month� But with new demand from East Berlin and a doubled area
of service
 costs were almost immediately up at �� million DM again� What could be done#

Costs in Million DM

Entitled Users in Thousands

Customers in Thousands

�� �� �� �� 
� 
� 
� 
�
�

�

	�

	�

��

��

��

Year

Taxi Voucher System
Taxi Account System

Telebus Computer System

Figure ���� Increasing Usage and Costs of Telebus�

The best way to control costs without reducing the service was a better vehicle scheduling to
service more requests for the same amount of money� The scheduling was traditionally done
manually by experienced planners who could work out a feasible bus plot in about 	� man�
hours� Now it became clear that this method was no longer appropriate to cope with rising
demand and cost pressure� The core scheduling problem of the BZA could only be solved
with modern computer hard� and software and the Telebus project
 a cooperation involving
the ZIB
 the BZA
 and the SenSoz �Intranetz joined later
 see next paragraph�
 was started
to develop it� The Telebus dial�a�ride problem
 the methods that we use for its solution
 and
our computational experiences are what we are going to discuss in the subsequent sections of
this chapter�
The project developed a broader scope� It soon turned out that a mathematical vehicle
scheduling tool alone was not enough and the project evolved quickly into the development
of a comprehensive Telebus computer system
 that integrates and automates the complete
operation of the BZA� Reservation
 con�rmation
 and cancellation
 vehicle scheduling
 radio
telephony
 accounting
 controlling
 and statistics� The system consists of a tool box of software
modules and runs on a network of �� MacIntosh PCs� it is in operation since June �
 	

��
Design and installation of the Telebus computer system lead further to a reorganization of
the center and the whole Telebus service with issues that ranged from a new bus renting
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�mix� and �mode� to scheduling training of BZA sta�� Fridolin Klostermeier and Christian
K�uttner
 in particular
 worked with great personal dedication for more than a year in the
Telebus center
 drove on Telebuses
 etc� Finally
 they even set up their own company
 the
Intranetz GmbH
 that has scheduling systems for dial�a�ride systems as one of its business
areas� More information on the consulting aspect of the Telebus project can be found in the
articles Bornd�orfer et al� �	

�
 	

�a
b 
 and the thesis of Klostermeier � K�uttner �	

� �all
these publications are in German��

All these measures together �negotiations with vehicle providers
 reorganization of center
and service
 the new computer system
 and improved vehicle scheduling� resulted in

�i� Improvements in service� A reduction of the advance call�in period period from three
days in 	

� to one day and increased punctuality of the schedule in comparison to the
results of manual planning�

�ii� Cost reductions� Today
 about ��, more requests can be serviced with the same
resources as in 	

�
 see Figure ��� for a comparison of a month in 	

� before and in
	

� after the Telebus computer system went into operation�

�iii� More productivity in the Telebus center�
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Figure ���� Results of the Telebus Project�

	�� The Vehicle Scheduling Problem

The most important task at Telebus is the daily construction of the vehicle schedule
 which
determines the two most important objectives of the service� Operation costs and customer
satisfaction� This vehicle scheduling problem is a dial�a�ride problem that can be stated in
an informal way as follows�

�DARP�
Given the customer requests
 rent a suitable set of available vehicles and schedule
all requests into them such that a number of constraints on the feasibility of
vehicle tours are satis�ed and operation costs are minimum�

In the remainder of this section
 we discuss the Telebus DARP in detail�
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Requests

�

���

	���

	���

����

day
	 � 	� 	� �� �� ��

��Bus 	�Bus Taxi Cancelled

Figure ���� Telebus Requests in June 	

��


�	�� Pieces of Work

The basis for vehicle scheduling are the vehicles� Vehicles always come together with a crew
for a possible shift of operation� following the terminology of Desrosiers
 Dumas � Soumis
�	
�� 
 we call such a part or all of a workday
 during which a crew and a vehicle is available
to service requests
 a piece of work� The supply of pieces of work is determined by the vehicle
providers who o�er about 	�� pieces of work of di�erent types� The available pieces of work
are known in advance and Telebus can rent them on a daily
 weekly
 or monthly basis �long
term renting can be cheaper��
The following data is associated to a piece of work w�

�W�

�i� vw vehicle type� Teletaxi
 	�bus���bus small�large
�ii� c�vw� ! �cc� cw� cnf� cf� ca��vw� capacity�

total + of customers and wheelchairs
+ of non�folding�folding wheelchairs
+ of ambulatories

�iii� G�w� group� vehicle type
 depot
 type of shift

The vehicle types are �ve� Teletaxis �taxis that are rented like buses�
 ��buses �with one
driver�
 that can be small or large
 and ��buses
 also small or large� The vehicle type is
important for deciding whether a request can be serviced by a particular piece of work�
Teletaxis can transport only ambulatories and customers with folding wheelchairs
 non�folding
wheelchairs require a bus
 and staircase assistance a ��bus
 see Figure ��� for statistics on
Telebus requests which show a typical weekly distribution pattern�
Each vehicle has a capacity
 that depends on the type� It can transport cf�vw� persons in
folding and cnf�vw� persons in non�folding wheelchairs
 but at most cw�vw� wheelchairs at
the same time
 plus ca�vw� ambulatories
 in total at most cc�vw� customers� Teletaxis have
a capacity of c�vw� ! ��� 	� �� 	� ��
 i�e�
 they can service up to three customers at the same
time and one of them can have a folding wheelchair� The small buses have a capacity of
c�vw� ! ��� �� �� �� ��
 large buses have c�vw� ! ��� �� �� �� ��� note that this allows to account
for the �Telebus� rule that persons in folding wheelchairs travel in buses in their wheelchair�
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Finally
 the set W of all pieces of work falls into disjoint groups W ! 	
S
G� A group G is

a set of pieces of work that are considered to be indistinguishable for the purpose of vehicle
scheduling
 i�e�
 the pieces of work of the same group have vehicles of the same type
 which are
stationed at the same depot
 and they can be rented for identical shifts of operation� possible
shifts are ��� and 	��� hours �xed length
 and early
 late
 and certain �exible shifts of variable
duration� The groups will become important for the construction of vehicle tours
 namely

we will require group speci�c parameter settings or even group speci�c algorithms to come
up with tours that can be serviced by the pieces of a work of a given group�


�	�� Requests

The pieces of work will be used to service some number m of transportation requests�

�R�

�i� v�i � v
�
i pick�up and drop�o� event

�ii� p�v�i �� p�v�i � pick�up and drop�o� location
�iii� T �v�i � ! �t�v�i �� t�v�i � pick�up time window

T �v�i � ! �t�v�i �� t�v�i � drop�o� time window
�iv� t���v�i �� t���v�i � pick�up and drop�o� service time
�v� W �v�i ��W �v�i � set of feasible pieces of work
�vi� a�v�i � ! �ac� aw� anf � af � aa��v�i ��

a�v�i � ! �ac� aw� anf � af � aa��v�i �
total + of customers and wheelchairs

+ of non�folding and folding wheelchairs
+ of ambulatories

Associated to each request i is a pick�up node v�i and a drop�o� node v�i that corresponds to
the pick�up and drop�o� event of a request� these nodes will be part of a space�time transition
network that will be de�ned in the next section�
The pick�up and the drop�o� nodes are mapped to locations or points p�v�i � and p�v�i � in a
road network of Berlin �di�erent from the transition network� that is shown in Figure ���� We
estimate travelling times and distances by average values that are stored on the �
�	� edges
of this network and use this data to compute shortest routes between the ��� nodes�
In addition to this spatial information
 a request bears temporal data that is measured in
units of � minutes of Telebus time� The customer communicates a desired pick�up time t��v�i �
�or a desired drop�o� time which is treated analogously� that gives rise to a window of feasible
pick�up times T �v�i �� The pick�up time window is computed according to Telebus speci�c
rules that try to �nd a compromise between punctual service and more degrees of freedom
for the vehicle scheduling process� Currently
 most requests have

T �v�i � ! t��v�i � ' ���� � �units of Telebus time��

i�e�
 the vehicle is allowed to arrive up to 	� minutes early or late� Similar but more complex
rules are used to determine a feasible drop�o� time window T �v�i �� Here
 the shortest possible
travelling time and a maximum detour time play a role� Finally
 some service time t���v�i �
and t���v�i � is needed at the pick�up and the drop�o� location�
The required assistance
 the wheelchair type
 etc� determine the set of feasible pieces of
work W �v�i � ! W �v�i � that can or must be used to service the request� this set consists
of all suitable groups�
a�v�i � and a�v�i � give the total number of customers and wheelchairs
 the number of folding
and non�folding wheelchairs
 and the number of ambulatories that enter and leave the vehicle
in the pick�up and drop�o� event
 respectively�
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Figure ���� Highways and Major Roads in Berlin�


�	�	 Constraints

Given the available pieces of work and the requests
 a schedule of feasible vehicle tours has to
be determined that satis�es a number of constraints� Following Desrosiers
 Dumas � Soumis
�	
�� 
 we distinguish the following types of constraints for feasibility�

�F�

�i� visiting each pick�up and drop�o� event has to be serviced exactly once
�ii� pairing pick�up and drop�o� of a request is serviced by the same vehicle
�iii� precedence each customer must be picked up before dropped o�
�iv� time window pick�up and drop�o� events must be serviced in time
�v� no stop it is not allowed to stop and wait with a customer on board
�vi� capacity the vehicle capacity must not be exceeded
�vii� depot the vehicle must return to its depot
�viii� shift each piece of work must conform to its type of shift
�ix� availability one can not use more pieces of work or others than available

Shift constraints arise from renting contracts and labour regulations for bus drivers� At
Telebus
 pieces of work have to be of certain �xed or maximum lengths and�or have to begin
and end in certain time intervals
 the exact parameters depend on the type of shift� Such types
are
 for example
 ��� or 	��� hour shifts between ���� am and 	��� am and �exible shifts of
variable length� Labour regulations prescribe maximum driving hours and obligatory breaks�
A break of �� minutes has to be taken between the fourth and sixth hour of a shift�
The meaning of the other constraints is self explanatory�


�	�
 Objectives

The main objective of the DARP is to minimize operation costs
 i�e�
 the costs for renting
pieces of work from the service providers� Customer satisfaction is another important goal�
it is treated by means of the time windows� Finally
 Telebus uses some auxiliary objectives
that re�ect security issues� These criteria try to prefer �safe� tours to �risky� or �packed�
ones in an attempt to safeguard against emergency situations and unpredictable events like
cancellations
 spontaneous requests
 tra%c jams
 vehicle breakdowns
 etc�
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	�	 Solution Approach

In this section
 we discuss our solution approach to the Telebus dial�a�ride problem� Starting
from a network formulation of the DARP
 we decompose the problem into a clustering and a
chaining step� Both steps lead to set partitioning problems�


�
�� Transition Network

The basis for our solution approach is a formulation of the DARP in terms of a transition
network D ! �V�A�� The transition network is a space�time digraph
 see Figure ��� for an
illustration of the following construction�

Time

Time

Request 	 Request � Request �Depot Depot

Space

Figure ���� Constructing a Transition Network�

The transition network�s set of nodes V ! V ��V ��V G��V G��V � consists of all pick�up
events V � �! fv�i g
 all drop�o� events V � �! fv�i g
 tour start nodes V G� �! fvG�t g and
tour end nodes V G� �! fvG�t g for each group G of pieces of work and each possible point of
Telebus time t ! ��� � � � � ��� ��� � � minutes is ���� am and ��� � � minutes is 	��� am on the
next day�
 and break nodes V � �! fv�t g for all Telebus times� We set�

T �vG�t � �! T �vG�t � �! T �v�t � �! ftg�

t���vG�t � �! t���vG�t � �! � and t���v�t � �! ��

a�vG�t � �! a�vG�t � �! a�v�t � �! �� and

W �vG�t � �! W �vG�t � �! G and W �v�t � �! W�

The arcs of the network are de�ned to re�ect the local feasibility of possible vehicle tours�
We draw an event arc uv between two event nodes u and v if

t�u� ' t���u� ' tuv � t�v��

that is
 if it is possible to arrive at u
 service u
 drive to v
 and arrive there in time� Here

we denote by tuv the shortest time to get from location p�u� to p�v� in the road network�

�We use here the same symbol t for indices and variables� but we hope the notation is nevertheless clear�
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Analogously
 we introduce tour start arcs from the tour start nodes to the event nodes
 tour
end arcs from the event nodes to the tour end nodes
 and break start arcs and break end arcs
from the event to the break nodes and vice versa� More precisely
 we draw a tour start arc
vG�t v from a tour start node u ! vG�t to a pick�up node v if

t ' tuv � t�v� and W �v� � G�

where tuv is the time to get from the location of the depot associated to the group G of pieces
of work to the event location p�v�� Tour end
 break start
 and break end arcs are de�ned in
the same way
 only that the break arcs get zero duration tvv�t

�! tv�t v
�! ��

With this terminology
 we can state the DARP in terms of the transition network� Feasible
vehicle tours correspond to such dipaths in D that satisfy the constraints �F� �ii�*�viii� as
stated in Subsection ����� on page 	��� we assume here that a break is taken by visiting a
break node� A feasible vehicle schedule is a collection of feasible vehicle tours that satis�es
the remaining constraints �F� �i� and �ix� as well� The DARP is the problem to �nd a best
possible schedule with respect to some �not yet precisely de�ned� objective function�


�
�� Decomposition

The construction of feasible vehicle tours in the transition network as dipaths subject to
additional constraints is
 although simple in principle
 di%cult in practice because of the
many constraints �F�� We use a decomposition approach to cope with this di%culty in a
heuristic way� The method focusses on local feasibility in a �rst step� When validity of the
local constraints is ensured
 we deal with the remaining global restrictions in a second step�
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Figure ��
� Clusters at Telebus�

The decomposition is based on the concept of a cluster or
 as schedulers at the BZA say
 a
�Verkn�upfung�� A cluster is a dipath in the transition network that quali�es as a segment
of a vehicle tour in the sense that it satis�es the �local� constraints �F� �ii�*�vi�� Pairing

precedence
 time windows
 no stop
 and capacity� Figure ��
 shows a number of typical
clusters at Telebus� Collections
 insertions
 simple and continued concatenations�
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We denote a cluster�dipath C ! �v�� � � � � vk� as a sequence of visited nodes� In doing so
 we
want to adopt the convention that a cluster contains only pick�up and drop�o� nodes
 i�e�
 no
tour start
 tour end
 or break nodes� We also stipulate that a cluster contains a node only
once�
A cluster C satis�es the pairing constraints if it contains for every pick�up node the corre�
sponding drop�o� node and vice versa� The precedence constraints hold if every pick�up node
of the cluster precedes its drop�o� counterpart� We say that the capacity constraints are valid
for C if there exists a piece of work w such that the capacity c�vw� of the associated vehicle
type is always at least as large as the load ai�C� at each node vi of the cluster�

c�vw� � ai�C� �!
Pi

j�� a�vj�� i ! 	� � � � � k�

The time window and the no stop constraints hold if the recursion

T��C� �! T �v��

Ti���C� �!
�
Ti�C� ' t���vi� ' tvivi��



� T �vi���� i ! 	� � � � � k � 	�

���	�

that computes the feasible time windows at the cluster nodes
 terminates with Tk�C� 
! ��
�Here
 we denote by �a� b ' t the interval �a' t� b' t �� In this case
 it is possible to start the
service of the cluster at the �rst node v� at a feasible time in T��C�
 service v�
 go immediately
�no stop� to the next node
 arrive there at a feasible time T��C�
 service v�
 and so on until
the vehicle arrives at the last node vk in the feasible time interval Tk�C��
Before we discuss the use of clusters for vehicle scheduling
 let us record the data that we
associate with a cluster�

�C�

�i� C �! �v�� � � � � vk� cluster as sequence of visited nodes
�ii� t���C� cluster service time
�iii� T �C� cluster start time window
�iv� W �C� set of feasible pieces of work

By the no stop constraints and recursion ���	�
 the service time of a cluster is constant�

t���C� �!
Pk

i�� t
���vi� '

Pk��
i�� tvivi�� �

This results in a cluster start time window of possible times to begin the service of a cluster�

T �C� �! �t�C�� t�C� �! Tk�C�� t���C��

Finally
 there is the set

W �C� �! fw �
T
W �vi� j ai�C� � c�vw�� i ! 	� � � � � kg

of pieces of work that can possibly service C�

Clusters are useful for vehicle scheduling
 because they can serve as the building blocks of
vehicle tours� We can chain clusters to feasible tours just as we constructed clusters from
the individual requests� As the clusters already satisfy the local constraints �F� �ii���vi�
 the
chaining can concentrate on the remaining global conditions �F� �i� and �vii�*�ix�� the only
local constraints that appear again are the time window constraints �F� �iv� that transform
into the cluster start time windows� This largely independent treatment of local and global
constraints is one of the main bene�ts of request clustering�



��� Solution Approach 	�


These observations suggest the following two step decomposition approach to the DARP�

�i� Clustering Step� Construct a set of feasible clusters�

�ii� Chaining Step� Chain clusters to a set of tours that constitute a feasible schedule�

This generic clustering�chaining method is the vehicle scheduling procedure that we use for
the solution of the DARP�


�
�	 Set Partitioning

A re�nement of the two steps of the clustering�chaining vehicle scheduling method leads to
clustering and chaining set partitioning problems of identical structure�
The objective of the clustering step is to construct a set of clusters that is �good� in the sense
that it provides a �reasonable� input for the chaining phase� In the best case
 the clustering
algorithm would yield a set of clusters that can be chained to an optimal solution of the
DARP� While this is of course a hopeless criterion
 one can look for computable necessary
conditions that an optimal set of clusters must satisfy� If such conditions can be found
 they
can be used as a measure for the quality of a set of clusters and as a guide to construct it�

One way to derive a necessary condition is to note that any feasible schedule decomposes in
a canonical way� The maximal tour segments such that the vehicle is always loaded form a
set of minimal clusters with respect to set inclusion �interpreting
 for the moment
 clusters
as sets of nodes� and this minimal cluster decomposition of a schedule is unique� Then
 a
necessary condition for the global optimality of a schedule is that its cluster decomposition is
also locally optimal in the sense that the objective can not be improved by rescheduling the
service of individual clusters�

Assuming that a local objective value can be associated to and computed for an individual
cluster
 we can approximate the global objective value of the schedule by the sum of the
local cluster objectives� Applying this simpli�cation to the DARP results in the following
optimization problem over clusters�

�CLUSTER�
Given the customer requests
 �nd a set of clusters such that each request
is contained in exactly one cluster and the sum of the cluster objectives is
minimal�

We use CLUSTER as our formulation of the clustering step� this model aims at inputs for
the chaining phase that are optimal in a heuristic but well�de�ned sense�

Popular local optimization criteria for clustering are the internal travelling time �ITT� of a
vehicle in a cluster
 the internal travelling distance �ITD�
 and mixtures of these� Clusters
with small ITT or ITD aim at a good vehicle usage in terms of transported customers per
kilometer or per minute� One would expect that a minimal ITT or ITD clustering makes use
of large vehicle capacities by transporting several customers at once where possible
 see again
Figure ��
 for examples in this direction� In other words� Minimal ITT or ITD clustering
yields �reasonable� results that planners accept in practice�
CLUSTER can be formulated as a set partitioning problem

�SPP� min cTx Ax ! �� x � f�� 	gn�

where A is the m� n incidence matrix of requests versus clusters and c � Rn is the vector of
cluster objectives�
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Having decided for a set of clusters
 we can treat the chaining step in exactly the same way
as we just did with the clustering step� Approximating �or even expressing� the objective
value of the DARP as a sum of objectives of individual tours
 the DARP for �xed clusters
simpli�es to �becomes� the following optimization problem over tours�

�CHAIN�
Given a clustering
 �nd a set of vehicle tours such that each cluster is contained
in exactly one tour and the sum of the tour objectives is minimal�

We use CHAIN as our formulation for the chaining step� natural objectives associated to
tours are operation costs for vehicles and�or customer satisfaction criteria like accumulated
waiting time�
CHAIN can also be modelled as a set partitioning problem but needs one additional thought�
In the simplest case
 the matrix A records the incidences of clusters versus tours
 and c is the
vector of tour costs� this model is correct if there are no availability constraints� The presence
of availability constraints leads to additional equations and variables
 but the enlarged model
is again of set partitioning type� Namely
 availability constraints for a piece of work w
prescribe that one can only choose at most one of the �incidence vectors of� tours AJ
w�� that
correspond to w�P

j�J
w� xj � 	�

Adding a slack variable and appending the new row and column to �SPP� results again in a
set partitioning problem�


�
�
 A Vehicle Scheduling Algorithm

We are now ready to state the vehicle scheduling algorithm that we propose for the solution
of the DARP� The algorithm is a re�nement of the generic clustering�chaining method of
Subsection ����� in terms of the clustering problem CLUSTER and in terms of a subproblem
of the chaining problem CHAIN�

�i� Cluster Generation� Enumerate all possible feasible clusters� Set up its clustering SPP�

�ii� Clustering� Solve the clustering SPP�

�iii� Tour Generation� Enumerate a subset of all feasible tours� Set up its chaining SPP�

�iv� Chaining� Solve the chaining SPP�

Here
 the term �setting up the clustering SPP for a set of clusters� means to construct the
request�cluster incidence matrix A and to compute the cluster cost vector c to set up a
clustering set partitioning problem for the given set of clusters� The analogous expressions
are used in the chaining case
 but here we enumerate only some subset of all feasible tours
to construct only a submatrix of the complete cluster�tour incidence matrix and a subvector
of the complete tour cost vector� The resulting chaining set partitioning problem is hence a
subproblem of the complete chaining SPP� The reason for this simpli�cation is that it is out
of the question to set up the complete chaining SPP� The number of possible tours is in the
zillions �where zillion is an incredibly large number�� Restricting the chaining SPP to some
subset of �promising� tours is our heuristic way of dealing with this di%culty�
We use the branch�and�cut algorithm BC
 see Chapter � of this thesis
 to solve the clustering
and chaining set partitioning problems� How we do the cluster and tour generation is described
in the following Sections ��� and ����



��� Cluster Generation 	�	


�
�� Related Literature

Dial�a�ride problems and solution approaches similar to our�s have been discussed in a number
of publications in the literature� In Bodin � Golden �	
�	 �s vehicle routing and scheduling
classi�cation scheme
 the Telebus DARP quali�es as a subscriber dial�a�ride routing and
scheduling problem and our method is a cluster��rst schedule�second algorithm
 with some of
the clustering transferred to the scheduling�chaining phase� For survey articles on dial�a�ride
and
 more general
 vehicle routing and scheduling problems we give the classic Assad
 Ball

Bodin � Golden �	
��
 see Sections ���*��	� for DARPs 
 the thesis of Sol �	

�
 Chapter 	 

Desrosiers
 Dumas
 Solomon � Soumis �	

�
 see Chapter � for DARPs 
 and the annotated
bibliography of Laporte �	

� 
 and we suggest Barnhart et al� �	

� and the literature
synopsis of Soumis �	

� for references on column generation techniques�
The termini �clustering� and �chaining� stem from Cullen
 Jarvis � Ratli� �	
�	 
 who de�
velop a set partitioning based two�phase clustering�chaining vehicle routing algorithm� Their
approach di�ers from the one we give here in the use of column generation techniques and
a possible overlap of clusters in the chaining phase� Ioachim
 Desrosiers
 Dumas � Solomon
�	

	 
 based on earlier work of Desrosiers
 Dumas � Soumis �	
�� 
 report about clustering
algorithms for vehicle routing problems in handicapped people�s transport using column gen�
eration and a problem decomposition into time slices� Tesch �	

� develops a set partitioning
method that optimizes over a �xed set of heuristically generated columns to solve dial�a�ride
problems that come up in the German city of Passau� We �nally mention Sol �	

� as a recent
reference for the use of column generation techniques for pick�up and delivery problems�

	�� Cluster Generation

We discuss in this section the algorithm that we suggest for cluster generation� Recursive
enumeration of all dipaths in the transition network D ! �V�A� that correspond to feasible
clusters by depth �rst search�
The procedure works with sequences of nodes that are extended in all possible ways until
they eventually form clusters� Such a sequence S ! �v�� � � � � vk� � V � is called a state
 where
V � denotes the set of all �nite sequences of elements of V � Not every state can be extended
to a cluster� necessary conditions for feasibility of a state S are

�i� event sequence S � �V � � V ��� S contains only event nodes
�ii� no loop vi 
! vj �i 
! j S contains each node at most once
�iii� precedence �vi ! v�p � v

j ! v�p � i 	 j pick�ups precede drop�o�s

�iv� time windows� no stop T �S� 
! � the state time window is nonempty
�v� capacity� availability W �S� 
! � there is a feasible piece of work

Here
 we use the expressions time window of a state and its set of feasible pieces of work in
analogy to the terms for clusters of the same name
 see the de�nitions on page 	��� A state
is a cluster or terminal if it is feasible and the constraint for

�vi� pairing �vj ! v�p �vi ! v�p there is a drop�o� for each pick�up

holds� Finally
 a new state S� ! �v�� � � � � vk��� is produced from S ! �v�� � � � � vk� by appending
a node vk��� this transition is denoted by

S� ! S � vk���
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To state our depth �rst search cluster generation algorithm in C�type pseudocode
 we intro�
duce predicates infeasible � V � �� f�� 	g and terminal � V � �� f�� 	g for feasibility and
terminality of states� tail � S� �� V is a function that returns the terminal node vk of a state

and the procedure output is supposed to compute the cost and the request�state incidence
vector of its argument and to store the result somewhere�

� void dfs �state S
 digraph D��V
A




� f
� if �infeasible �S

 return�

� if �terminal �S

 output �S
�

�

� for all u � ���tail�S



� dfs �S � u
 D
�

� g

�

�� void cluster �digraph D��V
A



�� f
�� for all v�

i
� V

�� dfs ��v�
i


 D
�

�� g
��

��

Figure ��	�� Enumerating Clusters by Depth First Search�

The complete cluster generation procedure cluster is given in Figure ��	�� Here
 ���v�
denotes the set of endnodes of arcs in D that go out from v�
The running time of cluster can be improved by strengthening the predicate infeasible by
further state elimination criteria� For example
 S is infeasible when it contains an unserviced
pick�up v�p that can not be dropped o� in time regardless how S is extended�

�vii� timeout �vi ! v�p � t�S� ' tvkv�p � t�v�p � v�p can not be dropped in time

cluster
 with the infeasible predicate strengthened by �vii�
 is the cluster generation
algorithm that we use for vehicle scheduling at Telebus� To make this method work in
practice
 one needs
 of course
 e%cient data structures
 recursive updates of the predicates

and many other ingredients� the reader can �nd the implementation details in the thesis of
Klostermeier � K�uttner �	

� �German�� For a typical Telebus DARP with 	
��� requests

our depth �rst search procedure enumerates the complete set of all possible clusters in a
couple of minutes� Depending on the values of the time window
 lateness
 detour
 and some
other BZA parameters for cluster feasibility
 this usually results in 	��
���
 sometimes up to
���
���
 feasible clusters for input into the clustering set partitioning model�
We remark that similar results are not reported for comparable clustering problems in the
literature� For instance
 Ioachim
 Desrosiers
 Dumas � Solomon �	

	 develop a multilabel
shortest path algorithms for cluster generation problems that come up in the optimization of
Toronto�s Wheel�Trans Service� Although this dynamic program uses elaborate state space
elimination criteria
 special initialization strategies and data structures
 and sophisticated
preprocessing techniques to reduce the size of the transition network
 it is in this case not
possible to enumerate all feasible clusters�
Two Telebus speci�c factors may be responsible for the di�erent outcome in our case� One
is the combination of average service
 driving
 and detour times� As a rule of thumb
 a
transportation service takes in Berlin � minutes for pick�up
 �� minutes of driving
 and another
� minutes for drop�o�� When the maximum detour time is 	� minutes
 one will already be
happy to pick up a single additional customer en route� Second
 not every technically feasible
cluster is accepted by BZA schedulers� To safeguards against accumulating delays etc�
 they
often impose additional restrictions and forbid continued concatenations above a maximum
length� These two factors limit the number of feasible clusters to a computable quantity�
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	�� Tour Generation

The topic of this section are tour generation algorithms that chain clusters to feasible vehicle
tours� Starting from a simpli�ed network formulation of the chaining problem
 we develop
a recursive depth �rst search tour enumeration algorithm and a number of tour generation
heuristics� Some of these heuristics can also be used as stand�alone vehicle scheduling tools�


�
�� Chaining Network

The tour generation algorithms of this section work on a chaining �transition
 network D !
�V �A� that one obtains from the transition network D ! �V�A� by a contraction of clusters�
To give a more precise description of this construction
 let 	

S
Ci ! V ��V � be a clustering of

requests� D is set up from the transition network D in two steps� We �i� delete for each cluster
C ! �v�� � � � � vk� all entering and leaving arcs except the ones that enter the �rst node v� and
the ones that leave the last node vk
 i�e�
 we delete all arcs from 
�C� n

�

��v�� � 
��vk�



�

When this has been done
 we �ii� contract each cluster into a single �super�node that we
denote with the same symbol C� Note that we inherit in this way the de�nitions for the
service time of a cluster��node� t���C�
 its start time interval T �C�
 and its set W �C� of
feasible pieces of work�


�
�� Tour Enumeration

Feasible vehicle tours correspond to dipaths in the chaining network that satisfy the con�
straints �F�� Such dipaths can be enumerated in much the same way as the cluster�dipaths
in the transition network by a depth �rst search procedure� Using identical terminology and
analogous de�nitions as for the cluster generation
 a state S ! �v�� � � � � vk� � V

�
is feasible

when the following conditions hold�

�i� tour start �G� t � v� ! vG�t start at a tour start node
�ii� no loop vi 
! vj �i 
! j S contains each node at most once
�iii� time windows T �S� 
! � the state time window is nonempty
�iv� availability W �S� 
! � there is a feasible piece of work
�v� shift �vi ! v�t � t � t�v�� ' ���� �� break during �th*�th hour of shift

t�vk�� t�v�� � t�G� maximum shift length respected
� � � etc�

Here
 we denote by t�G� the maximum duration of a piece of work of group G� The only
di�erence to cluster generation is the update of the time window
 that must allow for waiting
�stops� between the service of two clusters�

Ti���S� �!
�
Ti�S� ' t���S� ' tvivi�� ' R�



� T �vi���� i ! 	� � � � � k � 	�

A state is a tour or terminal if it is feasible and the

�vi� depot �G� t�� t� � v� ! vG�
t�

� vk ! vG�
t�

tour start and end at the same depot

constraint holds� Continuing with the dipath enumeration exactly as we did for the cluster
generation in Section ���
 we arrive at a very similar depth �rst search tour enumeration
routine chain
 see Figure ��		 on the next page for a C�type pseudocode listing�
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� void dfs �state S
 digraph D��V
A



� f
� if �infeasible �S

 return�

� if �terminal �S

 output �S
�

�

� for all u � ���tail�S



� dfs �S � u
 D
�

� g

�

�� void chain �digraph D��V
A



�� f

�� for all vG�t � V

�� dfs ��vG�t 

 D
�

�� g
��

��

Figure ��		� Enumerating Tours by Depth First Search�

Computational practice
 however
 turns out to be completely di�erent� While there were only
some hundred thousand feasible clusters
 the number of tours is zillions" The reason for this
change is not the additional tour start
 tour end
 and break nodes �there are many
 but not
too many of these�
 but the possibility to wait between the service of two clusters� This degree
of freedom
 that is not available for cluster generation
 leads to an enormous increase in the
number of eligible clusters to extend a state� Looking one hour in the future
 any cluster
quali�es as a possible follow�on� Unlike in clustering
 tour state extension does not have a
local character and
 although the chain routine works as fast as the cluster generator
 there
is no point in attempting a complete enumeration of all feasible tours�

The way that we deal with this di%culty is by reducing the number of arcs in the chaining
network heuristically� One of our strategies is
 for example
 to keep only a constant number of
outgoing arcs at each cluster node that are selected by local criteria
 the �k best successors��
While such methods are likely to produce individual e%cient tours in some number
 there is
no reason other than pure luck to believe that the right set of unavoidable �garbage collection
tours�
 that complete a good schedule
 will also be produced in this way� We are aware of this
fact and mention this unsatisfactory arc selection as a weak point in our vehicle scheduling
algorithm� What we can do
 however
 is to produce
 in some minutes of computation time

several hundred thousands of tours as input for the chaining set partitioning problem
 see
again Klostermeier � K�uttner �	

� for more implementation aspects�

L�obel �	

� has dealt in his thesis with a similar arc selection problem in the context of
multiple depot vehicle scheduling� He has developed a Lagrangean pricing technique that
resolves this issue for his extremely large scale problems completely� It is perhaps possible
to use this technique
 based on a suitable multi commodity 	ow relaxation of the DARP
 to
obtain better chaining results and we have in fact performed some preliminary computational
experiments in this direction� These computations indicated
 in our opinion
 a signi�cant
potential for this approach� We remark that a multi commodity �ow relaxation gives also
rise to lower bounds for the complete chaining problem �CHAIN��


�
�	 Heuristics

The chaining transition network D can also serve as a basis for all kinds of combinatorial
vehicle scheduling heuristics to produce individual tours or to produce complete schedules�
Heuristic scheduling is a particularly attractive method of tour generation because it provides
not only �reasonable� input for the chaining set partitioning problem
 but also primal solu�
tions and upper bounds� We give here a list of heuristics that we have developed for Telebus

a more detailed description can be found in Klostermeier � K�uttner �	

� �
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Our �rst method is designed for the construction of individual tours�

K Best Neighbors� We have already mentioned the idea of the k best neighbors heuristic�
Applying the depth �rst search algorithm chain to a reduced version of the chaining network
where at most k arcs have been selected from each set 
��v� of arcs that go out from a node�
We use in our implementation local criteria like proximity to select the arcs that lead to a
node�s �k best neighbors��

The following heuristics produce complete vehicle schedules�

Tour�by�Tour Greedy� This heuristic produces the tours of a complete vehicle schedule
iteratively one by one� Starting from some tour start node
 the tour is extended by �best
�tting� follow�on clusters �including breaks� in a greedy way until a tour end node is reached�
The serviced clusters are removed from the chaining network
 the next tour is started
 and
so on� The tour�by�tour greedy heuristic tends to produce �good� tours in the beginning and
worse later when only far�out or otherwise unattractive clusters are left�

Time Sweep� This method uses some linear order on the clusters
 the �time�� The planning
process constructs all tours of a complete schedule simultaneously� In each step of the time
sweep
 the next cluster with respect to the given order is assigned to the best tour with respect
to some local criterion
 until all clusters are scheduled into tours� The orders that we use are
the natural ones from morning to evening and vice versa
 and a �peaks �rst� variant that
tries to smooth the morning and afternoon demand peak by scheduling this demand �rst�

Hybrid� The tour�by�tour and the time sweep heuristic can be seen as the extreme represen�
tatives of a class of vehicle scheduling heuristics that vary from the construction of individual
tours to a simultaneous construction of all tours by assigning clusters to tours in some order�
Hybrid belongs to such a class of mixtures of these two procedures� It does a time sweep
 but
it adds not only one follow�on cluster to a tour
 but some sequence of several clusters�

Assignment� This method belongs to the same class as the hybrid heuristic
 but it aims
at some global overview� The assignment heuristic subdivides the planning horizon into time
slices �we use a length of �� minutes� that are considered in the natural order� In each step

a best assignment �with respect to some local criterion� of all clusters in the next time slice
to the current set of partial tours is computed
 starting new tours if necessary�

BZA� A set of other methods imitates the traditional hand�planning methods of the BZA�
First
 the request clusters are grouped according to time and space such that the clusters in
one group start in the same hour and city district �or similar criteria�� Doing a time sweep
from morning to evening
 one constructs tours with an eye on the distribution of clusters and
vehicles in the city districts� In the starting phase of the Telebus project
 these methods were
particularly important to build up con�dence in computerized scheduling
 because they can
be used to produce vehicle schedules of �familiar� type�

The heuristic vehicle scheduling methods that we have just described already produce
 in
a few minutes
 schedules that have signi�cantly lower operation costs than the results of a
manual planning� And they do not use �a posteriori changes of scheduling rules� �that is

they do not produce infeasible tours"�
 which lead to a quantum leap in punctuality of the
schedule� Klostermeier � K�uttner �	

� give a detailed account of these improvements�
We use the heuristic methods of this subsection as a stand�alone scheduling tool and
 in
combination with the enumeration routine chain of the previous subsection
 to set up chaining
set partitioning problems with up to 	��
��� columns�
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	�
 Computational Results

We report in this section on computational experiences with our vehicle scheduling system�
The cluster and tour generation modules and the heuristics of Sections ��� and ��� and
the branch�and�cut solver BC
 that is described in Chapter � of this thesis� Our aim is to
investigate two complexes of questions�

�i� Performance� What is the performance of our vehicle scheduling system on Telebus
instances# Can we solve the clustering and chaining set partitioning instances#

�ii� Vehicle Scheduling� Does our system result in a better vehicle scheduling# Does cluster�
ing reduce the internal travelling time �ITT��internal travelling distance �ITD�# Does
the chaining set partitioning model yield better results than the heuristics#

Our test set consists of 	� typical Telebus DARPs� � from the week of April 	�*�	
 	

� �in�
stances v��	�*v���	� �clustering� and t��	�*t���	� �chaining�� and another � for the week of
September 	�*��
 	

� �instances v	�	�*v	���� �clustering� and t	�	�*t	���� �chaining���
April ���September �	 and April �	�September �� were Saturdays and Sundays
 respec�
tively� The two weeks di�er in the adjustment of feasibility parameters for clusters and
tours� Generally speaking
 the April instances represent a restrictive scenario with continued
concatenations limited to a maximum length of only three
 small detour times
 etc� The
September problems were produced in a liberal setting with more degrees of freedom� the
maximum concatenation length was
 e�g�
 doubled to six�
We have run our vehicle scheduling system on these problems and report in the following three
subsections about the results� We give statistics on solving the clustering and chaining set
partitioning problems
 and we investigate the relevance of our integer programming approach
for vehicle scheduling at Telebus� We do not give detailed statistics for cluster and tour
generation
 because these steps are not a computational bottleneck� the interested reader can
�nd such data in Klostermeier � K�uttner �	

� �
Following the guidelines of Crowder
 Dembo � Mulvey �	
�
 and Jackson
 Boggs
 Nash �
Powell �	

	 for reporting about computational experiments
 we state that all test runs were
made on a Sun Ultra Sparc 	 Model 	��E workstation with ��� MB of main memory
 running
SunOS ���
 that our branch�and�cut code BC was written in ANSI C compiled with the Sun
cc compiler and switches 
fast 
xO�
 and that we have used the CPLEX �	

� Callable
Library V��� as our LP solver�
Our computational results are listed in tables that have the following format� Column 	 gives
the name of the problem
 columns �*� its size in terms of numbers of rows
 columns
 and
nonzeros
 and columns �*� the size after an initial preprocessing� The next two columns give
solution values� z reports the value of the best solution that could be found� This number is
a proven optimum when the duality gap is zero
 which is indicated by a �� Otherwise
 we are
left with a nonzero duality gap �z� z��z
 where z is the value of the global lower bound� The
following �ve columns give statistics on the branch�and�cut algorithm� There are
 from left
to right
 the number of in� and out�pivots �Pvt�	
 cutting planes �Cut�
 simplex iterations to
solve the LPs �Itn�
 LPs solved �LP�
 and the number of branch�and�bound nodes �B�B�� The
next �ve columns give timings� The percentage of the total running time spent in problem
reduction �PP�
 pivoting �Pvt�
 separation �Cut�
 LP�solution �LP�
 and the heuristic �Heu��
The last column gives the total running time in CPU seconds�

�Available at URL http���www�zib�de�borndoerfer
	Confer Chapter 	 for an explanation of this concept�
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���� Clustering

Table ��	 lists our clustering results� The �rst seven rows of this table correspond to the April
instances
 the next fourteen to the September instances which were solved twice� We used a
time limit of �
��� seconds to produce the results in rows �*	� and 	�� seconds in rows 	�*�	�

We can see from column � of the table that the DARP instances that we are considering here
involve 	
��� or more requests during the week �Tuesday is usually a peak�
 and signi�cantly
less requests on weekends� These numbers were typical for Telebus in 	

�� The requests were
clustered in all possible ways and this resulted in the number of clusters that is reported in
column �� The restrictive parameter settings for April lead to a rather small number of feasible
clusters
 only about four times the number of requests �v��	� is an exceptional instance that
contains extraordinary large collective requests�� More planning freedom in September lead
to a ��fold increase in the number of feasible clusters� We note that the average April cluster
contains three requests
 while the number for September is four�

As the number of feasible clusters for April is very small
 one would expect that clusters do
not overlap much and that there are often not many choices to assign requests to clusters�
The statistics on preprocessing in columns �*� of rows 	*� show that this is indeed so� The
extremely large reduction in the number of rows indicates that
 in particular
 many requests
can only be assigned in a single way to a cluster �either to a single possible cluster or in
exactly the same way as some other request�� The results for September are di�erent
 see
rows �*	�� We observe also signi�cant and encouraging problem reductions
 but not to the
same extreme extent as for the April problems�

The trends that we observed in the preprocessing step continue in the branch�and�cut phase�
Largely orthogonal columns and few rows in the April instances translate into simple LPs with
more or less integral solutions� The problems could be solved with a few LPs
 cutting planes

and branch�and�bound nodes
 two even at the root of the searchtree
 see columns 		*	� in
rows 	*�� Iterated preprocessing played a major role in these computations
 as can be seen
from the large number of pivots in column Pvt �this is a measure for successful preprocess�
ing
 see Subsection ����	��� note that the code spent about half of the total running time in
problem reduction �sums of Timing columns PP and Pvt�� All in all
 about three minutes of
CPU time were always su%cient to solve the easy April problems to proven optimality� The
situation is di�erent for the September data� The problems are larger
 and substantial overlap
in the clusters results in highly fractional LPs� Signi�cant computational e�ort and extensive
branching is required to solve the September problems
 see columns 		*	� of rows �*	�� in
fact
 three instances could not be solved completely within �
��� seconds� But the remaining
duality gaps are so small that any practitioner at the BZA is perfectly happy with the so�
lutions� And these results can even be obtained much faster� Setting the time limit to only
	�� seconds yields already solutions of very good quality
 see column Gap in rows 	�*�	�

The objective that we used in the April and September clustering set partitioning problems
was a mixture of ITD and a penalty that discourages the clustering of taxi requests� servicing
all but the most �clusterable� taxi requests with individual taxi rides was BZA policy at
that time� Figure ��	� compares on its left side the number of requests and the number of
clusters that were obtained by optimizing this mixed criterion for the September data� Note
that the number of taxi clusters �that contain only taxi requests� is largely identical to the
original number of taxi requests
 i�e�
 the taxi requests were essentially left unclustered� The
observed reductions are thus solely due to the clustering of bus requests� The right side gives
an impression of the reduction of ITD that can be achieved with a clustering of this type�
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September �������		�

Mo Tu We Th Fr Sa Su

Requests
Clusters

��Bus
��Bus

��Bus
��Bus

Taxi
Taxi

����������
����������
����������
����������
����������
����������
����������

Mo Di Mi Do Fr Sa So

10.000 km

15.000 km

5.000 km

0 km

Durch das Verknüpfen von Fahraufträgen      zu Bestellungen
lassen sich die Besetztkilometer um 20% reduzieren. 

Verknüpfungsoptimierung (16. bis 22.9.1996)September ������ �		�

Mo Tu We Th Fr Sa Su

ITD Requests Clusters

Figure ��	�� Reducing Internal Travelling Distance by Clustering�


���� Chaining

We have used the best clusterings that we computed in the tests of the previous subsection to
set up two sets of chaining problems� Table ��� lists our results for these problems� Rows 	*�
correspond to the April instances
 rows �*	� are for the September chaining problems�

The instances for April contain redundant data
 namely
 identical rows for every request in
a cluster
 i�e�
 tours are stored by requests �not by clusters�� thus
 these problems have the
same number of rows as their clustering relatives� This is not so for the September instances
which are stored by clusters� In addition
 we have also already removed from these instances
all clusters that correspond to individual taxi rides� These clusters have to be serviced exactly
in this way �with an individual taxi ride� and would give rise to row singletons� The number
of rows in the September instances is thus exactly the sum of the heights of the columns for
��bus and 	�bus clusters in Figure ��	��

The picture for tour optimization has the same �avour as the clustering� A small number
of tours was produced for April
 more potential is present in the September data
 where the
average tour services between four and �ve clusters� Thinking about the possible success of
preprocessing
 one would guess that tours
 which extend over a long period of time and a large
area of service
 have a signi�cantly larger overlap than clusters
 which have a local character
in space and time� Hence
 it is potentially much more di%cult to �nd out about possible
reductions� The real situation is even worse� Mostly only duplicate tours are eliminated in
the preprocessing step� The chaining problems contain these duplicates in large numbers

because our tour generation procedures tend to produce
 unfortunately
 the same �locally
promising� tours many times� The large reduction in the number of rows for the April
instances is solely due to the removal of the duplicates that represent each cluster several
times and to the detection of row singletons that correspond to individual taxi rides� These
redundancies were already eliminated during the generation of the September problems
 and
not a single further row could be removed there�

Small reductions in preprocessing are a good indicator for the computational hardness of a set
partitioning problem
 and the chaining instances turn out to be very hard indeed� Although
the problems are at best medium scale
 we can solve none of them to proven optimality
with our branch�and�cut code
 and the duality gaps are disappointingly large in comparison
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��� Computational Results 	�	

to results for similar applications
 most notably airline crew scheduling� For the September
problems
 we do not even get close to optimality� Looking at the pivoting column Pvt
 we see
that substantial reductions are achieved in the tree search
 but this does obviously not su%ce�
In fact
 the LPs do not only have completely fractional solutions
 they are also di%cult to
solve� The average number of simplex pivots is well above 	��
 and
 what one can not see
from the table
 the basis factorizations �ll up more and more the longer the algorithm runs�
Another problem is the primal LP plunging heuristic
 that does not work well� An integral
solution has about 	�� variables at value one for 	�� tours in a schedule
 and if the LP solution
is not strongly biased to an integral one or decomposes after a few decisions �as in clustering�

it is not a good idea to search for such a solution by iteratively �xing variables�

As these results are as they are
 we must unfortunately speculate now why this is so� We see
three points� �i� Our current column generation process produces a set of vehicle schedules
plus some variations of tours using greedy criteria� This works well as a heuristic
 but it
does not result in a large combinatorial variety of tours and there is no reason to believe that
such tours can be combined in many ways to complete schedules� Rather the contrary seems
to be the case� One can observe that the heuristics in BC nearly always fail in the chaining
problems� If the set partitioning problems that we produce have by construction only few
feasible solutions
 it is not surprising that a branch�and�cut algorithm gets into trouble� We
remark that one can not compensate this �aw with simple minded tricks like
 e�g�
 adding
tripper tours �unit columns�
 because these invariably lead to schedules of unacceptable costs�
�ii� There are some reasons why Telebus DARPs might result in set partitioning problems that
are di%cult per se� In comparison to the Ho�man � Padberg �	

� airline test set
 where our
algorithm BC works well
 see Chapter �
 the Telebus chaining SPPs have more rows
 and the
solutions have a much larger support� �iii� And maybe there is a structural di�erence between
airline crew and bus scheduling� Marsten � Shepardson �	
�	 also report the computational
hardness of set partitioning problems from bus �driver� scheduling applications in Helsinki�
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We can not solve the chaining SPPs of Telebus DARPs to optimality
 but the approximate
solutions that we can obtain are still valuable for vehicle scheduling�

Table ��� on the following page gives a comparison of di�erent vehicle scheduling methods
for the September DARPs� Column 	 lists the name of the instance
 column � the day of the
week
 and column � the number of requests� The next three columns show the results of a
heuristic vehicle scheduling that used the cluster and tour generators of Sections ��� and ���
as stand�alone optimization modules� There are
 from left to right
 the number of clusters
in a heuristic clustering
 its ITD
 and the costs of a heuristic vehicle schedule computed
from this clustering� We compare these numbers with the results of two set partitioning
approaches� Skipping column � for the moment
 we see in columns � and 
 the clustering
results of Figure ��	�� Using this optimized clustering as input for the chaining heuristics
results in vehicle schedules with costs that are reported in column �� The �nal column 	�
lists the costs of the vehicle schedules that we computed in Subsection ������

These results indicate substantial potential savings� In our tests
 the set partitioning clustering
yields 	�, less clusters than a heuristic clustering and about the same improvement in ITD�
Heuristic vehicle scheduling based on such a clustering can save �
��� DM of operation costs
per day in comparison to the purely heuristic approach� Set partitioning based chaining can
reduce costs by another �
��� DM per day�
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aScheduling anomaly due to heuristic chaining�

Table ���� Comparing Vehicle Schedules�

	�� Perspectives

Telebus is an example that mathematical programming techniques can make a signi�cant
contribution to the solution of large�scale transportation problems of the real world� We
mention here three further perspectives and refer the reader to Bornd�orfer
 Gr�otschel � L�obel
�	

� and the references therein for a broader treatment of optimization and transportation�

Telebus� We have pointed out in Section ��� that mathematical vehicle scheduling methods

as one factor
 have translated into cost reductions and improvements in service at Telebus�
And the optimization potential at Telebus is not yet depleted� At present
 the BZA utilizes
only the heuristic modules of our scheduling system� We have seen in Subsection ����� that
integer programming allows for further cost reductions that have to be put into practice�

Computer Aided Scheduling� Automatic scheduling paves the way for a systematic sce�
nario analysis not only at the BZA� The scheduler of the future will use software planning
tools based on advanced mathematical methods to simulate
 analyze
 and anticipate the impli�
cations of changing operation conditions and variations in contractual obligations� Computer
aided design �CAD� has replaced the drawing board
 computer aided manufacturing �CAM�
controls the factories � computer aided scheduling �CAS� for logistic systems is just another
step in this direction�

Paratransit� Berlin�s Telebus system of today is only a remainder of a comprehensive
paratransit concept that was developed as a part of the seventies� e�orts to revitalize the
public transportation sector� The idea to reduce costs and simultaneously improve and extend
service in times and areas of low tra%c with demand responsive systems was convincing
and immediately tested in a number of pilot schemes
 in Germany in Friedrichshafen
 in
Wunstorf near Hannover
 and
 with a slightly di�erent scope
 in Berlin
 see Figure ��	� for
the dimensions that were initially projected for Telebus� But some years later
 most of these
systems had either disappeared or turned into special purpose systems� And there can be no
doubt that
 for instance
 the handicapped only used a system with advance call�in periods of
initially three days because there was no other choice� The main reason for the lack of success
of dial�a�ride systems seems to have been scheduling problems� After initial enthusiasm in
every single one of these projects
 the systems were virtually �killed by their own success�
beyond a critical size�
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Figure ��	�� From a Telebus Project Flyer�

But right now the situation is changing and old reasons have kindled new interest in para�
transit
 see
 e�g�
 S�udmersen �	

� �German� for some examples of ongoing projects� Why#
The driving force behind renewed popularity of demand responsive systems and many other
developments is the upcoming deregularization of the European public transportation sector
according to Article 
� of the Maastricht II treaty of the European Union
 see Meyer �	

� 
�German� for some background information and a survey of the current situation of public
transport in the EU� This law gives a new chance to dial�a�ride type systems� The future will
show if mathematical programming techniques can help to take it�
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of a graph � � � � � � � � � � � � � � � � � � � � � � � � � �	

of an inequality � � � � � � � � � � � � � � � � � � � � �	

of matrix inequality� � � � � � � � � � � � � � � ���

N �index

of a graph � � � � � � � � � � � � � � � � � � � � � � � � � �	

of an inequality � � � � � � � � � � � � � � � � � � � � �	

of matrix inequality� � � � � � � � � � � � � � � ���

Nk�G� kth projected fractional set packing
matrix cone � � � � � � � � � � � � � � � � � � � ��

Nk
��G� kth projected semide�nite fractional

set packing matrix cone� � � � � � � ���

��G� maximum size

of a matching in a graph G � � � � � � � � ��
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O

�w�G� weighted clique number

of a graph G � � � � � � � � � � � � � � � � � � � � � � � 	�

P

P probability distribution� � � � � � � � � � � � �		�

P �A� fractional packing polytope � � � � � � 	�

P �A� fractional set packing polytope � � � � �

P�A� b� polytope

associated to the system Ax � b � � � ��

p�v�i � pick�up location � � � � � � � � � � � � � � � � 	��

p�v�i � drop�o� location� � � � � � � � � � � � � � � � 	��

P� empty column reduction � � � � � � � � � � � 	�


P	 empty row reduction � � � � � � � � � � � � � � 	�


P� row singleton reduction� � � � � � � � � � � � 	�


P� dominated column reduction � � � � � � 		�

P�� duplicate column reduction � � � � � � � 		�

P� dominated row reduction � � � � � � � � � � 		�

P�� duplicate row reduction � � � � � � � � � � � 		�

P� row clique reduction � � � � � � � � � � � � � � � 		�

P� parallel column reduction� � � � � � � � � �		�

P� symmetric di�erence reduction � � � � 		�

P�� symmetric di�erence reduction � � � � 		�

P� column singleton reduction � � � � � � � � 		�

P
 reduced cost �xing � � � � � � � � � � � � � � � � 			

P	� probing � � � � � � � � � � � � � � � � � � � � � � � � � � 			

P��A� fractional

set partitioning polytope � � � � � � � � � � � � �

PASP acyclic subdigraph polytope � � � � � � ��

PCPP clique partitioning polytope � � � � � � �	


��n property of a ��	 matrix � � � � � � � � � � 	


PI set packing polytope � � � � � � � � � � � � � � � � ��

���n property of a ��	 matrix � � � � � � � � � � 	�

PI�A� set packing polytope � � � � � � � � � � � � � �

PI�G� set packing polytope � � � � � � � � � � 

 ��

P�
I �A� set partitioning polytope � � � � � � � � �

PIP polytope

associated to an integer program� � � ��

PISP independence system polytope � � � � ��

Pk�MCP k�multicut polytope � � � � � � � � � � � �	

PLOP linear ordering polytope� � � � � � � � � ���

PMCP max cut polytope� � � � � � � � � � � � � � � ��	

PMKP multiple knapsack polytope � � � � � � ��b
P SSP anti�dominant

of a set packing polytope � � � � � � � � � � ��

Q
Q rational numbers� � � � � � � � � � � � � � � � � � � � � ix
Q�A� fractional covering polyhedron � � � 	�
Q�A� fractional set covering polyhedron � �
Q� nonnegative rational numbers � � � � � � ix
QI�A� set covering polytope� � � � � � � � � � � � ��
QSP quadratic fractional

set packing problem � � � � � � � � � � � � � � � �

QSP�

� semide�nite relaxation
of the set packing problem � � � � � � � � � �	

QSP� semide�nite fractional
set packing problem � � � � � � � � � � � � � � � �


R
R real numbers � � � � � � � � � � � � � � � � � � � � � � � � � ix
R� nonnegative real numbers � � � � � � � � � � � ix
� density of a ��	 matrix � � � � � � � � � � � � � 	��
RSF recursive smallest �rst semiheuristic

	��

S
S� set of �nite sequences from set S � � 	�	
S	 polar of a set S � � � � � � � � � � � � � � � � � � � � � �

SCP set covering problem � � � � � � � � � � � �
 �	
SenSoz

Berliner Senatsverwaltung
f�ur Soziales � � � � � � � � � � � � � � � � � � � � � 	��

Senate of Berlin�s
Dept� for Social A�airs � � � � � � � � � 	��

SenWiFoKult
Berliner Senatsverwaltung

f�ur Wissenschaft
 Forschung
 Kult�
	��

Senate of Berlin�s
Dept� for Sci�
 Research
 Culture	��

SPP set partitioning problem � � � � � � � � � � � �
SSP

set packing problem � � � � � � � � � � � � � �
 ��
stable set problem � � � � � � � � � � � � � � � � � � 


T
T �C� cluster start time window � � � � � � � 	��
T �v�i � drop�o� time window � � � � � � � � � � 	��
T �v�i � pick�up time window � � � � � � � � � � � 	��
t��v�i � desired pick�up time � � � � � � � � � � � 	��
t���C� service time for a cluster � � � � � � 	��
t���v�i � pick�up service time� � � � � � � � � � 	��
t���v�i � drop�o� service time � � � � � � � � � 	��
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t���� Telebus DARP
April chaining instance � � � � � � � � � � � 	��

t���� Telebus DARP
September chaining instance � � � � � � 	��

t�C� latest cluster start time � � � � � � � � � � 	��
t�G� maximum duration of a piece of work

of group G � � � � � � � � � � � � � � � � � � � 	��
t�v�i � latest pick�up time � � � � � � � � � � � � � � 	��
t�v�i � latest drop�o� time � � � � � � � � � � � � � 	��
t�C� earliest cluster start time � � � � � � � � 	��
t�v�i � earliest pick�up time � � � � � � � � � � � � 	��
t�v�i � earliest drop�o� time� � � � � � � � � � � �	��
TDI total dual integrality � � � � � � � � � � � � � � � �
TH�G� semide�nite relaxation

of the set packing polytope associated
to a graph G � � � � � � � � � � � � � � � � � � ��

Ti�C� feasible time interval
at cluster node i � � � � � � � � � � � � � � � � � � 	��

tuv vehicle travelling time � � � � � � � � � � � � � 	��

U
U homogenized unit cube � � � � � � � � � � � � � � �


V
V � set of break nodes � � � � � � � � � � � � � � � � 	��
V � set of pick�up event nodes � � � � � � � � 	��
V � set of drop�o� event nodes � � � � � � � � 	��
v���� Telebus DARP

April clustering instance � � � � � � � � � � 	��
v���� Telebus DARP

September clustering instance� � � � �	��
vertP vertices of a polyhedron P � � � � � � 		
V G� set of tour start nodes � � � � � � � � � � � 	��
V G� set of tour end nodes � � � � � � � � � � � � 	��
v�i pick�up node � � � � � � � � � � � � � � � � � � � � � � 	��
v�i drop�o� node � � � � � � � � � � � � � � � � � � � � � � 	��
Vk�G� set of subgraphs of a graph G

with at most k nodes � � � � � � � � � � � � � � ��
v�t break node � � � � � � � � � � � � � � � � � � � � � � � � 	��
vG�t tour start node � � � � � � � � � � � � � � � � � � 	��
vG�t tour end node� � � � � � � � � � � � � � � � � � � � 	��
vw vehicle type of a piece of work � � � � � 	��

W
W set of all available pieces of work� � �	��
W�n� t� q� generalized antiweb � � � � � � � � � � ��
W �v�i � set of feasible pieces of work� � �	��
W �v�i � set of feasible pieces of work� � �	��

W �w� group of pieces of work � � � � � � � � � 	��
W� ��wheel � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
w� o�set in a set partitioning problem 	��
w reduced costs of an LP solution� � � � �	��

X
x� optimal solution of an LP� � � � � � � � � � 	��
Xm�� random variable counting sequence

intersections � � � � � � � � � � � � � � � � � � 		


Y
Y� random variable counting operations in

lexicographic comparisons � � � � 		�

Z
Z integer numbers � � � � � � � � � � � � � � � � � � � � � � ix
Z� nonnegative integer numbers � � � � � � � � ix
z� optimal objective value of an LP � � � 	��
ZIB Konrad�Zuse�Zentrum Berlin � � � � � 	��
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