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ZUSAMMENFASSUNG

Diese Dissertation befafit sich mit ganzzahligen Programmen mit 0/1
Systemen: Set-Packing-, Partitioning- und Covering-Probleme. Die
drei Teile der Dissertation behandeln polyedrische, algorithmische und
angewandte Aspekte derartiger Modelle.

Teil 1 diskutiert polyedrische Aspekte. Den Auftakt bildet ei-
ne Literaturibersicht in Kapitel 1. In Kapitel 2 untersuchen wir
Set-Packing-Relazierungen von kombinatorischen Optimierungspro-
blemen iiber Azyklische Digraphen und Lineare Ordnungen, Schnitte
und Multischnitte, Uberdeckungen von Mengen und iiber Packungen
von Mengen. Familien von Ungleichungen fiir geeignete Set-Packing-
Relaxierungen sowie deren zugehorige Separierungsalgorithmen sind
auf diese Probleme iibertragbar.

Teil 2 ist algorithmischen und rechnerischen Aspekten gewidmet.
Wir dokumentieren in Kapitel 3 die wesentlichen Bestandteile ei-
nes Branch-And-Cut Algorithmus zur Losung von Set-Partitioning-
Problemen. Der Algorithmus implementiert einige der theoretischen
Ergebnisse aus Teil 2. Rechenergebnisse fiir Standardtestprobleme der
Literatur werden berichtet.

Teil 3 ist angewandt. Wir untersuchen die Eignung von Set-
Partitioning-Methoden zur Optimierung des Berliner Behinderten-
fahrdienstes Telebus, der mit einer Flotte von 100 Fahrzeugen téglich
etwa 1.500 Fahrwiinsche bedient. Der Branch-And-Cut Algorith-
mus aus Teil 2 ist ein Bestandteil eines Systems zur Fahrzeugein-
satzplanung, das seit dem 3. Juni 1995 in Betrieb ist. Dieses Sy-
stem ermdglichte Verbesserungen im Service und gleichzeitig erhebli-
che Kosteneinsparungen.

Schliisselbegriffe. Ganzzahlige Programmierung, Polyedrische
Kombinatorik, Schnittebenen, Branch-And-Cut, Anrufsammeltaxi-
systeme, Fahrzeugeinsatzplanung

Mathematics Subject Classification (MSC 1991). 90C10






ABSTRACT

This thesis is about integer programs with 0/1 constraint systems: Set
packing, partitioning, and covering problems. The three parts of the
thesis investigate polyhedral, algorithmic, and application aspects of
such models.

Part 1 discusses polyhedral aspects. Chapter 1 is a prelude that sur-
veys results on integer 0/1 programs from the literature. In Chapter 2
we investigate set packing relaxzations of combinatorial optimization
problems associated with acyclic digraphs and linear orderings, cuts
and multicuts, multiple knapsacks, set coverings, and node packings
themselves. Families of inequalities that are valid for such a relaxation
and the associated separation routines carry over to the problems un-
der investigation.

Part 2 is devoted to algorithmic and computational aspects. We docu-
ment in Chapter 3 the main features of a branch-and-cut algorithm for
the solution of set partitioning problems. The algorithm implements
some of the results of the theoretical investigations of the preceding
part. Computational experience for a standard test set from the liter-
ature is reported.

Part 3 deals with an application. We consider in Chapter 4 set par-
titioning methods for the optimization of Berlin’s Telebus for handi-
capped people that services 1,500 requests per day with a fleet of 100
mini busses. Our branch-and-cut algorithm of Part 2 is one module of
a scheduling system that is in use since June 3, 1995 and resulted in
improved service and significant cost savings.

Keywords. Integer Programming, Polyhedral Combinatorics,
Cutting Planes, Branch-and-Cut, Vehicle Scheduling, Dial-A-Ride
Systems

Mathematics Subject Classification (MSC 1991). 90C10






PREFACE

Aspects of set packing, partitioning, and covering is the title of this
thesis, and it was chosen deliberately. The idea of the thesis is to try
to bend the bow from theory via algorithms to a practical application,
but the red thread is not always pursued conclusively. This resulted in
three parts that correspond to the three parts of the bow and belong
together, but that can also stand for themselves. This self-containment
is reflected in separate indices and reference lists.

There is no explanation of notation or basic concepts of optimization.
Instead, I have tried to resort to standards and in particular to the
book Grotschel, Lovasz & Schrijver (1988), Geometric Algorithms and
Combinatorial Optimization, Springer Verlag, Berlin.

It is perhaps also useful to explain the system of emphasis that is at
the bottom of the writing. Namely, emphasized words exhibit either
the topic of the current paragraph and/or they mark contents of the
various indices, or they sometimes just stress a thing.

I am grateful to the Senate of Berlin’s Departments for Science, Re-
search, and Culture and for Social Affairs that supported the Tele-
bus project and to Fridolin Klostermeier and Christian Kiittner for
their cooperation in this project. I am indebted to the Konrad-Zuse-
Zentrum for its hospitality and for its support in the publication of
this thesis.

I would like to thank my supervisor Martin Grotschel for his example
not only as a mathematician and especially for his patience. I also
thank Andreas Schulz and Akiyoshi Shioura who have kindly pointed
out a number of errors in an earlier version of this thesis. My friends
Norbert Ascheuer, Bob Bixby, and Alexander Martin have helped me
with many discussions on aspects of this thesis and I want to express
my gratitude for this. A special thanks goes to Andreas Lobel for
his friendship and support. My last special thanks goes to my friend
Robert Weismantel. I simply want to say that without him not only
this thesis would not be as it is.

I hope that whoever reads this can profit a little from these notes —
and perhaps even enjoy them.

Berlin, August 1998 Ralf Borndorfer
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Chapter 1

Integer 0/1 Programs

Summary. This chapter tries to survey some of the main results of the literature for integer
programming problems associated with set packings, set partitionings, and set coverings:
Blocking and anti-blocking theory, the field of perfect, ideal, and balanced matrices, and the
results about the facial structure of set packing and set covering polyhedra.

1.1 Two Classical Theorems of Konig (Introduction)

Konig’s book Theorie der endlichen und unendlichen Graphen of 1936 is the first systematic
treatment of the mathematical discipline of graph theory'. Two hundred years after Euler’s
famous primer? on the bridges of Kénigsberg gave birth to this area of discrete mathematics,
it was Konig’s aim to establish his subject as “a branch of combinatorics and abstract set
theory”3. In this spirit, he investigated structural properties of general and of special classes of
graphs. Among the latter, bipartite graphs are the subject of two of his most famous theorems,
the Konig-Egervdry and the edge coloring theorem. In his own words*, these results read as
follows.

'Sachs [1986], page 314 of Konig [1986]. Konig [1936] himself made an effort to compile all previous
references on graph theory.

?Euler attributes the notion of graph theory or geometria situs, as he called it, to Leibniz and gives some
references in this direction, see Euler [1736], page 279 of Konig [1986].

3Konig [1936], preface, page 9: “Second one can perceive it [the theory of graphs] — abstracting from its
continuos-geometric content — as a branch of combinatorics and abstract set theory. This book wants to
emphasize this second point of view ...” ",

“Translation by the author.



4 Integer 0/1 Programs

1.1.1 Theorem (Kénig-Egervary Theorem, Kénig [1931]%)
For any bipartite graph is the minimum number of nodes that drain the edges of the graph
equal to the maximum number of edges that pairwise do not possess a common endpoint.

Here, we say that the nodes Ay, Ao, ..., A, «drainy the edges of a graph if every edge of the
graph ends in one of the points A1, As, ..., A,.

1.1.2 Theorem (Edge Coloring Theorem, Konig [1936]°)

If at most g edges come together in every node of a finite bipartite graph G, one can subdivide
all edges of the graph into g classes in such a way that every two edges, that come together
in a node, belong to different classes.

Konig’s theorems can be seen as combinatorial min-maz theorems, and they are among the
earliest known results of this type. Min-max theorems state a duality relation between two
optimization problems, one a minimization and the other a maximization problem, hence
the name. In the Konig-Egervary case, these optimization problems are the minimum node
covering problem and the maximum matching problem in a bipartite graph; the theorem states
that the optimum solutions, the minimum covers and the maximum matchings, are of equal
size. The edge coloring theorem involves also two optimization problems: The (trivial) task
to compute the maximum degree in a bipartite graph is related to the problem to determine
the minimum number of colors in an edge coloring. The relation is again that the best such
values are equal. See the top of page 3 for an illustration of the two Konig theorems.
Min-max results are important from an optimization point of view, because they provide
simple certificates of optimality. For example, to disperse any doubt whether some given
cover is minimal, one can exhibit a matching of the same size. The technique works also the
other way round, or it can be used to prove lower or upper bounds on the size of a minimal
cover or maximum matching, respectively. And, most important of all, optimality criteria are
the first step to design combinatorial optimization algorithms.

It goes without saying that the relevance of his theorems was more than clear to Konig®
and he devoted two entire sections of his book” to their consequences. Konig showed, for
instance, that the popular (but fortunately rarely applied) marriage theorem can be derived
in this way. He noticed also that the two theorems themselves are related and proved that
the edge coloring theorem follows from the Konig-Egervary theorem®. Reading his book one
has the impression that Konig looked at the first as a weaker result than the latter, and
we could find no evidence that he considered the reverse implication. But we know today
that exactly this is also true: It is one of the consequences of Fulkerson [1971]’s powerful
anti-blocking theory, developed about 40 years later, that the Konig-Egervary and the edge
coloring theorem are equivalent. This means that for bipartite graphs not only node covering
and matching are dual problems as well as edge coloring is dual to degree computation, but,
going one step further, these two min-max relations form again a dual pair of equivalent
companion theorems, as Fulkerson called it.

“See also Konig [1936], Theorem XTV 13/14, page 249 of Kénig [1986].

®See Konig [1936], Theorem XI 15, page 187 of Konig [1986].

5Konig [1936], page 191 of Konig [1986]: “Theorem [XIV] 13 is an important theorem that can be applied
to problems of very different nature ...”* [Applications follow.]. Page 191 of Konig [1986]: “Theorem [XI] 13
[that is equivalent to the edge coloring Theorem XI 15] can be applied to various combinatorial problems ...”*
[Applications follow.]

"Konig [1936], XI § 5 (edge coloring) and XIV § 3 (Konig-Egervéry). See (in both cases) also the preceeding
paragraphs.

8Konig [1936], page 250 of Konig [1986].



1.1 Two Classical Theorems of Konig (Introduction) 5

Let’s go through an application of anti-blocking theory to the Konig-Egervary/edge coloring
setting now to see how this theory works. The anti-blocking relation deals with integer
programs of a certain “packing” type, and we start by formulating a weighted generalization
of the matching problem in this way, the bipartite matching problem (BMP). Taking A as the
node-edge incidence matrix of the bipartite graph of interest (a row for each node, a column
for each edge), this BMP can be formulated as the weighted packing problem

(BMP) max w'z Az <1, >0, z binary.

Here, 1 is a vector of all ones of compatible dimension, w is a vector of nonnegative integer
weights, and taking w := 1 is to look for a matching of maximum cardinality. The “packing
structure” in (BMP) is that the constraint system is 0/1 and of the form Az <1, = > 0.
Note that “matching” is a synonym for “edge packing”, hence the name.

Now we apply a sequence of transformations to this program: Removing the integrality
stipulations, taking the dual, and requiring the dual variables to be integral again

max wlz < max w'z = min yT1 < min yT1 (1.1)
Az <1 Ar <1 yTA > w' yTA > wt
x>0 x>0 yT >0T yt >0T
z integral yT  integral,

we arrive at another integer program on the right. This program is the weighted bipartite
node covering problem (BCP) of edges by nodes

(BCP) min y™1 yTA >w", y"> 0", y' integral.

(BCP) is an example of a weighted covering problem, which means in general that the con-
straint system is of the form yTA > w', y* > 0 with a 0/1 matrix A and arbitrary integer
weights w on the right-hand side.

But the BCP is, for w = 1, exactly the node covering problem of the Konig-Egervary theorem!
This relation allows us to paraphrase Theorem 1.1.1 in integer programming terminology as
follows: For w = 1, the optimum objective values of the packing problem (BMP) and of the
associated covering problem (BCP) are equal.

The key point for all that follows now is that this equality does not only hold for w = 1, but
for any integral vector w. In other words, a weighted generalization of the Konig-Egervary
theorem as above holds, and this is equivalent to saying that the constraint system of the
packing program (BMP) is totally dual integral (TDI). This situation —a TDI packing system
Az <1,z > 0 with 0/1 matrix A— is the habitat of anti-blocking theory and whenever we can
establish it, the anti-blocking machinery automatically gives us a second companion packing
program, again with TDI constraint system and associated min-max theorem! In the Konig-
Egervary case, the companion theorem will turn out to be a weighted generalization of the
edge coloring theorem for bipartite graphs.

The companion program is constructed as follows. We first set up the 0/1 incidence matrix B
of all solutions of the packing program, i.e., in our case of all matchings versus edges (a row
for each matching, a column for each edge). This matrix is called the anti-blocker of A; it
serves as the constraint matrix of the companion packing program and its associated dual

max w'z < max w'z = min y'1 < min y'1 (1.2)
Br<1 Bz <1 yTBzwT yTBZwT
x>0 x>0 yt' > 07" yt o >0"

z integral yT  integral.



6 Integer 0/1 Programs

The main result of anti-blocking theory is that, if the original packing program had a TDI
constraint system, the companion packing program has again a TDI constraint system. This
means that all inequalities in the sequence (1.2) hold with equality for all integral weights w,
and this is the companion min-max theorem.

What does the companion theorem say in the Konig-Egervéary case for w = 17 The solutions
of the left integer program in (1.2) are edge sets that intersect every matching at most once.
Sets of edges that emanate from an individual node have this property, and a minute’s thought
shows that these are all possible solutions. w = 1 means to look for a largest such set, i.e.,
to compute the maximum node degree; this is one half of the edge coloring theorem. The
second integer program on the right of (1.2) provides the second half, because it asks for a
minimum cover of edges by matchings. But as the matchings are exactly the feasible color
classes for edge colorings, the integer program on the right asks for a minimum edge coloring.
And arbitrary weights give rise to a weighted generalization of the edge coloring theorem.
We can thus say that the weighted version of the Konig-Egervary theorem implies, by virtue of
anti-blocking theory, the validity of a companion theorem which is a weighted generalization
of the edge coloring theorem. One can work out that it is possible to reverse this reasoning
such that these two theorems form an equivalent pair. And one finally obtains the two Konig
theorems by setting w := 1. The reader will have noticed that, in contrast to what we have
claimed on page 4, this anti-blocking argument does not prove the equivalence of the two
unweighted Konig theorems, that both only follow from their (equivalent) weighted relatives.
Well — sometimes it’s clearer to lie a little!

*

Our discussion of Konig’s considerations was already in terms of weighted versions of his
theorems, and further generalizations take us directly to today’s areas of research on integer
0/1 programming problems.

The first question that comes up is whether TDI results with dual pairs of min-max theorems
also hold for other 0/1 matrices than the incidence matrices of bipartite graphs? This question
leads to perfect graph theory, where Lovész [1971] has shown that dual min-max theorems
on stable sets and clique coverings on the one hand and cliques and node colorings on the
other hold exactly for perfect matrices, the clique matrices of perfect graphs. This famous
result, that was conjectured by Berge [1961] and is known as the perfect graph theorem, does
not imply that the four optimization problems that we have just mentioned can be solved in
time that is polynomial in the input length of the perfect graph and the objective, because
the associated clique matriz and its anti-blocker can be exponentially large. But exactly this
is nevertheless possiblel Fundamental algorithmic results of Grotschel, Lovasz & Schrijver
[1988], often termed the polynomial time equivalence of separation and optimization, and
techniques of semidefinite programming were the key innovations for this breakthrough.
Another appealing topic on perfect graphs and their clique matrices are recognition problems.
An important result in this area, which follows from results of Padberg [1973b, 1976] but was
first stated and proved (in a different way) by Groétschel, Lovdsz & Schrijver [1984], is that
the recognition of perfect graphs is in co-AV/P. This question, as well as the unsolved problem
whether one can certify in polynomial time that a given graph is perfect or, weaker, whether
a given 0/1 matrix is perfect, is intimately related to a stronger and also unresolved version
of Berge’s conjecture. This strong perfect graph conjecture states that a graph is perfect if
and only if it does not contain an odd hole or its complement; it is known to hold for several
subclasses of perfect graphs.
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Another direction of research considers general 0/1 matrices that do not correspond to clique
matrices of perfect graphs. The LP relaxations of the packing (and the dual covering) prob-
lems associated to such matrices are not integral, much less TDI, and min-max theorems do
not hold in general. To solve such packing problems with LP techniques, additional inequal-
ities are needed. One branch of research, pioneered by Padberg [1973a], is concerned with
finding not only any feasible, but in a sense best possible facet defining inequalities and to
develop computationally useful procedures to find them. For special classes of 0/1 matrices it
is sometimes not only possible to determine some facets, but to obtain a complete description,
i.e., a list of all facet defining inequalities. In such cases, there is a chance that it is possible
to develop polynomial LP based or combinatorial optimization algorithms for the four opti-
mization problems that come up in packing: Maximum stable set, minimum clique covering,
maximum clique, and minimum coloring. And in very rare instances, complete descriptions
give even rise to TDI systems with associated min-max theorems.

Analogous problems as in the packing case, but much less complete results exist for set
covering problems. One obtains the four optimization problems of this area by simply reversing
all inequalities in the four packing analogues. But this “technique” does not carry over to all
theorems and proofs! It is in particular not true that every covering min-max theorem has an
equivalent companion theorem, and the connection to graph theory is much weaker than in
the packing case. The well behaved 0/1 matrices are called ideal, but there are no algorithmic
results as for perfect matrices. The study of facet defining inequalities for the nonideal case
seems to be more difficult as well and little is known here, but comparable (even though more
difficult) results exist for the recognition of ideal matrices.

Finally, one can look at the equality constrained partitioning case, that leads to the con-
sideration of a certain class of balanced matrices. These matrices give rise to partitioning
programs with integer LP relaxations, but the balanced matrices are only a subclass of all
matrices with this property. A spectacular result in this area is the recent solution of the
recognition problem by Conforti, Cornuéjols & Rao [1991]. There are no investigations to
determine further inequalities for programs with unbalanced matrices, because this question
reduces to the packing and covering case.

The following eight sections of this chapter give a more detailed survey on results for the set
packing, the set partitioning, and the set covering problem. Section 1.2 gives basic definitions
and references to survey articles. Section 1.3 describes the fundamental connections of set
packing to graph theory and of set covering to independence systems. Blocking and anti-
blocking theory is visited a first time in Section 1.4. This topic extends to Section 1.5, where
we discuss perfect and ideal matrices and the associated famous min-max results, the perfect
graph theorem with its many variants and the width-length and max flow-min cut properties
of ideal matrices. Section 1.6 is about the recognition of perfect and ideal matrices and,
closely related, their characterization in terms of forbidden minors. Balanced matrices are
treated in a separate Section 1.7. The last two sections survey polyhedral results. Section 1.8
deals with the set packing polytope, and Section 1.9 with the set covering polytope.
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1.2 The Set Packing, Partitioning, and Covering Problem

Let A be an m x n 0/1 matrix and w an integer n-vector of weights. The set packing (SSP),
the set partitioning (SPP), and the set covering problem (SCP) are the integer 0/1 programs®

(SSP) max w'z (SPP) min w'z (SCP) min w'z
Azr <1 Ar =1 Az >1
x>0 x>0 z>0
z €{0,1}" z €{0,1}" z € {0,1}".

Associated to these three programs are six polyhedra:

Pr(A) :=conv{z € {0,1}" : Az <1} P(A) :=conv{z € R} : Az < 1}
Pr(A) :=conv{z € {0,1}" : Az =1} P=(A) :=conv{zr e R} : Az =1}
Q1r(A) := conv{z € {0,1}" : Ax > 1} Q(A) :=conv{z € R} : Az > 1}.

The set packing polytope Pr(A), the set partitioning polytope P; (A), and the set covering
polytope Qr(A) are defined as the convex hull of the set of feasible solutions of (SSP), (SPP),
and (SCP), respectively, the polyhedra P(A), P=(A), and Q(A) denote fractional relaxations
(fractional set packing polytope etc.). The fundamental theorem of linear programming, that
guarantees the existence of an optimal basic (vertex) solution, allows to state the three integer
programs above as linear programs over the respective integer polytope:

(SSP) max w'z (SPP) min w'z (SCP) min w'z
z € Pr(A) xz € Pr(A) z € Qr(A4).

Let us quickly point out some technicalities. (i) Empty columns or rows in the constraint
matrix A are either redundant, lead to unboundedness, or to infeasibility, and we can assume
without loss of generality that A does not contain such columns or rows. (ii) If A does not
contain empty rows or columns, Pr(A) and Qr(A) are always nonempty, but P (A) = 0
is possible. (iii) By definition, P; (A) = Pr(A) N Q1(A), i.e., it is enough to study P;(A)
and Qr(A) to know P (A). (iv) The set covering polytope Qr(A), as we have defined it, is
bounded, but the relaxation Q(A) is not. This “trick” is convenient for duality arguments and
does not give away information because all vertices of (J(A) lie within the unit cube. (v) The
two packing polytopes P;(A) and P(A) are down monotone, the covering polyhedra Q;(A)
and Q(A) are (in slightly different senses) up monotone. (vi) These observations can be used
to assume w.l.o.g. that set packing or covering problems have a nonnegative (or positive)
objective, and so for set partitioning problems as well by adding appropriate multiples of rows
to the objective. (vii) Similar techniques allow transformations between the three integer 0/1
programs, see Garfinkel & Nemhauser [1972] and Balas & Padberg [1976] for details.

All three integer 0/1 programs have interpretations in terms of hypergraphs that show their
combinatorial significance and explain their names. Namely, look at A as the edge-node
incidence matrix of a hypergraph A (on the groundset {1,...,n} of columns of A) with node
weights w;. Then the packing problem asks for a maximum weight set of nodes that intersects
all edges of A at most once, a maximum packing, the covering case is about a minimum weight
set that intersects each edge at least once, a minimum cover or (old fashioned) transversal,
while in the last case a best partition of the groundset has to be determined.

“We distinguish “0/1 integer programs” with 0/1 variables and “integer 0/1 programs” with 0/1 matrices.
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We suggest the following survey articles on integer 0/1 programs: Fulkerson [1971] (blocking
and anti-blocking theory), Garfinkel & Nemhauser [1972, Chapter 8] (set partitioning, set
covering), Balas & Padberg [1976] (applications, set packing, set partitioning, set packing
polytope, algorithms), Padberg [1977, 1979] (set packing polytope), Schrijver [1979] (blocking
and anti-blocking, perfection, balancedness, total unimodularity, extensions), Lovasz [1983]
(perfect graphs), Grotschel, Lovasz & Schrijver [1988] (set packing polytope, perfect graphs),
Ceria, Nobili & Sassano [1997] (set covering), Conforti et al. [1994] and Conforti, Cornuéjols,
Kapoor & Vuskovié [1997] (perfect, ideal, and balanced 0/1 and 0/ £+ 1 matrices), Schrijver
[1986, Chapter 9 & 22] (textbook), and finally Balinski [1965] as a “historical” article.

1.3 Relations to Stable Sets and Independence Systems

We discuss in this section two insights that are the foundations for the combinatorial study
of the set packing and the set covering problem: The correspondence between set packings
and stable sets, that builds the bridge from packing 0/1 integer programs to graph theory,
and the relation of set covering to independence systems.

T + 3

9 +£E4+IE5
T+ T2

Figure 1.1: Constructing a Column Intersection Graph.

We start with set packing. Edmonds [1962, last two sentences on page 498] came up with
the idea to associate to a set packing problem (SSP) the following conflict or column inter-
section graph G(A): The nodes of G(A) are the column( indice)s of A, and there is an edge
between two column( node)s ¢ and j if they intersect, i.e., A;. - A;. # 0, see Figure 1.1. The
construction has the property that the incidence vectors of stable sets in G(A), i.e., sets of
pairwise nonadjacent nodes, are exactly the feasible solutions of the packing program (SSP).
This means that the set packing program (SSP) is simply an integer programming formulation
of the stable set problem (SSP) on the associated conflict graph G(A) with node weights w;.
For this reason, we will occasionally also denote Pr(A) by Pr(G(A)).

Two consequences of this equivalence are: (i) Two 0/1 matrices A and A’ give rise to the
same set packing problem if and only if their intersection graphs coincide. (ii) Every row of A
is the incidence vector of a clique in G(A), i.e., a set of pairwise adjacent nodes. In particular,
G(A) = G(A) if A" is the clique-node incidence matrix of all cliques in G(A), or of a set
of cliques such that each edge is contained in some clique, or of all mazimum cliques with
respect to set inclusion, see Padberg [1973a]. Note that the last matrix contains a maximum
of clique information without any redundancies.

Set covering is known to be equivalent to optimization over independence systems, see, e.g.,
Laurent [1989] or Nobili & Sassano [1989], by the affine transformation y := 1 — z:
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min w'(1 —y) =w'l — (ISP) max wly
A1 —y)>1 () Ay < (A— 1)1
(1-y)<1 (i) y=0
(1-y) >0 (i) y<1
(1—y)e{0,1}" (iv) y € {0,1}".

To see that the program on the right is an optimization problem over an independence system,
we have to construct a suitable independence system. To do this, note first that one can
delete from (ISP) any row that strictly contains some other row. A 0/1 matrix without such
redundant rows is called proper (Fulkerson [1971]). Assuming w.l.o.g. that A is proper, we
can take its rows as the incidence vectors of the circuits of an independence system J(A) on
the groundset of column( indice)s of A. Then the right-hand side (A —I);.1 = |supp 4;.| — 1
of every constraint 7 in (ISP) equals the rank of the circuit supp A;. and (ISP) is an integer
programming formulation of the problem to find an independent set of maximum weight with
respect to w in J(A).

We remark that there is also a graph theoretic formulation of the set covering problem in
terms of a bipartite row-column incidence graph that has been proposed, e.g., by Sassano
[1989] and Cornuéjols & Sassano [1989].

Thinking again about the relation of set packing and set covering in terms of stable sets and
independence systems, one makes the following observations. (i) The stable sets in a graph
form an independence system, i.e., set packing is a special case of set covering with additional
structure. (ii) This argument holds for almost any other combinatorial optimization problem
as well; we mention here in particular the generalized set packing problem and the generalized
set covering problem, that arise from their standard relatives by allowing for an arbitrary
uniform right-hand side, see Sekiguchi [1983]. (iii) Not every independence system can be
obtained from stable sets of some appropriately constructed graph, see Nemhauser & Trotter
[1973, Theorem 4.1] or Padberg [1973b, Remark 3.15] for details.

1.4 Blocking and Anti-Blocking Pairs

The theory of blocking and anti-blocking pairs of matrices and polyhedra, developed in Fulk-
erson [1970, 1971, 1972], provides a framework for the study of packing and covering problems
that explains why packing and covering theorems occur in dual pairs. Its technical vehicle is
the duality (or polarity, who likes the term better) between constraints and vertices/extreme
rays of polyhedra. We discuss the basics of the theory here in a general setting for nonnegative
matrices and specialize to the combinatorial 0/1 case in the following Sections 1.5 and 1.6.

The center of the theory is the notion of a blocking and anti-blocking pair of matrices and
polyhedra that we introduce now. Consider a nonnegative (not necessarily 0/1) matrix A and
the associated fractional packing problem (FPP) and the fractional covering problem (FCP)

(FPP) max w'r (FCP) min w'z
Ar <1 Az > 1
z>0 z > 0.

Associated to these problems are the fractional packing polytope and the fractional covering
polyhedron, that we denote, slightly extending our notation, by P(A) and Q(A), respectively.
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By Weyl’s description theorem, see, e.g., Schrijver [1986, Corollary 7.1b], these bodies are
generated by their vertices and extreme rays. Denote by abl A the matrix that has the
vertices of P(A) as its rows, and by bl A the matrix that has the vertices of Q(A) as its rows.
Then we have

P(A) ={z e R} : Az <1} = conv vert P(A) = conv(abl A)T
Q(A) = {z € R : Az > 1} = convvert Q(A) + R? = conv(bl A)T+ R".

(We must assume that A does not contain empty columns for the packing equations to hold.)
abl A is called the anti-blocker of the matrix A, bl A is the blocker of A. Associated to these
matrices are again a fractional packing polytope and another fractional covering polyhedron.

ablP(A) := {y e R? : 2Ty <1Vz € P(A)} = {y € R : abl Ay < 1} = P(abl A)
blQ(A) :=={y eRY :y'z > 1Vz € Q(A)} = {y € R? : blAy > 1} = Q(blA).

abl P(A) is called the anti-blocker of the polytope P(A), blQ(A) is the blocker of Q(A). The
general duality between constraints and vertices/extreme rays of polyhedra translates here
into a duality relation between anti-blocking and blocking matrices and polyhedra.

1.4.1 Theorem (Blocking and Anti-Blocking Pairs, Fulkerson [1971])
For any nonnegative matrix A holds:

(i) Ifa is a vertex ofabl P(A), a'z < lisei- (iv) If a is a vertex of blQ(A), a'z > 1 is a
ther a facet of P(A), or can be obtained facet of Q(A). In particular,
from a facet by setting some left-hand
side coefficients to zero. In particular, (v) bI2Q(A) = Q(A).

.. ) o
(i) abl” P(4) = P(A). (vi) bl A is proper and
(iii) If A has no empty column, so does abl A. bl? A=A <= A is proper.

Here, abl? is short for abl abl, and so on. Theorem 1.4.1 (ii) and (v) state that the anti-
blocking relation gives indeed rise to a dual anti-blocking pair of polyhedra and the blocking
relation to a dual blocking pair of polyhedra. This duality carries over to the associated
matrices. Theorem 1.4.1 (iv) and (vi) establishes a blocking pair of proper matrices. The
duality is a bit distorted in the anti-blocking case, because the anti-blocking relation produces
dominated vertices/rows. Since only the maximal rows give rise to facets, one does not insist
on including dominated rows in a packing matrix, and calls two matrices A and B an anti-
blocking pair of matrices, if the associated packing polyhedra constitute an anti-blocking pair.
Blocking and anti-blocking pairs of matrices (and polyhedra) are characterized by a set of
four relations that provide a link to optimization. Let A and B be two nonnegative matrices
and consider the equalities

min yT1 = max Bw (1.3) max yT1 = min Bw. (1.4)
yTA > T yTA < wt
yT >07 yt >07

Here, min Bw is short for min {B;w : i = 1,...,m}, and so on. If (1.3) holds for all
nonnegative vectors w, we say that the min-maz equality holds for the ordered pair of matrices
A, B. If (1.4) holds for all nonnegative vectors w, we say that the maz-min equality holds for
the ordered pair of matrices A, B.
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The other two relations are inequalities:
max Al-max Bw > [Tw (1.5) min Al -min Bw < [tw. (1.6)

If (1.5) holds for all nonnegative vectors w and I, we say that the maxz-maz inequality holds
for the (unordered) pair of matrices A and B. If (1.6) holds for all nonnegative vectors w
and l, we say that the min-min inequality holds for the (unordered) pair of matrices A and B.
These equations and inequalities are related to the anti-blocking and the blocking relation via
appropriate scalings of the vectors w and [ such that the above optima become one; this is
always possible except in the trivial cases w = 0 and/or [ = 0. Such a scaling makes w and [
a member of the anti-blocking/blocking polyhedron. These arguments can be used to prove

1.4.2 Theorem (Characterization of Blocking and Anti-Blocking Pairs, Fulkerson
[1971])

For any pair of nonnegative matrices A and B For any pair of proper nonnegative matrices A
with no empty columns, the following state- and B, the following statements are equiva-
ments are equivalent: lent:

(i) A and B are an anti-blocking pair. (vi) A and B are a blocking pair.

(ii)) P(A) and P(B) are an anti-blocking pair. (vii) Q(A) and Q(B) are a blocking pair.
(iii) The min-max equality holds for A, B.  (viii) The max-min equality holds for A, B.
(iv) The min-max equality holds for B, A. (ix) The max-min equality holds for B, A.
(v) The max-max inequality holds for A and B. (x) The min-mininequality holds for A and B.

Theorem 1.4.2 bears on dual min-maz results for packing and covering optimization problems.
We give an interpretation of the anti-blocking part (iii) and (iv) of Theorem 1.4.2 in terms of
the fractional packing problem, the covering case is analogous. The min-max equality (1.3)
can be interpreted as a “weighted max fractional packing-min fractional covering theorem?”:
The rows of A are used for covering, the rows of B, that correspond to the feasible solutions of
(FPP), for packing. If this min-max theorem can be established, anti-blocking theory yields
a second, equivalent theorem of the same type, where the covering-packing roles of A and B
are exchanged.

1.5 Perfect and Ideal Matrices

The main point of interest in anti-blocking and blocking theory is the study of anti-blocking
and blocking pairs of matrices A and B that are both 0/1. Saying that a 0/1 matrix A has a
0/1 anti-blocking matrix B is by definition equivalent to integrality of the fractional packing
polytope associated to A; a 0/1 matrix A that gives rise to such an integral packing polytope
P(A) = Pr(A) is called perfect. Analogous for covering: 0/1 blocking matrices correspond to
integral covering polyhedra Q(A) = Q7(A); a 0/1 matrix A with this property is called ideal.
By Theorem 1.4.2, perfect matrices occur in anti-blocking pairs and so do ideal matrices occur
in blocking pairs. Associated to an anti-blocking/blocking pair of perfect/ideal matrices is a
pair of equivalent min-max/max-min equalities and one can either prove one of the equalities
to establish the second plus the anti-blocking/blocking property plus perfection/ideality of a
0/1 matrix pair, or one can prove one of the latter two properties to obtain two min-max/max-
min results.
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Anti-blocking/blocking pairs of perfect/ideal matrices often have combinatorial significance
and this brings up the existence question for combinatorial covering and packing theorems.
The min-max/max-min equalities (1.3) and (1.4) are not of combinatorial type, because they
allow for fractional solutions of the covering/packing program. But consider stronger, integer
forms of these relations for 0/1 matrices A and B:

min yT1 = max Bw (1.7) max y'1 = min Buw. (1.8)
yTA Z ’LUT yTA S 'LUT
yT Z OT yT Z OT
yl ezm yt o ezr

If (1.7) holds for all nonnegative integer vectors w, we say that the strong min-maz equality
holds for the ordered pair of 0/1 matrices A and Bj; this is equivalent to stating that the
packing system Ax < 1,2 > 0 is TDI. If (1.8) holds for all nonnegative integer vectors w,
we say that the strong maz-min equality holds for the ordered pair of 0/1 matrices A and
B; this relation corresponds to a TDI covering system Az > 1,z > 0. The combinatorial
content of these relations is the following. The strong min-max equality can be interpreted
as a combinatorial min covering-max packing theorem for an anti-blocking pair of perfect
matrices: The smallest number of rows of A such that each column j is covered by at least
w; rows is equal to the largest packing of columns with respect to w, where the packings are
encoded in the rows of B. An analogous statement holds in the strong max-min case for a
blocking pair of ideal matrices.

We mention two famous examples of such relations to point out the significance of this concept.
Dilworth’s theorem is an example of a well-known strong min-max equality in the context of
partially ordered sets. Let A be the incidence matrix of all chains of some given poset, let
B be the incidence matrix of all its antichains, and consider the strong min-max equality
for A, B: It states that, for any nonnegative integer vector w of weights associated to the
elements of the poset, the smallest number of chains such that each element is contained in
at least w; chains is equal to the maximum w-weight of an antichain. For w = 1, this is
the classical Dilworth theorem, and one can generalize it to the weighted case by appropriate
“replications” of poset elements (the reader may verify that this is easy). The validity of this
weighted generalization of Dilworth’s theorem implies that A and B form an anti-blocking
pair of perfect matrices, because the strong min-max equality for A, B yields, trivially, the
fractional min-max equality for A, B. This argument implies in turn the min-max equality for
B, A in its fractional form. What about the strong, integer version for B, A? One can work
out that it holds as well — and this is not a strike of luck! But let’s stop here for the moment
and just consider the combinatorial content of the strong min-max equality for B, A: This
theorem is identical to the weighted Dilworth theorem, except that the words “antichain”
and “chain” have changed their places — a combinatorial companion theorem.

The most famous example of a strong max-min equality is probably the maz flow-min cut
theorem of Ford, Jr. & Fulkerson [1962] for two-terminal networks. Taking A as the incidence
matrix of all (s,t)-paths versus edges and B as the incidence matrix of all (s, t)-cuts versus
edges, the max flow-min cut theorem turns out to be exactly the strong max-min equality for
A, B. Hence, the incidence matrices of (s,t)-paths and (s,t)-cuts in a two-terminal network
form a blocking pair of ideal matrices. Can one also produce a companion theorem by inter-
changing the roles of paths and cuts as we did with the antichains and chains in Dilworth’s
theorem? The answer is yes and no: One can in this particular case, but not in general.
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We have already hinted at one of the main insights of anti-blocking theory in the Dilworth
example and we state this result now: The perfection of a matrix A is equivalent to the validity
of the strong min-max equality for A and abl A which is itself equivalent to the validity of a
companion min-maz theorem for abl A and A.

1.5.1 Theorem (Strong Min-Max Equality, Fulkerson [1971])
Let A be a 0/1 matrix without empty columns. The following statements are equivalent:

(i) A is perfect. (v) The strong min-max equality holds for
(ii) abl A is perfect. A, abl A.
(iii) The system Az <1,z > 0 is integral. (vi) The strong min-max equality holds for
(iv) The system Az < 1,z > 0 is TDIL abl A, A.

Interpreting this result in terms of the stable set problem, see Section 1.3, we enter the realm
of perfect graph theory. A minute’s thought shows that the only candidate for a 0/1 anti-
blocker of the incidence matrix B of all stable sets of some given graph G is the incidence
matrix A of all cliques versus nodes. Now consider the two possible strong min-max equations;
the optima of the four associated optimization problems are commonly denoted by

Xo(G) =min y'1 Xw(G) :=min y'1
yTA > UJT yTB > ’U)T
y' >0" y' >0"
yT integral yT integral
ay(G) :=max Bw wy(G) :=max Aw.

Xw(G) is called the weighted clique covering number of G, a,(G) is the weighted stability
number, x,(G) the weighted coloring number, and w,,(G) the weighted clique number. With
this terminology, the strong min-max equality for A, B translates into the validity of the
equation X,,(G) = ay(G) for any nonnegative integer vector w, and a graph with this property
is called ¥-pluperfect. Similarly, a x-pluperfect graph satisfies the second strong min-max
equality x,(G) = wy(G) forall w € Z%, and a pluperfect graph is both - and x-pluperfect.
Theorem 1.5.1 reads in this language as follows.

1.5.2 Theorem (Pluperfect Graph Theorem, Fulkerson [1971])
A graph is x-pluperfect if and only if it is x-pluperfect if and only if it is pluperfect.

This theorem can also be stated in terms of complement graphs by noting that y-pluperfection
of a graph G is equivalent to x-pluperfection of the complement graph G. This equivalent
version is: A graph is X-pluperfect if and only if its complement is.

One of the big questions in this context and the original motivation for the development
of the entire anti-blocking theory was the validity of Berge [1961]’s famous perfect graph
conjecture. The conjecture claimed a stronger form of the pluperfect graph theorem where
w is not required to run through all nonnegative integer vectors w, but only through all 0/1
vectors. In exactly the same way as in the pluperfect case, this concept gives rise to y-perfect,
x-perfect, and perfect graphs, hence the conjecture’s name. Fulkerson’s idea to prove it was
to show its equivalence to the pluperfect graph theorem; to establish this it is enough to
prove the following replication lemma: Duplicating a vertex of a perfect graph and joining
the obtained two vertices by an edge gives again a perfect graph. The replication lemma and
hence the conjecture was proved by Lovdsz [1971] and, shortly after the result had become
known, also by Fulkerson [1973].
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1.5.3 Theorem (Perfect Graph Theorem, Lovdsz [1971])

A graph is x-perfect if and only if it is x-perfect it and only if it is perfect if and only if it is
pluperfect.

There is also a complement version of the perfect graph theorem: A graph is Y-perfect if and
only if its complement is. And let us further explicitly state an integer programming form
of the perfect graph theorem, that will turn out to have a blocking analogon. We include a

strong version of the max-max inequality with identical 0/1 vectors w and [, also proved by
Lovész [1972] and Fulkerson [1973].

1.5.4 Theorem (Perfect Graph Theorem, Lovdsz [1971], Fulkerson [1973])
For 0/1 matrices A and B without empty columns, the following statements are equivalent.

(i) A and B are an anti-blocking pair.

(ii) The strong min-max equality holds for A, B and all nonnegative integer vectors w.
(iii) The strong min-max equality holds for B, A and all nonnegative integer vectors w.
(iv) The strong min-max equality holds for A, B and all 0/1 vectors w.

(v) The strong min-max equality holds for B, A and all 0/1 vectors w.

(vi) The max-max inequality holds for A and B and all nonnegative integer vectors w and [.
(vii) The max-max inequality holds for A and B and all 0/1 vectors w = [.

Here, we have used the expression “the strong min-max equality holds” in an obvious sense,
slightly extending our terminology. A third interesting linear programming form of the perfect
graph theorem is again due to Lovéasz [1971].

1.5.5 Theorem (Perfect Graph Theorem, Lovasz [1971])
A 0/1 matrix A without empty columns is perfect if and only if the linear program max w'z,
Az <1,z >0 has an integer optimum value for all 0/1 vectors w.

Let’s take a break from anti-blocking and perfect graphs at this point and turn to the blocking
case. Unfortunately, the anti-blocking results of this section do not all carry over: It is not
true and the main difference between blocking and anti-blocking theory that the integrality of
the fractional covering polyhedron corresponds to a TDI constraint system, neither is it true
that the strong max-min inequality for A, B implies the strong max-min equality for B, A, see
Fulkerson [1971] for a counterexample. And there are also no results that compare to perfect
graph theory, because there is no suitable graph version of the set covering problem.

The other Theorems 1.5.4 and 1.5.5 have analogues that are due to Lehman [1979, 1981];
proofs of these difficult results are given in Padberg [1993] (from a polyhedral point of view)
and Seymour [1990] (from a hypergraph point of view). We state them in the following two
theorems, where we adopt the conventions that 0-oco = 0 (Theorem 1.5.6 (iii)) and that oo is
an integer (Theorem 1.5.7).

1.5.6 Theorem (Width-Length Property of Ideal Matrices, Lehman [1979, 1981]
For 0/1 matrices A and B, the following statements are equivalent:

(i) A and B are a blocking pair.

(ii) The min-min inequality holds for all nonnegative integer vectors w and .

(iii) The min-min inequality holds for all vectors w and [ restricted to coefficients 0, 1,
0o, and at most one occurrence of another coefficient that is equal to the number of
1-coefficients minus one. (The fourth type of coefficients is solely needed to exclude the
incidence matrices of “degenerate projective planes”, see the following Section 1.6.)
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1.5.7 Theorem (Max Flow-Min Cut Property of Ideal Matrices, Lehman [1981])
A 0/1 matrix is ideal if and only if the linear program min w'z, Az > 1,z > 0 has an integer
optimum value for all 0/1/00 vectors w.

The names for these results come from Lehman’s terminology; his width-length inequality is
the same as the min-min inequality, the maz flow-min cut equality is the max-min equality.
Generalizing the concepts of perfection and ideality to 0/4+1 matrices, we enter an area of
research that is related to the study of totally unimodular matrices. 1t is beyond the scope of
this chapter to discuss these fields or integral/TDI 0/+1 systems in general; surveys on these
topics are given in Padberg [1975a] and Conforti, Cornuéjols, Kapoor & Vuskovié [1997].

1.6 Minor Characterizations

Both the perfect graph theorem and the max flow-min cut characterization of ideal matrices
have alternative interpretations in terms of matriz minors and, in the anti-blocking case, also
of graph minors that we discuss in this section. The study of minors bears on the recognition
problem for perfect and ideal matrices.

We start in the anti-blocking setting. Consider the perfect graph theorem in its linear pro-
gramming form 1.5.5 and note that setting an objective coefficient w; to zero has the same
effect on the optimum objective value as removing column A.; from the matrix A. Equiva-
lently, we could remove node j from the column intersection graph or, yet another equivalent
version, we could intersect the fractional packing polytope P(A) with the hyperplane z; = 0
and eliminate coordinate j. The operation that we have just described is called a contraction
of coordinate (or column) j of the matrix A or of the intersection graph G(A) or of the frac-
tional packing polytope P(A), and the resulting matrix or graph or polytope is a contraction
minor of the original object. With this terminology, considering all 0/1 objectives is the same
as considering objective 1 for all contraction minors and one obtains various minor forms of
the perfect graph theorem by replacing the expression “for all 0/1 vectors w” with “for all
contraction minors and w = 1”. For example, Theorems 1.5.5 and 1.5.4 translate (in different
ways) into the following minor results.

1.6.1 Theorem (Perfect Graph Theorem, Lovdsz [1971])
A 0/1 matrix A without empty columns is perfect if and only if the linear program max 1z,
A’z <1,z > 0 has an integer optimum value for all contraction minors A’ of A.

1.6.2 Theorem (Perfect Graph Theorem, Lovasz [1971, 1972])
The following statements are equivalent for a graph G:

(i) G is perfect. (iv) a(G"w(G") > |V(G")] for all minors G’
(ii) X(G') = a(G") for all minors G’ of G. of G.
(iii) x(G") = w(G") for all minors G' of G.  (Here, a minor is always a contraction minor.)

The contraction technique can be used also in the blocking scenario to deal with the zero
objective coefficients in Theorem 1.5.7. A little more difficult is the treatment of the oo-
coefficients. w; = oo amounts to forcing z; to one; this effect can also be obtained by removing
column j from the matrix A as well as all rows that A.; intersects, or by an intersection
of the fractional covering polyhedron Q(A) with the hyperplane z; = 1 and a subsequent
elimination of coordinate j. This operation is called a deletion of coordinate (or column) j of
the matrix A or the polyhedron Q(A) and its result is a deletion minor. It is straightforward
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to show that contraction and deletion commute and one can thus call the matrix A’ the arises
by contracting and deleting some set of coordinates of A a (contraction-deletion) minor of A.
This nomenclature gives again rise to a number of minor theorems for ideal matrices, like

1.6.3 Theorem (Minor Characterization of Ideal Matrices, Lehman [1981])
A 0/1 matrix is ideal if and only if the linear program min 1%z, A’z > 1,z > 0 has an integer
optimum value for all contraction-deletion minors A’ of A.

The minor characterizations for perfect and ideal matrices bear on the recognition problems
for these classes: Given a 0/1 matrix A, is it perfect/ideal or not? It is not known whether
any of the recognition problems is in NP or not, but Theorems 1.6.1 and 1.6.3 give a first
co-NP answer. Recognizing perfect and ideal matrices is in co-AP, if the input length is
assumed to be O(n x m), i.e., if we consider A the input: Just exhibit a minor such that 1.6.1
or 1.6.3 fail and verify this by solving a linear program! This result is not very deep, however,
because one doesn’t need the perfect graph theorem or the max flow-min cut characterization
to come up with polynomial certificates for the existence of a fractional basic solution of an
explicitly given linear system.

Anyway, researchers are not satisfied with results of this type and we explain now why this
is so for the perfection test. The problem is that the recognition of imperfect matrices does
not carry over to the recognition of imperfect graphs. The reason is that although we could
verify a clique matrix of a graph as imperfect in polynomial time, this does not help much
for an effective investigation of some given graph, because a clique matrix has in general
already exponential size in the encoding length of the graph. From this point of view, a
co-NP complexity result as above “seems to be cheating; what we really want are algorithms
with running time polynomial in the number of vertices [columns of A]” (Seymour [1990]).
And nothing else but exactly this is in fact possible! One can devise such algorithms for the
verification of imperfection as well as for the verification of nonideality, the latter in a sense
that is yet to be made precise.

The methods that resolve these questions are based on the concepts of minimally imperfect
(or almost perfect) and minimally nonideal (or almost ideal) 0/1 matrices, that are not per-
fect/ideal themselves, but any of their deletion/contraction-deletion minors is. Obviously,
any imperfect/nonideal matrix must contain such a structure and a recognition algorithm
can in principle certify perfection by making sure that no such minor exists, imperfection
by exhibiting one, and so for the ideality test. One approach to the recognition problem is
hence to study the structure of minimally imperfect and nonideal matrices. This structure is
still not fully understood, but to a significant extent and there are, in particular, complete
characterizations of minimally imperfect and minimally nonideal matrices, and of perfect and
ideal matrices in terms of forbidden minors. A final terminological remark: As usual, there
are also minimally imperfect (or almost perfect) graphs, and the same concepts exist for the
fractional packing and covering polyhedra, that are called almost integral.

We begin with results on minimal imperfection, where the matrix structures of interest have
the following appearance. We say that an m x n 0/1 matrix A has property m, ,, if

(i) A contains a regular n x n matrix A; with column and row sums all equal to w,

ii) each row of A which is not a row of A1 is either equal to some row of A1 or has row
q
sum StI’iCtly less than w.

The matrix A;, that is obviously unique up to permutations of rows whenever it exists, is
called the core of A and denoted by core A.
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1.6.4 Theorem (Minimally Imperfect Matrices, Padberg [1973b, 1976])
An m x n 0/1 matrix A is minimally imperfect if and only if

(i) A has property m, , wheren =1 mod w and eitherw=n—-1or2 <w < [(n—1)/2].
(ii) A has no m x k contraction minor A" with property m, j, for any k < n and any w such
that 2 <w <k — 1.

Anmxn 0/1 matrix A is perfect if and only if A does not contain any m X k contraction minor
A" having property 7, ;. for 3 < k < min {m,n} and eitherw =k—1or2 <w < |(k—1)/2].
This theorem makes some progress toward the co-AP complexity part of the recognition
problem for perfect graphs, because a core has an encoding length that is polynomial in n
and looks like a good candidate to certify property m, ; for some contraction minor A’ of
the (only implicitly known) clique matrix A of some given graph G. The only problem that
remains is to verify that some 0/1 matrix A; is a core of A’. In other words: How does one
prove that all cliques in G[supp A’] of size w are already contained in A; and that there are
no larger ones? The answer to this question is based on strong structural properties of —
dual pairs of minimally imperfect matrices, how could it be different!

To start, note that the core of a minimally imperfect matrix A with property =, , produces
a fractional vertex Z = (core A)™'1 = (1/w,...,1/w) of the almost integral polytope P(A).
Padberg [1976] has shown that this is the only fractional vertex. And much more is true:

1.6.5 Theorem (Pairs of Minimally Imperfect Matrices, Padberg [1973b, 1976])
Let A be an m x n 0/1 matrix and let B = abl; A be the integral part of its anti-blocker.
Suppose A is minimally imperfect with property m,, . Then:

(i) B is also minimally imperfect.
(ii) A has property m, ,, and B has property m, , where wa +1 = n.
A and B have unique cores that satisfy the matrix equation core A(core B)T = E — I.
(iii) P(A) has the unique fractional vertex T = (1 /w,...,1/w).
T is adjacent to precisely n vertices of P(A), namely, the rows of core B.
Moreover, P;(A) = {Az <1,z > 0,17z < a}.

Here, E is a matriz of all ones, I is the identity matriz, and the matrix equation in (ii) is
supposed to be understood modulo suitable column and row permutations.

Theorem 1.6.5 has interesting consequences. Note that part (iii) states that all that misses to
make an almost integral packing polytope integral is one simple rank facet. This situation can
come up in two ways. The first case is when A is not a clique matrix of its conflict graph G(A),
i.e., some clique row is missing. As A is minimally imperfect, it must have property m,_1 5,
G(A) must be a clique, and the missing row is 1Tz < 1. The second and exciting case is when
A is a clique matrix. Then we see from Theorem 1.6.5 the following.

(i) G = G(A) has exactly n maximum cliques of size w = w(G) and exactly n maximum
stable sets of size @ = «(G); the incidence vectors of these maximum cliques and stable
sets are linearly independent. Each maximum clique intersects all but exactly one
maximum stable set, its so-called partner, and vice versa.

(ii) For every node j, G — j can be partitioned into @ maximum cliques of size w and w
maximum stable sets of size «, where aw + 1 = n.

Here, e; denotes the unit vector that has a one in coordinate j, and G — j is the minor that
arises from G by contracting node j. (i) is derived from column j of the matrix equation
core A core BjT_ =1 —e;j, (ii) using Theorem 1.6.2 (iv).
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A graph that satisfies the strong condition (ii) on the preceding page is called partitionable.
Note that, for such a graph G, o = @(G) and w = w(G) must hold, and since a(G)w(G) =
aw = n — 1 < n, partitionable graphs are imperfect by virtue of Theorem 1.6.2. But it is
easy to verify that a graph or a contraction minor of a graph is partitionable, and this finally
proves that perfection of a graph is a property in co-NP. This complexity result was first
stated (and proved in a different way) by Grotschel, Lovasz & Schrijver [1984].

1.6.6 Theorem (Recognition of Perfect Graphs, Padberg [1973b, 1976], Grotschel,
Lovasz & Schrijver [1984]) The recognition problem for perfect graphs is in co-NP.

But is that all that one can derive from Padberg’s strong conditions (i) and (ii)? One can
not help thinking that they stop just by a hair short of a much more explicit characterization
of all minimally imperfect matrices, which is a long standing research objective. In fact, only
two infinite, but simple classes of minimally imperfect matrices are known: The circulants
C(2k + 1,2), that are the incidence matrices of odd holes (that we denote with the same
symbol), and their anti-blockers abl; C(2k + 1, 2), the incidence matrices of the odd antiholes,
the complements of the odd holes. Is that all? The strong perfect graph conjecture of Berge
[1961], which is perhaps the most famous open question in graph theory, claims that it is!
If so, odd holes and antiholes furnish simple minor certificates of imperfection. But there is
more: It does not seem to be completely out of the question to detect the presence or the
absence of odd holes and antiholes in polynomial time, although nobody knows for now if
this is possible or not. But if the strong perfect graph conjecture holds, and if the recognition
problems for odd holes and antiholes can be solved in polynomial time as well, these results
together would solve the recognition problem for perfect graphs.

Chvatal [1976] pointed out that the strong perfect graph conjecture holds if one can show
that every minimally imperfect graph G contains a spanning circulant C(aw + 1,w), i.e., the
nodes of G can be numbered 0, ...,aw such that any w successive nodes %,...,71 + w — 1
(indices taken modulo aw + 1) form a clique; here, we denote o = a(G), w = w(G). When
Padberg’s conditions became known, there was some hope that they would be strong enough
to establish this circulant structure in every minimally imperfect graph. But Bland, Huang
& Trotter [1979] showed that one can not prove the strong perfect graph conjecture in this
way, because Padberg’s condition (i) follows from (ii), and the partitionable graphs, that
satisfy (ii), do not all contain spanning circulants C(aw + 1, w).

We turn now to the minimally nonideal matrices, where minor characterizations are known
that are similar to the packing case, but more complicated. We start with the analogon of
the imperfection property m, . We say an m x n 0/1 matrix A has property @q, if

(i) A contains a regular n X n matrix A; with column and row sums all equal to «,
(ii) each row of A which is not a row of A; is either equal to some row of A; or has row
sum strictly larger than a.

The matrix Ay is again unique up to permutations of rows whenever it exists, and it is also
called the core of A and denoted by core A.
Unlike in the packing case there is, however, an infinite class of minimally nonideal matrices
that do not have constant row and column sums. These incidence matrices of degenerate
projective planes (points versus lines) read

T
J, = 0 1 ’
1 In—l

where I,,_1 denotes the (n — 1) x (n — 1) identity matrix.
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1.6.7 Theorem (Minimally Nonideal Matrices, Lehman [1981], Padberg [1993])
If a proper m x n 0/1 matrix is minimally nonideal then either A = J,, or

(i) A has property ¢qn, where n #0 mod «a.

ii) A has no m x k contraction-deletion minor AI with property Do,k for any k <n and
)
any o such that k 5_'5 0 mod «a.

Anmxn 0/1 matrix A is ideal if and only if A does not contain any m X k contraction-deletion
minor A’ having property ¢q for 3 <k < min {m,n}.

The requirement that A is proper can also be removed, but then we must change (i) from
“A = J,” into “A contains J, and some additional redundant rows”. Note also that we have
not claimed an equivalence as for property m,, p.

As the minimally imperfect matrices occur in anti-blocking pairs, so do their minimally non-
ideal relatives.

1.6.8 Theorem (Pairs of Minimally Nonideal Matrices, Lehman [1981], see also
Padberg [1993] and Seymour [1990])

Let A be a proper m x n 0/1 matrix and let B = bl; A be the integral part of its blocker.
Suppose A is minimally nonideal. Then:

(i) B is also minimally nonideal.

(i) Either

(a) A= B =J,.

(b) Q(A) has the unique fractional vertex T = ((n —2)/(n — 1),1/(n — 1),...,1/(n — 1)).
T is adjacent to precisely n vertices of Q(A), namely, the rows of B.
Moreover, Q1(A) = {Az > 1,z > 0,(n — 2)x1 + ) j_pz; > n— 1}.
or

(c) A has property ¢, and B has property ¢g, where af =n+r, 0 <r < min {a, 3}.
A and B have unique cores that satisfy the matrix equation core A(core B)"' = E +rI.

(d) Q(A) has the unique fractional vertex T = (1/«,...,1/a).
T is adjacent to precisely n vertices of Q(A), namely, the rows of core B.
Moreover, Qr(A) = {Az < 1,2 > 0,1Tz > g}.

The assumption that A is proper can again be removed as in Theorem 1.6.7. Compare also
the coefficients in the left-hand side of the additional facet in Theorem 1.6.8 (ii) (b) to the
objective coefficients in Theorem 1.5.6 (iii) to see that the fourth type of objective coefficients
(the n — 2) was only needed to deal with the degenerate projective planes J,.

Seymour [1990] used Lehman’s minor characterization 1.6.8 (for which he also gives a proof)
to establish that ideality is a co-NP property in a sense that can be seen as the analogon of
Theorem 1.6.6 on the recognition of perfection. Seymour views the m x n 0/1 matrix A of
interest as the incidence matrix of a hypergraph that “should” have an encoding length that
is polynomial in the number n of elements. This creates the problem that the encoding length
of an m x n 0/1 matrix A is in general certainly not polynomial in n. Seymour assumes thus
that A is given in the form of a filter oracle, that decides in constant time whether a given 0/1
vector contains a row of A or not. Calling this oracle a number of times that is polynomial
in n, one can certify the existence of blocking matrices core A and core B with properties as
in Lehman’s Theorem 1.6.8 that ensure that A is nonideal.
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1.6.9 Theorem (Recognition of Ideal Matrices, Seymour [1990])
The recognition problem for ideal matrices that are given by a filter oracle is in co-NP.

There are some further results toward a more ezplicit characterization of minimally nonideal
matrices. Lehman [1979] gave three infinite families of minimally nonideal matrices: The
incidence matrices of the degenerate projective planes J, (which are self-dual in the sense
they coincide with their blockers, i.e., J, = bl;J,), the odd circulants C'(2k + 1,2), and
their blockers bl; C(2k + 1,2) that coincide via permutation of rows and columns with the
circulants C(2k + 1,k + 1). But, different to the packing case, many more minimally nonideal
matrices are known.

First, researchers have compiled a substantial, but finite list of “exception” matrices, that do
not belong to the three infinite classes of Lehman. The incidence matrix of the Fano plane

1 1 0 1 0 0 O

01 1 0 1 0 O

00 1 1 0 1 O
Fr=1]10 0 0 1 1 0 1 ,

10 0 0 1 1 O

01 0 0 0 1 1

1 0 1 0 0 0 1

is one such exception matrix, see Cornuéjols & Novik [1989] and Liitolf & Margot [1998] for
comprehensive lists. But the situation is more complicated than this, because further infinite
classes of minimally nonideal matrices have been constructed. For example, Cornuéjols &
Novik [1989] prove (and give a reference to a similar result) that one can add a row e; +e;+ey,
i < j <k, to any odd circulant C'(2k +1,2), 2k 4+ 1 > 9, where j —i and k — j are both odd,
and doing so one obtains a minimally nonideal matrix.

Does all of this mean that the set of minimally nonideal matrices is just a chaotic tohuwabohu?
Cornuéjols & Novik [1989] say no and argue that all minimally nonideal matrices in the
known infinite non-Lehman classes have core C(2k + 1,2) or C(2k + 1,k + 1). This means
geometrically that the associated fractional covering polyhedra arise from Q(C'(2k + 1,2)) or
Q(C(2k + 1,k + 1)) by adjoining additional integral vertices. Or, to put it differently, the
crucial part of a minimally nonideal matrix is its core and there, if one forgets about the
exception list, only the three Lehman classes have been encountered. These findings motivate
the following conjecture, that can be seen as the covering analogon of the strong perfect graph
conjecture.

1.6.10 Conjecture (Ideal Matrix Conjecture, Cornuéjols & Novik [1989])
There is some natural number ng such that every m X n minimally nonideal matrix A with
n > ng has core either C(2k +1,2) or C(2k + 1,k + 1).

1.7 Balanced Matrices

Perfect and ideal matrices were defined in terms of integral polyhedra; their characterization
through forbidden minors was and still is a major research problem. The study of balanced
matrices, that were invented by Berge [1971], goes the other way round: This class is defined
in terms of forbidden minors and one investigates the combinatorial and polyhedral conse-
quences of this construction. It turns out that these properties subsume all characteristics of
perfect and ideal matrices, and balanced matrices give, in particular, rise to a multitude of
combinatorial packing and covering problems. But not only do results from perfect and ideal
matrix theory carry over. There are additional genuine consequences of balancedness that
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include TDIness of both associated covering systems and bear on combinatorial partitioning
theorems. And there is another recent spectacular result that does have no parallel (yet!):
Balanced matrices can be recognized in polynomial time!

It is not the aim of this section to give an overview on the entire field of balanced matrices,
to say nothing of their 0/+1 generalizations and/or the connections to totally unimodular
matrices. Such surveys can be found in Padberg [1975a], Conforti et al. [1994], and Conforti,
Cornuéjols, Kapoor & Vuskovié¢ [1997], we summarize here just some basic results.

A matrix A is balanced if it does not contain an odd square minor with row and column sums
all equal to two or, equivalently, a row and column permutation of the circulant C'(2k + 1, 2).
In the context of balancedness, it is understood that minors are not restricted to contraction
and deletion minors; instead, any subset I of rows and J of columns of A induces a minor
A" = Ary. As an immediate consequence, every such minor A’ of a balanced matrix A must
also be balanced, so is the transpose AT, and so is also any matrix that arises from A by
replicating one or several columns any number of times. Note that the excluded odd hole
minors C(2k 4 1,2) are “one half” of the known structures that cause imperfection; and note
also that a balanced matrix does not only contain no odd hole contraction minor, but no odd
hole at all, i.e., no odd hole as any minor. The possible existence of such different, but similar
forbidden minor characterizations for balanced and perfect matrices allows to view the study
of balancedness as a precursor to a possible future branch of perfect matrix and graph theory
after a successful resolution of the strong perfect graph conjecture.

Back to the present (and actually 25 years to the past), it is easy to see that the edge-
node incidence matrices of bipartite or, equivalently, 2-colorable graphs are balanced, and
balancedness is in fact a generalization of the concept of 2-colorability to hypergraphs. The
connection between 0/1 matrices and colorings of hypergraphs arises from an interpretation
of the first as incidence matrices of the latter that goes as follows. We associate to a 0/1
matrix A the hypergraph H = H(A), that has the rows of A as its nodes and the columns as
edges!'?; H is called balanced if and only if A is. Hypergraphs can be colored just like graphs:
A node coloring of H assigns a color to each node such that no edge contains only nodes of
a single color, the chromatic number x(#) is the minimum number of colors in such a node
coloring, and H is 2-colorable if x(H) < 2. It is not so obvious that 2-colorability leads again
back to balancedness, but exactly this was Berge [1971]’s idea and his motivation to introduce
the whole concept.

1.7.1 Theorem (Balancedness and 2-Colorability, Berge [1971])
A 0/1 matrix A is balanced if and only if H(A') is 2-colorable for all minors A’ of A.

Many combinatorial properties of bipartite graphs carry over to their balanced hypergraph
relatives. These similarities arise from (or are reflected in, who likes this better) analogous
symmetries between the totally unimodular and balanced incidence matrices of bipartite and
balanced hypergraphs, that are stressed in the “minor presentation” of the following theorem.

1.7.2 Theorem (Balanced Matrices, Berge [1971], Fulkerson, Hoffman & Oppen-
heim [1974]) For a 0/1 matrix A, the following statements are equivalent:

(i) A is balanced. (iv) P(A’) is integral for all minors A’ of A.
(ii) A’ is perfect for all minors A" of A. (v) Q(A’) is integral for all minors A’ of A.
(iii) A’ is ideal for all minors A’ of A. (vi) P=(A’) is integral for all minors A’ of A.

'0This is just custom (cf. the Kénig examples of Section 1.1), the transposed way would be feasible as well.
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We do not delve further into the relations between total unimodularity and balancedness
here and consider instead the amazing connections to perfection and ideality: The balanced
matrices are exactly those that have only perfect or ideal minors. This has two consequences.
First, balanced matrices inherit the properties of their perfect and ideal superclasses for every
minor, which includes in particular all combinatorial min-max and max-min results. Second,
Theorem 1.7.2 can be extended by many other equivalent characterizations of balanced ma-
trices in combinatorial, polyhedral, and in integer programming terminology just like in the
theory of perfect and ideal matrices. We give three ezamples to illustrate these points.

The first example is another combinatorial min-max characterization of balancedness that we
derive with perfect matrix techniques. Consider the strong min-max equality for A’, abl A’
and objective w = 1, where A’ is any minor of A. Interpreting this relation in terms of
the hypergraph H(A) is to say that for any “partial subhypergraph” H(A’) of H(A) the
maximum size of a matching (edge packing) is equal to the minimum size of a transversal;
the equivalence of this relation with balancedness is Berge [1971]’s Theorem 4.

Example two is an alternative integer programming characterization of balanced matrices,
that we obtain from transformations of Theorem 1.7.2 (ii). Namely, this statement is equiva-
lent to saying that the integer program max 17z, A’z < 1,z > 0 has an integer optimum value
for any minor A’ of A, which holds if and only if the linear program max b'z, Az < w,z >0
has an integer optimum value for any b € {0,1}" and w € {1,4o00}". This is true if and
only if the dual program min y'w,y"4 > b,y" > 0 has an integer optimum value for any
be {0,1}" and w € {1,+00}™ (here, oo is not considered to be an integer), and this holds if
and only if the program min y'1,47A > b,07 < 47 < w" has an integer optimum value for
any b € {0,1}" and w € {0,1}". The equivalence of this last statement with balancedness is
Berge [1971]’s Theorem 6.

As a third and last example, we show that balanced hypergraphs have the Helly property:
The transpose A" of a balanced matrix A is also balanced, hence AT is perfect, hence it is a
clique matrix of a graph; but the cliques of a graph have the Helly property that if any two
of a set of cliques have a common vertex, they all have a common vertex, and the same holds
for the edges of a balanced hypergraph; this is Berge [1971]’s Proposition 7.

We turn next to two properties of balanced matrices that are “genuine” in the sense that
they do not have this inheritance flavour: TDIness of balanced covering and their blocking
systems, and a strengthening of this last result to one of the rare and precious combinatorial
partitioning maz-min theorems.

1.7.3 Theorem (TDI Balanced Covering and Blocking Systems, Fulkerson, Hoff-
man & Oppenheim [1974])
If A is a balanced 0/1 matrix, the strong max-min equality holds for A,bl A and for bl A, A.

Hence, the balanced matrices satisfy an integrality relation that does not hold in the general
blocking case. To avoid misunderstandings, we point out that the blocker of a balanced matrix
is in general not balanced, see Fulkerson, Hoffman & Oppenheim [1974] for a counterexample.
It is surprising and remarkable that the strong max-min equality for bl A, A, can (in a certain
sense) be strengthened further into a combinatorial max partioning-min covering theorem.

1.7.4 Theorem (Partition into Transversals, Berge [1971])
Let AT be a balanced matrix and B = bl AT its blocker. Then:

max y'1 = min AT1.
y'B =17, 47> 0", yT integral
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To state Theorem 1.7.4 in terms of hypergraphs, note that the blocker B of AT is the incidence
matrix of all transversals of 7{(A) versus nodes (each row is a transversal, each column a node).
Then the theorem states the following: If £ = min A™1 is the minimum size of an edge of a
balanced hypergraph #H(A), there exist k transversals in H(A) that partition the vertices or,
to put it differently, there is a k-coloring of H(A) such that each edge contains a node of each
color; this is Berge [1971]’s Theorem 2.

We have seen by now that balanced matrices have analogous, but stronger combinatorial
properties than perfect and ideal ones and this trend continues in the study of the recognition
problem. The scenario differs slightly from the one for perfection and ideality testing, though.
First, we explicitly know the complete (infinite) list of all forbidden minors. Second, there
is no controversy about using the matrix itself as the input to the recognition algorithm:
Nobody has suggested a graphical (or other) representation of an m xn balanced matrix that is
polynomial in n, and mn is accepted as just fine an encoding length. In this setting, one of the
most startling results on balanced matrices was the recent construction of an algorithm that
recognizes this class in polynomial time by Conforti, Cornuéjols & Rao [1991]. This algorithm
is based on decomposition methods, that recursively break a 0/1 matrix into “elementary
pieces” in such a way that the balancedness of the whole is equivalent to balancedness of
the pieces, and such that the pieces are of combinatorial types whose balancedness can be
established or disproved. The recognition of the pieces is based on earlier work on classes of
so-called totally balanced, strongly balanced, and linearly balanced matrices.

1.7.5 Theorem (Recognition of Balancedness, Conforti, Cornuéjols & Rao [1991])
The recognition problem for balanced matrices is in P.

Like for perfect and ideal matrices, there is a new branch of research that investigates the
more general class of balanced 0/+1 matrices. Conforti & Cornuéjols [1992] show, for instance,
that the members of this class can also be characterized in terms of 2-colorability and that the
associated packing, covering, and partitioning system are TDI, even in arbitrary “mixes”. An
overview on balanced 0/41 matrices can be found in the survey article Conforti, Cornuéjols,
Kapoor & Vuskovié [1997].

We close this section with a remark on the integrality of fractional set partitioning polytopes.
By Theorem 1.7.2 (vi), the balanced matrices form a class that gives rise to integral polytopes
of this type, like perfect and ideal matrices do, too, but these are not all matrices with this
property. For a trivial example, consider the matrix
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that is composed from an imperfect “top” and a nonideal “bottom”. It is easy to see that A is
neither perfect, nor ideal, nor balanced, but one can verify that the fractional set partitioning
polytope P=(A) is integral; P=(A) consists, in fact, of the single point e;. We see that the
occurrence of forced variables allows to blow up a matrix with all kinds of “garbage” and
difficulties of this sort are the reason why there is no minor theory for matrices with integer
set partitioning polytopes.
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1.8 The Set Packing Polytope

The set packing problems of the previous sections were almost always assumed to have a
constraint matrix that is perfect; now we turn to the general case with arbitrary 0/1 matrices.
Such matrices lead to nonintegral systems Az < 1, z > 0 that do not suffice to describe the
set packing polytope P;(A). The polyhedral study of general set packing polytopes aims at
identifying the missing inequalities and at developing methods for their effective computation.
Such knowledge of the facial structure of set packing polytopes is useful in three ways: To
develop polynomial time algorithms for classes of stable set problems, to derive combinatorial
min-max results, and computationally in branch-and-cut codes for the solution of set packing
or set partitioning problems. Let us say a word about each of these points.

The link between polynomial time algorithms and facial investigations is a fundamental al-
gorithmic result of Grotschel, Lovasz & Schrijver [1988] that is often termed the polynomial
time equivalence of separation and optimization. It is based on the concept of a separation
oracle for a polyhedron P'! that takes an arbitrary point Z as input and decides if it is con-
tained in P, or, if not, returns an inequality that separates T and P. The theory asserts that,
whenever such an oracle is at hand, one can optimize over P in oracle polynomial time, where
each call of the oracle is counted as taking constant time. When the separation can also be
done in polynomial time, this results in a polynomial optimization algorithm — even and in
particular when a complete description of P by linear inequalities has exponential size! And
it turns out that one can construct such polynomial separation oracles for the set packing
polytopes of quite some classes of graphs, most notably for perfect graphs.

Combinatorial min-maz results require explicit complete descriptions by TDI systems. It is
theoretically easy to “make a linear system TDI”, but it is difficult to obtain systems of this
type with “combinatorial meaning”. In fact, besides perfect and line graphs there seems to
be only one class of “odd K4 free” graphs where a combinatorial min-max result is known.
The computational use of set packing inequalities goes to the other extreme: Anything goes,
valid inequalities can be used as well as facet defining ones, and whether exact separation is
always preferable to heuristics — well, it’s wiser not to enter this discussion!

We try to survey in this section the main results of the polyhedral approach to the set
packing problem. The organization of the section is as follows. Subsection 1.8.1 introduces
the concept of facet defining graphs and gives a list of known such structures as well as
of graphs where these inequalities yield complete descriptions. Subsection 1.8.2 deals with
composition procedures, that construct from simple inequalities more complicated ones. Some
results on a special class of claw free graphs are collected in Subsection 1.8.3. Quadratic and
semidefinite approaches are treated in Subsection 1.8.4. The final Subsection 1.8.5 states
some adjacency results, that bear on primal algorithms.

Some basic properties of set packing polytopes for reference in subsequent subsections are:

1.8.1 Observation (Dimension, Down Monotonicity, Nonnegativity)
Let A be a 0/1 matrix and P;(A) be the associated set packing polytope.

(i) Pr(A) is full dimensional.
(ii)) Pr(A) is down monotone, i.e., v € Pi(A) =y € Pr(A) forall0 <y < z.
In particular, all nontrivial facets of Pr(A) have all nonnegative coefficients.

(iii) The nonnegativity constraints x; > 0 induce facets of Pr(A).

" The theory works also for convex bodies.
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1.8.1 Facet Defining Graphs

There are three general techniques to find valid or facet defining inequalities for the set packing
polytope: The study of facet defining graphs, the study of semidefinite relazations of the set
packing polytope, and the study of combinatorial relazations. We discuss in this section the
first technique, semidefinite relaxations are treated in Subsection 1.8.4, and combinatorial
relaxations in Chapter 2 and in particular in Section 2.5.

The polyhedral study of general set packing polytopes through classifications of graphs, initi-
ated by Padberg [1973a], is based on the down monotonicity of P;(A). Namely, this property
implies that if H = G[W] is some node induced subgraph of some given graph G = (V, E)
and the inequality o'z < « is valid for P(G)N{z € RV | z; =0 Vj ¢ W} and has a; =0
for all j & W, it is also valid for P;(G). The consequence is that substructures of a graph
give rise to valid inequalities for the set packing polytope of the whole graph, a relation that
can be stressed by identifying the polytopes P;(G)N{z € RV |z; =0 Vj ¢ W} and P;(H)
(and we want to use this notation here and elsewhere in this section).

An investigation of the rules that govern the transfer of inequalities from set packing sub-
polytopes to the whole and vice versa leads to the concepts of facet defining graphs and
lifting, see Padberg [1973a]. We say that a node induced subgraph H = G[W] of G defines
the facet aTz < « if this inequality is essential for P;(H). Now, among all node induced
subgraphs H = G[W] of G are those of particular interest that are minimal in the sense that
they give rise to a facet “for the first time”. This is not always the case: If H = G[W] defines
the facet a'z < « for P;(G[W]), it is possible that there is a smaller subgraph G[U] C G[W]
(U C W), such that aTz < « defines already a facet of P;(G[U]). If this is not the case for all
U C W such that |U| = |W| — 1, the subgraph G[W] is “elementary plus/minus one node”
and said to produce a'z < a, see Trotter [1975], and if this property extends to any subset
U C W, the subgraph G[W] is said to strongly produce the inequality. Having mentioned
these concepts, we do, however, restrict our attention in the sequel to facet defining graphs
and refer the reader to the survey article of Padberg [1977] for a discussion of facet producing
graphs. Moving in the other direction again, from small to large, the question of what kind
of extensions of valid inequalities/facets from subgraphs result in valid inequalities/facets for
set packing polytopes of supergraphs is precisely the lifting problem that we discuss in the
next section.

We give next a [list of facet defining classes of graphs. For each such class £, one can try to
determine a corresponding class of L-perfect graphs, whose associated set packing polytopes
can be described completely in terms of £ (plus the edge inequalities, where appropriate).
This concept, invented by Grotschel, Lovasz & Schrijver [1988], provides a general technique
to identify classes of graphs with polynomially solvable stable set problems: Namely, to
establish such a result, one merely has to prove that the inequalities from £ can be separated
in polynomial time! Our list includes also these results as far as we are aware of them.

Edge Inequalities. Associated to each edge ij of a graph G = (V, E) is the edge inequality
z; +x; < 1. Edge inequalities are special cases of clique inequalities and inherit the face-
tial properties of this larger class, see next paragraph. The edge perfect graphs are exactly
the bipartite graphs without isolated nodes, and these have polynomially solvable stable set
problems. For general graphs G, the system of edge inequalities (plus the nonnegativity in-
equalities) A(G)z < 1,2 > 0 defines an edge relazation of P;(A). This relaxation has been
investigated by a number of authors, including Padberg [1973a] and Nemhauser & Trotter
[1973], and displays some initially promising looking properties. Namely, P(A(G)) has only
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half integral vertices (all components are 0, 1/2, or 1 only) and, stronger, all integer com-
ponents of a solution of the associated fractional set packing problem have the same value
in some optimal integral solution and can thus be fixed! Unfortunately, this almost never
happens in computational practice and neither does it happen in theory: Pulleyblank [1979]
proved that the probability that the edge relaxation of a set packing problem with w =1 on
a random graph has an all 1/2 optimal solution tends to one when the number of nodes tends
to infinity. And this is not only asymptotically true: For n = 100, the probability of a single
integer component is already less than 1.4 x 1078,

Clique Inequalities, Fulkerson [1971], Padberg [1973a]. A clique in a graph G =
(V,E) is a set @ of mutually adjacent nodes, see Figure 1.2. Associated to such a structure
is the clique inequality

in <1.

1€Q

Figure 1.2: A 5-Clique.

(The support graphs of) Clique inequalities are trivially facet defining. Moreover, Fulkerson
[1971] and Padberg [1973a] have shown that such a constraint induces also a facet for the
stable set polytope of a supergraph if and only if the clique is maximal with respect to set
inclusion in this supergraph. By definition, the clique perfect graphs coincide with the perfect
graphs. Separation of clique inequalities is AP-hard, see Garey & Johnson [1979], but this
complexity result is irrelevant because Grotschel, Lovdsz & Schrijver [1988] have shown that
the clique inequalities are contained in a larger class of polynomially separable orthogonality
inequalities, that we will discuss in Subsection 1.8.4. This implies that the stable set problem
for perfect graphs can be solved in polynomial time! This result, one of the most spectacular
advances in combinatorial optimization, subsumes a myriad of statements of this type for
subclasses of perfect graphs, see Grotschel, Lovasz & Schrijver [1988] for a survey.

Odd Cycle Inequalities, Padberg [1973a]. An odd cycle C' in a graph G = (V, E)
consists of an odd number 2k 4+ 1 of nodes 0, ..., 2k and the edges (7,7 + 1) for i = 0,...,2k
(where indices are taken modulo 2k + 1), see Figure 1.3. Any additional edge ij between two
nodes of a cycle that is not of the form (7,7 + 1) is a chord. An odd cycle without chords is
an odd hole; the odd holes coincide with the circulant( graph)s C'(2k + 1,2). Associated to a
not necessarily chordless odd cycle C on 2k 4+ 1 nodes is the odd cycle inequality

(0)

@ (4
z; < (|C] —1)/2.
iEZC @O—®

Figure 1.3: A 5-Cycle.
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Padberg [1973a] showed that (the support graph of) an odd cycle inequality is facet defining if
and only if the cycle is a hole; note that the “only if” part follows from minimal imperfection.
Grotschel, Lovasz & Schrijver [1988, Lemma 9.1.11] gave a polynomial time algorithm to
separate odd cycle inequalities such that the stable set problem for cycle (plus edge) perfect
graphs, that are also called t-perfect (¢t stands for trou, the French word for hole), is solvable
in polynomial time. Series parallel graphs (graphs that do not contain a subdivision of Ky as
a minor) are one prominent class of cycle (plus edge) perfect graphs. This was conjectured by
Chvéatal [1975], who showed that the stable set problem for w = 1 can be solved in polynomial
time, and proved by Boulala & Uhry, a short proof was given by Mahjoub [1985]. In fact, even
more is true, and for a larger class: Gerards [1989] proved that the system of nonnegativity,
edge, and odd cycle inequalities is TDI for graphs that do not contain an odd Ky, i.e., a
subdivision of K4 such that each face cycle is odd. This gives rise to a min cycle and edge
covering-max node packing theorem. Perfect graphs, line graphs (see next paragraph), and
Gerards’s class seem to be the only instances where such a min-max result is known. A list
of further cycle perfect graphs can be found in Grotschel, Lovasz & Schrijver [1988].

Taking the union of clique and odd cycle inequalities, one obtains the class of h-perfect graphs,
see again Grotschel, Lovasz & Schrijver [1988] for more information.

Blossom Inequalities, Edmonds [1965]. The matchings in a graph H = (V, E) are in
one-to-one correspondence to the stable sets in the line graph L(H) := (E,{(ij, jk) € E?})
of H. Associated to such a linegraph L(H) is the blossom inequality
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Figure 1.4: A Line Graph of a 2-Connected Hypomatchable Graph.

Edmonds & Pulleyblank [1974] showed that a blossom inequality is facet defining for Pr(L(H))
if and only if H is 2-connected and hypomatchable. (If we denote by v(H) the maximum size
of a matching in a graph H, this graph is hypomatchable if v(H) = v(H — i) holds for all
contractions H — 7 of the graph H. It is known that a graph H = (V, E) is 2-connected
and hypomatchable if and only if it has an open ear decomposition E = Uf:o C;, where Cj
is an odd hole and each C; is a path with an even number of nodes v ...,vf ki and distinct
endnodes v} # U?ki, such that V(C, )ﬂU; (e ) = {v},v; 2ki1 see Lovész & Plummer [1986,
Theorem 5.5.2] and Figure 1.4.) Separation of blossom inequalities is equivalent to a minimum
odd cut problem, see Grotschel, Lovdsz & Schrijver [1988, page 256], for which Padberg &
Rao [1982] gave a polynomial time algorithm. Edmonds [1965] has shown that the stable
set polytope of a line graph is completely described by the nonnegativity, blossom, and the
clique inequalities Eeeé(i) ze < 1 for all i € V; this means that the class of blossom (and
clique) perfect graphs subsumes the class of line graphs. These arguments yield a polynomial
time algorithm for the stable set problem in line graphs (the matching problem in graphs)
alternative to the celebrated combinatorial procedure of Edmonds [1965]. Finally, we mention
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that Cunningham & Marsh [1978] have shown that the above mentioned complete description
of the set packing polytope of a line graph is even TDI, which results in a combinatorial min
packing-max covering theorem for edges/blossoms and cliques in graphs.

Odd Antihole Inequalities, Nemhauser & Trotter [1973]. An odd antihole C is the
complement of an odd hole, see Figure 1.5; the odd antiholes coincide with the circulants
C(2k + 1,k). Associated to an odd antihole on 2k + 1 nodes is the odd antihole inequality

Figure 1.5: A 7-Antihole.

Odd antihole inequalities are facet defining by minimal imperfection. As far as we know,
no combinatorial separation algorithm for these constraints is known, but the odd antihole
inequalities are contained in a larger class of matriz inequalities with Ny-index 1, that can
be separated in polynomial time, see Lovasz & Schrijver [1991]; we will discuss the matrix
inequalities in Subsection 1.8.4. These results imply that stable set problems for antihole
perfect graphs can be solved in polynomial time.

Wheel Inequalities. A wheel in a graph G = (V, E) is an odd cycle C plus an additional
node 2k + 1 that is connected to all nodes of the cycle, see Figure 1.6. C is the rim of the
wheel, node 2k + 1 is the hub, and the edges connecting the node 2k + 1 and i, s =0, ..., 2k,
are called spokes. For such a configuration we have the wheel inequality

2k

kzogi1 + ZIBZ <k.
=0

Figure 1.6: A 5-Wheel.

Note that wheel inequalities can have coefficients of arbitrary magnitude.

A wheel inequality can be obtained by a sequential lifting (see next subsection) of the hub
into the odd cycle inequality for the rim. Trying all possible hubs, this yields a polynomial
time separation algorithm for wheel inequalities. An alternative procedure, that reduces
wheel separation to odd cycle separation, can be found in Grotschel, Lovasz & Schrijver
[1988, Theorem 9.5.6]. Hence, the stable set problem for wheel perfect graphs is solvable in
polynomial time.

Generalizations of wheel inequalities that can be obtained by subdividing the edges of a wheel
were studied by Barahona & Mahjoub [1994], who derive a class of K4 inequalities (see the
corresponding paragraph in this subsection), and by Cheng & Cunningham [1997], who give
also a polynomial time separation algorithm for two such classes.
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We finally refer the reader to Subsection 2.5.1 of this thesis, where we show that simple as
well as generalized wheels belong to a (larger) class of “odd cycles of paths” of a combinatorial
rank relazation of the set packing polytope; the inequalities of this superclass can be separated
in polynomial time. We remark that the wheel detection procedure of Grotschel, Lovasz &
Schrijver [1988, Theorem 9.5.6] is, with this terminology, ezactly a routine to detect cycles of
paths of length 2 with one hub endnode.

Antiweb and Web Inequalities, Trotter [1975]. Antiweb is a synonym for circulant,
see Figure 1.7, and a web is the complement of an antiweb, see Figure 1.8. Obviously, every
odd hole is an antiweb, and every odd antihole is a web. An odd antihole is also an antiweb,
but the classes of antiwebs and webs do in general not coincide; in fact, Trotter [1975] proved
that an antiweb is a web if and only if it is a hole or an antihole. The inequalities associated
to C(n, k) and C(n, k) := C(n, k) are the antiweb inequality and the web inequality

> i < [n/k]

i€C(n,k)

Figure 1.7: The Antiweb C(8,3). Figure 1.8: The Web C(8, 3).

An antiweb C'(n, k) is facet defining if and only if either £k = n or k and n are relatively prime,
a web C(n, k) defines a facet if and only if either k = 1 or k and n are relatively prime. As
far as we known, no polynomial time separation algorithm for these classes themselves or any
superclass is known.

Wedge and K, Inequalities, Giles & Trotter [1979], Barahona & Mahjoub [1989].
To construct a wedge, one proceeds as follows: Take a 3-wheel Ky, subdivide its spokes (not
the rim, and at least one subdivision must really add a node) such that each face cycle is odd,
and take the complement; the resulting graph is a wedge, see Figure 1.9 for a complement
of a wedge. If we subdivide the nodes of a wedge into the set of nodes £ that have an even
distance from the original rim nodes of the 3-wheel, and the set of remaining nodes O, the
wedge inequality states that

£=1{1,2,3,6,7}

€€ €0

Figure 1.9: A Complement of a Wedge.
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The wedges are facet defining, see Giles & Trotter [1979]. Nothing seems to be known about
the separation of this class.

By construction, the complements of wedges (as in this thesis) are special subdivisions of Kj.
All subdivisions of K4 have been analyzed by Barahona & Mahjoub [1989]. It turns out that
complete descriptions of the set packing polytopes associated to arbitrary subdivisions of Ky
can be obtained by means of 19 classes of K4 inequalities. The separation of K4 inequalities
does not seem to have been investigated.

Chain Inequalities, Tesch [1994]. A 2k+1-chain H is similar to the antiweb C(2k+1, 3);
the difference is that the two chords (0,2k — 1) and (1, 2k) are replaced with the single edge
(1,2k — 1), see Figure 1.10. This structure gives rise to an inequality for the set packing
polytope. The chain inequality states that

sz_ < {2k;2J‘
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Figure 1.10: A 13-Chain.

A 2k 4 1 chain is facet defining if and only if £k mod 3 = 0. Nothing is known about the
separation problem.

Composition of Circulant Inequalities, Giles & Trotter [1979]. A composition of
circulants is constructed in the following way. Choose a positive integer k, let n = 2k(k+2)+1,
set up the “inner circulant” C' = C'(n, k + 2) and the “outer circulant” C' = C(n,k + 1) with
node sets V. ={0,...,n—1} and V! ={0,...,(n—1)"}, and add all edges 7, ..., i(i+2k+1)’
for all nodes i € V, (indices taken modulo n). The graph that one obtains from an application
of this procedure for any positive k£ is a composition of circulants that is denoted by Cg, see
Figure 1.11. Associated to such a structure is the composition of circulants inequality

E+1)> wi+k Y zs < 2k(k+1).

eV eV’
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O

Figure 1.11: The Composition of Circulants C;.

It is known that composition of circulant inequalities are facet defining.



32 Integer 0/1 Programs

Further Inequalities. We close our list of facet defining inequalities for the set packing
polytope with some pointers to further classes.

An enumeration of all facets of the set packing polytopes associated to certain claw free
graphs (see next subsection) of up to 10 nodes has been done by by Euler & Le Verge [1996].
We finally refer the reader to Section 2.5 of this thesis, where we present a class of facet defining
cycle of cycles inequality as an example of a method to derive facet defining inequalities from
a “rank relaxation” of the set packing polytope.

*

We have seen that most of the facet defining graphs of our list appeared in pairs of graph and
complement graph that give both rise to facets and one could thus be lead to believe that
some (yet to be made precise) principle of this sort holds in general. Padberg [1977] offers
some sufficient conditions in this direction but also points out that graphs like the line graph
in Figure 1.4 have complements that are not facet producing (no facet defining inequality of
the associated set packing polytope has full support).

Our discussion of facet defining graphs would not be complete without mentioning the neces-
sary and sufficient conditions that have been derived for structures of this type. It is hard to
come up with interesting characterizations of general constraints and the literature focusses
on the already notoriously difficult class of rank inequalities or canonical inequalities, as they
are also called. Denoting, us usual, the stability number or rank of a graph G by a(G), the
rank inequality that is associated to G is

Z z; < a(G).

eV
A necessary condition for a rank and more general for any inequality to define a facet is:

1.8.2 Observation (2-Connectedness of a Facet’s Support)
Let G be a graph and P;(G) the associated set packing polytope. If a'z < o defines a facet
of P;(G), its support graph G[suppa'] is 2-(node-)connected.

Observation 1.8.2, which is a special case of the more general Theorem 1.8.8 (to be discussed
in the next section), is, as far as we know, the only general condition that is known; the
criteria that follow apply to the rank case with all one coefficients.

We start with a sufficient condition of Chvétal [1975]. His criterion for facetial rank inequal-
ities is based on the concept of critical edges in a graph G = (V, E). Namely, an edge ij € E
is called critical if its removal increases G’s rank, i.e., if (G —ij) = a(G) + 1. A graph G
itself is called critical, if all of its edges are critical.

1.8.3 Theorem (Rank Inequalities from Critical Graphs, Chvétal [1975])
Let G = (V, E) be a graph and E* be the set of its critical edges. If the graph G* := (V, E*)
is connected, the rank inequality ), z; < a(G) is facet defining.

The reader can verify that most of the rank inequalities in this section’s list satisfy the criterion
of Theorem 1.8.3 (in fact, most have even critical support graphs) but this condition is not
necessary, see Balas & Zemel [1977] for a counterexample.

A set of further conditions, suggested by Balas & Zemel [1977], makes use of the notion of a
critical cutset in a graph G = (V, E), i.e., a cut (W) such such that a(G — §(W)) > a(G).
In words: A cut(set) is critical if its removal increases the rank.
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1.8.4 Theorem (Critical Cutsets, Balas & Zemel [1977])
Let G be a graph and P;(G) be the associated set packing polytope. If the rank inequality
for G defines a facet of P;(G), every cutset in G is critical.

Balas & Zemel [1977] give an example that shows that this condition is not sufficient. But
it is possible to obtain a complete characterization of those rank facets that arise from facet
defining subgraphs of a graph.

1.8.5 Theorem (Extension of Rank Facets, Balas & Zemel [1977])
Let G be a graph, Pr(G) be the associated set packing polytope, W C V some subset of nodes
of G, and let the rank inequality ) ; y, x; < a(G[W]) be facet defining for P(G[W]). Then:

The rank inequality Y ;- 7; < a(G[W]) defines a facet for Pr(G) if and only if the cutset
d(j) with respect to the graph G[W U {j}] is not critical for every j ¢ W.

It has been pointed out by Laurent [1989] that Theorems 1.8.3, 1.8.4, and 1.8.5 carry over
to the more general context of rank facets of set covering polytopes, see also Section 1.9. For
the notion of critical cutsets, this correspondence is as follows. If we interpret the stable
sets in a graph G as the independent sets of an independence system (see Subsection 1.3),
Theorem 1.8.4 says that V' is nonseparable, while stating that all cutsets §(j) with respect to
the graphs G[W U {j}] are not critical as in Theorem 1.8.5 is equivalent to W being closed.

1.8.2 Composition Procedures

In the preceding Subsection 1.8.1, we have studied and accumulated a list of facet defining
graphs, that have a local relevance in the sense that they are facet defining for their associated
set packing polytopes. In general, the given graph will rarely be of one of the special facet
defining classes, but it is not only possible, but, as we known from the minor investigations
of Section 1.6, inevitable that a given graph contains imperfect substructures of such types.
Then, by down monotonicity, the associated inequalities carry over from the set packing
polytopes of the subgraphs to the whole.

The procedure that we have just described is a simple example of a constructive approach
to the study of the set packing polytope. The idea here is the following: Given valid/facet
defining inequalities for one or several “small” graphs, compose valid/facet defining inequali-
ties for a “bigger” graph. In this way, we can build on analytic classifications of facet defining
graphs and synthesize global inequalities from elementary pieces.

In this subsection, we survey two composition procedures of this type: The lifting method and
the study of the polyhedral consequences of graph theoretic operations.

Sequential Lifting, Padberg [1973a]. The sequential lifting method, that was introduced
by Padberg [1973a] in connection with odd cycle inequalities, applied to arbitrary facets of
set packing and set covering polyhedra by Nemhauser & Trotter [1973], and further extended
to arbitrary 0/1 polytopes by Zemel [1978], provides a tool to build iteratively facets for the
set packing polytope P;(G) associated to some graph G from facets of subpolytopes of the
form Pr(G[W]).

1.8.6 Theorem (Sequential Lifting, Padberg [1973a], Nemhauser & Trotter [1973])
Let G = (V,E) be a graph and Pr(G) the associated set packing polytope. Let further
W = {wi,...,wp} CV be some subset of nodes of G that is numbered in some arbitrary
order, let W := V\W be the complement of W, and let a'z < « be a facet defining inequality

for Pr(G[W]).
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Determine numbers 3; € R for i = 1,...,k by means of the recursion
i—1
Bi = a— max aTx+Z,8jmj, i=1,...,k (1.9)

2€ P (GIWU{1,....i—1}]) =

Then:

The inequality o™z + Zéc:l Bix; < a is facet defining for P(G).

The ordering of the nodes in W is called a lifting sequence, (1.9) is a lifting problem, the
numbers 3; are the lifting coefficients,, the inequality o'z + Zle Biz; < « is a lifting of the
inequality o™z < o, and the whole procedure is referred to as “lifting the variables (or nodes)
in W into the inequality o'z < o”.

Some simple properties of the lifting process are the following. If we start with a nonnegative
inequality (which we assume in the sequel), all lifting coefficients will be nonnegative as well
and the right-hand side « of the original inequality is an upper bound on the value of each of
them. Taking a lower bound for the value of some lifting coefficient is called a heuristic lifting
step; if we do that one or several times, the resulting inequality will in general not be facet
defining, but it will be valid. Next, note that different choices of the lifting sequence give rise
to different liftings that have, however, an identical core a'z < o. We remark in this context
that one can also consider the possibility to compute several or all lifting coefficients at once,
an idea that is called simultaneous lifting, see again Zemel [1978].

We have already encountered a prominent ezample of a lifting: A wheel inequality can be
obtained by lifting the hub into the odd cycle inequality that corresponds to the rim.
Sequential lifting is a powerful conceptual tool that offers an explanation for the appearance
of facet defining inequalities of general set packing polytopes. Such inequalities frequently
resemble the pure facet defining substructures as in Subsection 1.8.1, but with all kinds of
additional protuberances; the aberrations can be understood as the results of sequential lift-
ings. We remark that one does in general not obtain all facets of a set packing polytope P;(G)
from sequential liftings of facets of subpolytopes, namely and by definition, when the graph G
itself is facet producing; examples of facet producing graphs are odd holes.

Turning to the algorithmic side of lifting, we note that the lifting problem is again a set
packing problem, one for each lifting coefficient. So lifting is in principle a difficult task. But
the procedure is very flexible and offers many tuning switches, that can be used to reduce
its complexity in rigorous and in heuristic ways. First, note that when the right-hand side
« is bounded, the lifting problem can be solved by enumeration in pseudo polynomial time,
i.e., time that is polynomial in the size of the data and the wvalue of o. For instance, clique
inequalities have a right-hand side of one and so will be all lifting coefficients; sequentially
lifting a clique inequality is simply the process to extend the clique with additional nodes in
the order of the lifting sequence until the clique is maximal with respect to set inclusion, and
this is easy to do in polynomial time. In a similar fashion, one can come up with polynomial
time lifting schemes for antihole inequalities etc. — all for a fized lifting sequence. Second,
there are many degrees of freedom for heuristic adjustments: One can switch from exact to
heuristic lifting when the lifting problems become hard, stop at any point with a result in
hand, make choices in an adaptive and dynamical way, etc. To put it short: Lifting is not
the algorithmic panacea of facet generation, but it is a useful and flexible tool to enhance
the quality of any given inequality. Some applications of lifting in a branch-and-cut code for
set partitioning problems and some further discussion on computational and implementation
issues can be found in Section 3.3 of this thesis.
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The last aspect that we consider here is that the lifting method offers also an explanation for
the difficulties that one encounters in classifying the facets of the set packing polytope: It is
extremely easy to use the procedure to construct examples of arbitrarily complez inequalities
with involved graphical structures and any sequence of coefficients. Does this mean that
the attempt to understand the facial structure of set packing polytopes by analysis of small
structures is useless? Maybe — but maybe things are not as bad. Padberg [1977] argues
that small facet defining graphs may, in a “statistical” sense, give rise to reasonable fractional
relaxations of general set packing polytopes. It is, however, known that there is no polynomial
time approzimation algorithm for set packing, see, e.g., Hougardy, Promel & Steger [1994].

*

Graph Theoretic Operations. We consider in the following paragraphs composition pro-
cedures that are based on graph theoretic operations: Taking one or several graphs, possibly
of special types, we glue these pieces together to obtain a new graph, possibly again of a
special type. Studying the polyhedral consequences of such an operation, one tries to de-
rive (i) analogous procedures for the composition of valid/facet defining inequalities or, more
ambitious, (ii) complete descriptions for the set packing polytope of the composition from
complete descriptions for the pieces.

Extensions. The first operation that we consider is the extension of a graph with additional
nodes. Sequential lifting is an example of this doing when we reverse our point of view from
“top-down” to “bottom-up”: If we do not look at the seed graph G[W] of Theorem 1.8.6 as
a subgraph of a bigger graph that is given in advance, but as a graph of its own, the graph
theoretic operation behind each lifting step turns out to be the addition of a single node.
Adding bigger structures results in special simultaneous lifting procedures. As an example,
we mention a procedure of Wolsey [1976] and Padberg [1977], who consider the extension of a
graph G with a K ,,: A single node is joined to every node of G with a path of length 2. Some
aspects of this procedure are discussed in Subsection 1.8.2 of this thesis, and we mention here
only that Padberg [1977] has shown that the method can not only be used to extend facet
defining graphs, but to construct facet producing graphs (see this section’s introduction) that
give rise to facets with arbitrarily complex coefficients.

Substitutions. This is a second group of powerful graph theoretic manipulations: One
takes a graph, selects some node or subgraph, substitutes another graph for this component,
and joins the substitution to the whole in some way.

A first and important example of such a procedure is due to Chvétal [1975], who considered
the replacement of a node v" of a graph G’ = (V', E') by a second graph G" = (V", E") (node
substitution). The graph G that results from this operation is the union of G' — v and G”
with additional edges that join all nodes of G” to all neighbors of v' in G'. Note that node
substitution subsumes the multiplication or replication of a node to a clique of Fulkerson [1972]
and Lovdsz [1971], which plays a role in the theory of perfect graphs. Further, substituting
graphs G; and G for the two nodes of an edge yields the sum (sometimes also called join,
but we want to use this term later in another way), and substituting G” for every node of G’
the lexicographic product or composition of G' and G”. Node substitution has the following
polyhedral consequences.

1.8.7 Theorem (Node Substitution, Chvatal [1975]) Let G' and G" be graphs and let
Alx' <V, 2’ >0 and A"z" <b", 2" > 0 be complete descriptions of P;(G') and P;(G"). Let
v' be a node of G' and G be the graph that results from substituting G" for v'. Then:
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The system
! n / /! /1.0 .
(o E Ay Ty + E Qi U5 Ty < U307, Vi, j
ulleVlI u[€V/
u' #v'
z>0

is a complete description of P;(G)

Note that this system is of polynomial size with respect to the encoding length of the starting
systems A’z <, 2’ > 0and A"2" <b”, 2" > 0.

Other authors have considered similar operations. Wolsey [1976] obtains facet lifting results
from studying the replacement of a node with a path of length 2 and of an edge with a path
of length 3 (edge subdivision); different from Chvdtal [1975])’s node substitution, these paths
are not connected in a uniform way to the original graph. Some discussion of the first of these
procedures can be found in Subsection 1.8.2 of this thesis.

Operations related to paths have also been considered by Barahona & Mahjoub [1989]. They
transform facets using subdivisions of stars, i.e., simultaneous replacements of all edges that
are incident to some fixed node with paths of length 2, and replacements of paths of length 3
with inner nodes of degree 2 by edges (contraction of an odd path, the reversal of edge
subdivision).

Subdivisions of edges and stars are intimately related to the class of K4 inequalities, see
Subsection 1.8.1. Namely, Barahona & Mahjoub [1994] have shown that all nontrivial facets
of P;(G) for such a graph arise from a 4-clique (K4) inequality by repeated applications of
these operations. The 19 types of inequalities that one can produce in this way form the class
of K, inequalities.

Joins. The operations that we term here joins compose a new graph from two or more given
graphs in a way that involves an identification of parts of the original graphs. Join operations
often have the appealing property that they can not only be used for composition, but also
for decomposition purposes, because the identification component is left as a fingerprint in
the composition. If we can recognize these traces, we can recursively set up a decomposition
tree that contains structural information about a graph.

The composition/decomposition principle that we have just outlined is the basis for a graph
theoretic approach to the set packing problem. The idea of this approach is to develop algo-
rithms that work as follows: A given graph is recursively decomposed into “basic” components
(i.e., components that can not be decomposed further), the set packing problem is solved for
each component, and the individual solutions are composed into an overall solution by going
the decomposition tree up again.

To develop such an algorithm, we need the following ingredients: A join operation, an (effi-
cient) procedure that can construct the associated decomposition tree for a (large) class of
graphs, a method to solve the set packing problems at the leafs of the decomposition tree,
and a way to compose an optimal stable set in a join from optimal stable sets in component
graphs. The last of these four tasks is where polyhedral investigations of joins come into
play. Namely, if the join operation is such that one can construct a complete description for
the set packing polytope of a join from complete descriptions for its components, and such
descriptions are known at the leafs, then such a system can also be constructed for the root
and used to solve the original set packing problem.

Our first example of a join composes from two graphs G = (V', E’) and G" = (V" E") their
union G'UG" := (V'UV" E"UE"). When the intersection G'NG" := (V' NnV" E'nE")
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of the component graphs is a clique, this union is called a clique identification. Looking at
the procedure from a decomposition point of view, clique identification offers a decomposition
opportunity whenever we can identify in a graph a node separator that is a clique.

1.8.8 Theorem (Clique Identification, Chvétal [1975])
Let G'UG" be a clique identification of two graphs G' and G”, and let A'x’ < b and A"z" < b"
be complete descriptions of the set packing polytopes Pr(G') and P;(G"). Then:

The union of the systems A'z' < and A"z" < V' is a complete description of P;(G'UG").

Unions of graphs that intersect on a coedge, i.e., on two nonadjacent nodes, were studied by
Barahona & Mahjoub [1994]. As in the case of clique identification, the set packing polytopes
of coedge identifications can also be described completely if such knowledge is available for
the components. This technique can be used to decompose a graph that has a coedge node
separator.

Coedge identification/decomposition bears on the derivation of complete descriptions of set
packing polytopes that are associated to Wy free graphs, i.e., graphs that do not have a
subdivision of a 4-wheel as a minor. It is known that such graphs can be decomposed into a
number of components where complete descriptions are known (among them subdivisions of
K,). The decomposition uses only three types of node separators: Node and edge separators
(cliques of size one and two) and coedge separators. Using Chvétal [1975]’s result on complete
descriptions for clique identifications in the first two and their own result in the coedge case,
Barahona & Mahjoub [1994] construct a polynomial sized complete extended description of
the set packing polytope of a general Wy free graph G = (V, E). Here, the term “extended
description” refers to a system that defines a polytope P in a high dimensional space that can
be projected into RV to obtain Pr(G); extended descriptions take advantage of the observation
that a projection of a polytope can have more facets than the polytope itself.

The last type of join that we want to mention is the amalgamation of two graphs of Burlet &
Fonlupt [1994]. This concept subsumes the graph theoretic operations of node substitution
and clique identification; it characterizes the class of Meyniel graphs. Burlet & Fonlupt [1994]
show that one can obtain a complete description of the set packing polytope of the amalgam
from complete descriptions for the components.

1.8.3 Polyhedral Results on Claw Free Graphs

We have collected in this subsection some results about set packing polyhedra that are asso-
ciated to claw free graphs. Most of this material fits into other subsections of this survey, but
the extent of the topic and some unique aspects seemed to suggest that a treatment in one
place would be more appropriate.

Claw is a synonym for K 3, see Figure 1.12, and a claw free graph is one that does not contain
such a structure.

Figure 1.12: A Claw.
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Claw free graphs stir the interest of the polyhedral community because the set packing prob-
lem for this class can be solved in polynomial time, see Minty [1980], but a complete polyhedral
description is not known. The research objective is to determine this description.

Line graphs are claw free and it was initially suspected that the facets of the set packing
polytopes of claw free graphs resemble the facets of the matching polytope and would not
be too complicated; one early conjecture was, e.g., that the only coefficients on the left-hand
side are 0, 1, and 2. Giles & Trotter [1979] were the first to point out that these polytopes are
complex objects. They did not only prove the 0,1,2 conjecture false, but gave also examples
of claw free graphs that produce complicated inequalities that contain, e.g., arbitrarily large
coefficients. We have mentioned two such classes in Subsection 1.8.1: The compositions of
circulants and the wedges (one can and must delete some edges in a wedge as defined in this
thesis to make it claw free).

Some progress was made by Pulleyblank & Shepherd [1993] for a the more restrictive class of
distance claw free graphs. These are graphs that do, for each node v, not only not contain a
stable set of size 3 in the neighborhood of v, but they do also not contain such a stable set in
the set of nodes that have distance 2 from v. Pulleyblank & Shepherd give a polynomial time
(dynamic programming) algorithm for the set packing problem in distance claw free graphs
and derive a polynomial sized complete extended description of the associated polytope.
Gallucio & Sassano [1993] take up the subject of general claw free graphs again and investigate
the rank facets that are associated to such graphs. It turns out that there are only three
types of rank facet producing claw free graphs: Cliques, line graphs of minimal 2-connected
hypomatchable graphs, and the circulants C'(aw + 1, w). All rank facets can be obtained from
these types either by sequential lifting or as sums of two such graphs.

We finally mention Euler & Le Verge [1996]’s list of complete descriptions of set packing
polytopes of claw free graphs with up to 10 nodes.

1.8.4 Quadratic and Semidefinite Relaxations

Next to the search for facet defining and producing graphs, the study of quadratic and, inti-
mately related, also of semidefinite relazations is a second general technique to derive valid
and facet defining inequalities for the set packing polytope. While the first concept has a
combinatorial and in the first place descriptive flavour, the quadratic/semidefinite techniques
are algebraic and, even better, algorithmic by their very nature, and they do not only apply
to set packing, but to arbitrary 0/1 integer programs. And the method’s wider scope and
built-in separation machinery is not bought with a dilution of strength! Quite to the contrary,
almost all of the explicitly known inequalities for set packing polytopes can be pinpointed in
the quadratic/semidefinite setting as well and more: Superclasses of important types of con-
straints, most notably clique and antihole inequalities, can be separated in polynomial time.
This implies, in particular, one of the most spectacular results in combinatorial optimization:
The polynomial time solvability of the stable set problem in perfect graphs. There is only
one price to pay for all of these achievements: The number of variables is squared.

We try to give in this subsection a survey over some basic aspects of quadratic and semidefinite
techniques for the set packing problem. It goes without saying that we can not do more than
scratching the surface of this fast developing field and we refer the reader to the book of
Grotschel, Lovédsz & Schrijver [1988] and the article of Lovasz & Schrijver [1991] and the
references therein for a more comprehensive treatment. Our exposition is based on the latter
publication and focusses on the special case of the set packing problem.
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We start by introducing the concepts of a quadratic relazation, and, as a particularly strong
variant of such a model, of a semidefinite relazation of the set packing problem in some
graph G = (V, E) with n nodes that will be numbered V' = {1,...,n}. The idea is to
consider not the convex hull of the incidence vectors z of the stable sets in R, but the convex
hull of the matrices zzT € R"*". We will see that this quadratic representation gives rise to
two additional cut generation procedures that are not available in the linear case.

It is technically easier to study quadratic models that gives rise to cones instead of polyhe-
dra and this is the reason to consider a homogenization of the set packing polytope that is
constructed with the aid of an additional component xg:

H[(G) = CODe({]_} X PI) C R{O,...,n}‘

P; (@) can be retrieved from this object by an intersection with the hyperplane 2o = 1. We
introduce also a fractional relaxation of Hr(G) that is obtained by replacing Pr(G) with
P(G) and denoted by H(G); we will assume here and elsewhere in this subsection that P(G)
is described (canonically) by the nonnegativity and the edge constraints (we assume also that
there are no isolated nodes). We will work in this subsection only with the cone versions of
the set packing polytope and its fractional relaxation and call H;(G) the set packing cone
and H(G) the fractional set packing cone. Going to quadratic space, we are interested in the
set packing matriz cone

M[(G) .— {(L‘(L‘TE R{0,...,n}x{0,...,n} | = H[(G)}.

The way to construct a quadratic relaxzation of the set packing matrix cone is not just to
replace Hy(G) with H(G) in the definition of the set packing matrix cone, which would yield
a trivial quadratic relaxation. Instead, one can set up the following stronger relaxation.

(QSP) (i) e/Yej=¢[Ye Vi, j
(ii) eYey=ejYe; Vi
(iii) u'Ye; >0 Yue HG), Yi=1,...,n
uY f; >0 Vu e HG)°, Vi=1,...,n

(iv) Y e RiO-npx{0mn}

Here, we denote by S° the polar of a set S and by f;, ¢« = 1,...,n the vectors of the form
fi :== eg —e; (where e; is the i-th unit vector). Their purpose is to serve as (the left-hand sides
of) facets of the “homogenized unit cube” U := cone({1} x [0,1]"), which contains H;(G).
Associated to the system (QSP) is the fractional set packing matriz cone M (G) and this cone
will serve as one relaxation of M;(G) in quadratic space.

Before we take a closer look at this object and at the system (QSP), let us quickly introduce
another infinite set of linear inequalities, that strengthens the quadratic relaxation (QSP) to
a semidefinite relazation that we denote by (QSP.).

(v) u'Yu>0 Vu € Ri0-n}

Associated to the system (QSP.) is another fractional matrix cone M, (G).

(QSP) (i) states that the matrices that are solutions to the system (QSP) are symmetric, a
property that surely holds for all 0/1 matrices zz" with 2 € Hy(G)N{0, 1%} (ii) states a
type of “quadratic constraints”: For matrices zz! as above (ii) stipulates 2?=12;i=0,...,n.
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(iii) throws in what we know about H(G). Again for matrices xzT, we have that vz > 0 for
all left-hand sides u € H(G)° of valid constraints for H(G), and since H(G) C U, the same is
true for the facets v € U° of the homogenized unit cube U (which are exactly the vectors e;
and f;), and this yields u zzTv > 0. (iv) is the same as stating that the matrix Y is positive
semidefinite, which clearly holds for all matrices of the form zz™T.

The quadratic constraints (QSP) (ii) and the semidefinite constraints (QSP.) (v) are not
available in the linear case and account for the greater strength of (QSP) and (QSP.) in
comparison to the trivial quadratic relaxation. One improvement is, e.g., the following. Con-
sider the vector u = —e; —e; +eg € H(G)° which is the left-hand side of the edge inequality
—zi—z;j+x9 >0 & z;+1z; <z for H(G), and the vector e; € U° which is the left-hand
side of the nonnegativity constraint 2; > 0 for U. Inserting these vectors in (iii) yields

ulYej = (—e; — ej + €)Y, = —yij — yjj +yoj = —Yij > 0,

and this implies y;; = 0 for all ¢j € E. This property does not hold for the trivial relaxation.
But (QSP) as well as (QSP4) are not only strong, they are also algorithmically tractable.
In fact, (QSP) is of polynomial size and could be written down easily, a property that does
not hold for (QSP. ), but one can solve the separation and the optimization problem for this
system in polynomial time as well, see Grotschel, Lovész & Schrijver [1988].

Having these fine relaxations in quadratic space at hand, we go back to the original (homoge-
nized) space by a simple projection to finally construct good relaxations of the (homogenized)
set packing polytope, which inherit the superior descriptive and algorithmic properties of the
matrix cones M (G) and M, (G). These relaxations are the cones

N(G) :=Mey ={Yeye RO Y e M)}
Ny (G) := Myey = {Yeo € RO Y € M, (G)}

and any inequality that is valid for them is a matriz inequality. It follows once more from
the general methodology of Grotschel, Lovasz & Schrijver [1988] that the weak separation
problem for matrix inequalities can be solved in polynomial time such that one can weakly
optimize over N(G) and N1 (G) in polynomial time.

1.8.9 Theorem (N and N, Operator, Lovdsz & Schrijver [1991])
Let G be a graph, let H;(G) be the homogenization of its set packing polytope, and let H(G)
be the fractional (edge) relaxation of this homogenization. Then:

Hi(G) € N4 (G) € N(G) C H(G).

The weak separation and optimization problem for N(G) and N, (G) can be solved in poly-
nomial time.

We remark that the strong separation and optimization problems for N(G) are also in P.
One can now go one step further and iterate the construction of the matrix cones, obtaining
tighter descriptions in every step. Inserting N(G) into (QSP) (iii) in the place of H(G), one
obtains a second matrix cone M?(G), that is projected into (n + 1)-space to become a cone
N?2(G), and so on; any valid inequality for such a relaxation N*(G) is called a matriz inequality
with N-index k. Analogously, we can iterate the N -operator to obtain relaxations N _’ﬁ(G)
and N matriz inequalities for any natural index k. One can show that these relaxations get
tighter and tighter, that one can solve the weak separation problem in polynomial time for
any fixed k, and that the n-th relaxation coincides with Pr(G).
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1.8.10 Theorem (Iterated N and N, Operator, Lovdsz & Schrijver [1991])
Let G = (V, E) be a graph with n nodes, let H;(G) be the homogenization of its set packing
polytope, and let H(G) be the fractional (edge) relaxation of this homogenization. Then:

(i) NFY(GQ) C N*¥(G) Vk € N.
(ii) NE(G) CNK@G)  VkeN.
(i5) N™(G) = Hp(G).

The weak separation and optimization problem for N¥(G) and N¥(G) can be solved in poly-
nomial time for every fixed natural number k.

Theorem 1.8.10 gives a wealth of polynomial time separable classes of inequalities for general
set packing polytopes, namely, all matrix cuts with arbitrary but fixed N- or N -index. The
graphs whose associated set packing polytopes can be described completely in this way are
also said to have N- or N -index k. It turns out that a large number of graphs have bounded
indices. We first state the results for the N-index.

1.8.11 Theorem (Graphs with Bounded N-Index, Lovasz & Schrijver [1991])
(i) An odd cycle C(2k + 1,2) has N-index 1.

(ii) A complete graph K, has N-index n — 2.

(iii) A perfect graph G has N-index w(G) — 2.

(iv) An odd antihole C(2k + 1,k) has N-index 2k.

(v) A minimally imperfect graph G has N-index w(G) — 1.
It is more difficult to characterize graphs with bounded N;-index, but (with an analogous def-
inition) a number of inequalities are known to have small N -indices, in particular clique and

odd antihole inequalities, which are hence contained in the polynomially separable superclass
of matrix inequalities with N-index 1.

1.8.12 Theorem (Inequalities with Bounded N -Index, Lovdsz & Schrijver [1991])
Clique, odd cycle, wheel, and odd antihole inequalities have N, -index 1.

As the perfect graphs are exactly those with perfect clique matrices, i.e., the graphs whose
associated set packing polytopes can be described completely by means of clique inequalities,
it follows that the set packing problem in perfect graphs can be solved in polynomial time, a
spectacular result that was first proved by Grotschel, Lovasz & Schrijver [1988].

1.8.13 Theorem (Set Packing Polytopes of Perfect Graphs, Grétschel, Lovdsz &
Schrijver [1988], Lovasz & Schrijver [1991])

Perfect graphs have N -index 1.

1.8.14 Theorem (Set Packing in Perfect Graphs, Grotschel, Lovasz & Schrijver [1988])
The set packing problem in perfect graphs can be solved in polynomial time.

We finally relate the semidefinite relaxation Ny (G) to the original approach of Groétschel,
Lovész & Schrijver [1988]. They considered the semidefinite formulation (QSP. ), but with
(iii) replaced by

(iii') elYe; =0 Vij € E.

We denote this semidefinite system by (QSP’,), and the associated matrix cone by M/ (G).
The projection of this matrix cone into (n + 1)-space yields an N, -cone, and this N -cone’s
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intersection with the hyperplane zog = 1 yields the convex, but in general not polyhedral set
TH(G) :={y e R" | y; = elYey, i=1,...,n, Y € N.(G)Nn {edY ey = 1}}.

Grotschel, Lovasz & Schrijver [1988] have proved that TH(G) can be described completely by
means of (nonnegativity and) orthogonality inequalities. Such an orthogonality inequality for
a graph G = (V, E) with nodes V = {1,...,n} involves an orthonormal representation of G,
i.e., a set of vectors v; € R" with |v;| = 1, one for each node i of G, such that vZ-ij = 0 holds
for all ij ¢ E, and an additional arbitrary vector ¢ € R" with |¢| = 1. The orthogonality
inequality that corresponds to this data is

Z(chi)Qwi < 1.

eV
This class subsumes the clique inequalities by suitable choices of orthonormal representations.

1.8.15 Theorem (Orthogonality Inequalities, Grotschel, Lovéasz & Schrijver [1988])
For any graph G holds:

(i) Orthogonality inequalities can be separated in polynomial time.
(ii) TH(G) is completely described by nonnegativity and orthogonality inequalities.
(iii) G is perfect if and only if TH(G) = P;(G).

1.8.16 Theorem (/N,-Index of Orthogonality Inequalities,Lovdsz & Schrijver [1991])
Orthogonality inequalities have N-index 1.

1.8.5 Adjacency

We summarize in this subsection some results on the adjacency of vertices of the set packing
polytope and on the adjacency of integer vertices of its fractional relaxation. Such results
bear on the development of primal algorithms for the set packing problem in a graph G.
For the purposes of this subsection, we can define a primal algorithm in terms of a search
graph & = (U, ), that has the set of all set packings of G as its nodes (and some set of edges).
A primal algorithm uses the edges of & to move from one set packing to another. In every
move, the algorithm searches the neighbors of the current node for a set packing that has,
with respect to some given objective, a better value than the current one; this neighborhood
scan is called a local search. When an improving neighbor has been found, the algorithm
moves there along an edge of the graph; this edge is an improvement direction. When there
is no improvement direction, the algorithm is “trapped” in a local optimum and stops.

The connection between a primal algorithm of local search type and the adjacency relation
on a set packing polytope Pr(G) is that adjacency is a natural candidate to define the edge
set of the search graph &. Namely, we let uo € € if and only if the incidence vectors of the set
packings u and v are neighbors on P;(G), i.e., if they lie on a common 1-dimensional face of
Pr(G). Doing so produces a graph &(P;(G)) which is called the skeleton of Pr(G). Skeletons
have a property that makes them attractive search graphs: Not only are they connected, but
there is a path of improvement directions from any vertex to the global optimum.

Edmonds [1965] famous polynomial algorithm for set packing problems on line graphs, i.e.,
for matching problems, moves from one packing to another one by flipping nodes (in the line
graph) of a connected structure that is called a Hungarian tree. For maximum cardinality
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set packing problems on arbitrary graphs, Edmonds [1962] has derived a local optimality
criterion that is also in terms of trees and characterizes all improvement directions: A set
packing X in a graph G = (V, E) is not of maximum cardinality if and only if the bipartite
graph (V,(X x V' \ X) N E) contains a tree T' = (W, F), such that XAW is a packing of
larger cardinality than X. (Here, XAY denotes the symmetric difference of two sets X and
Y.) It follows from a result of Chvéatal [1975] that we will state in a second, that Edmonds’s
matching algorithm does a local search on the skeleton of the set packing polytope that is
associated to a line graph, and that his tree optimality criterion characterizes adjacent vertices
in the skeleton of a general set packing polytope. In view of these similarities between the
line graph/matching and the general case, it was hoped that matching like primal techniques
could also be applied to general set packing problems. An attempt in this direction was
undertaken by Nemhauser & Trotter [1975], who investigated Edmonds’s criterion further
and used it, supplemented with lower bounding LP techniques, for the development of a
branch-and-bound algorithm that could solve maximum cardinality set packing problems on
random graphs with up to 100 nodes.

The link between these results and polyhedral theory is the following result of Chvétal [1975]
that characterizes the adjacent vertices of set packing polytopes completely. The theorem
shows that the above mentioned optimality criteria characterize adjacency in the skeleton of
the set packing polytope, and that the algorithms perform a local search in this structure.

1.8.17 Theorem (Adjacency on the Set Packing Polytope, Chvatal [1975])
Let G = (V, E) be a graph, let P;(G) be the associated set packing polytope, and let x and y
be the incidence vectors of two set packings X and Y in G, respectively. Then:

z and y are adjacent on Pr(G) if and only if the graph G[XAY] is connected.

Theorem 1.8.17 brings up the question if it is possible to use polyhedral information to perform
a local search in the skeleton. One idea to do this was investigated in a series of papers by
Balas & Padberg [1970, 1975, 1976] and is as follows. Consider the fractional set packing
polytope P(A) that is associated to a given 0/1 matrix A. Any vertex of Pr(A) is also a
vertex of P(A), which means that it is possible to reach the integer optimum by searching
through the skeleton ®&(P(A)) of the fractional relaxation. This is interesting because there
is an effective and ready-to-use algorithm that does exactly this: The simplex method. In
fact, nondegenerate pivots lead from one vertex to adjacent vertices, and, doing additional
degenerate pivots, it is possible to reach from a given vertex all of its neighbors. In other
words: The simplex algorithm performs a local search on the skeleton of the fractional set
packing polytope with some additional degenerate steps. These statements were trivial, but
point into an interesting direction: Is it perhaps possible to move with all integer pivots
through the skeleton of the integer set packing polytope as well? It is, and &(P;(A)) seems
to have even extremely promising looking properties!

1.8.18 Theorem (Skeleton of Set Packing Polytopes, Balas & Padberg [1970, 1975])
Let A be an m x n 0/1 matrix, P;(A) the associated set packing polytope, P(A) its fractional
relaxation, and let &1 := &(P;(A)) and & := &(P(A)) be the associated skeletons. Then:

(i) & is a subgraph of &.
(ii) diam &; < m/2.
(iii) |6(v)] >n Vo e V(&y).

Here, diam &; denotes the diameter of the graph &;.
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Theorem 1.8.18 (i) states that vertices are adjacent on Pj(A) if and only if they are adjacent
on P(A), i.e., it is possible to reach the optimum integer solution by a sequence of all integer
pivots. And not only is this possible: By (ii), one can reach the optimum from any given
integer starting point in at most m/2 pivots! (The theorem makes only a statement about
nondegenerate pivots, but one can sharpen this result.) We remark that Naddef [1989] has
proved the Hirsch conjecture true for 0/1 polytopes; this can sometimes yield a smaller bound
on the diameter than Theorem 1.8.18 (ii). Finally, (iii) hints to a difficulty: Each vertex has
a very large number of neighbors, and this may render the local search difficult.

Balas & Padberg have developed and tested primal pivoting algorithms along these lines.

1.9 The Set Covering Polytope

We survey in this section polyhedral results on the set covering polytope Q7(A). Analogous to
the set packing case, such investigations aim at the characterization of valid and facet defin-
ing inequalities and the development of methods to compute them efficiently. But the main
motivation for this doing is different, namely, to unify polyhedral results that were obtained
for various kinds of combinatorial optimization problems that can be stated as optimiza-
tion problems over independence systems, a problem that is in a very direct way equivalent
to the set covering problem. For example, the minimal cover inequalities of the knapsack
polytope turn out to be so-called generalized clique inequalities, and the Mobius ladder in-
equalities of the acyclic subdigraph polytope can be seen as generalized cycle inequalities of
an independence system/set covering polytope that is associated to an appropriately chosen
independence system.

The concepts that guide these polyhedral investigations are essentially the same as in the set
packing case: One considers facet defining submatrices of a given 0/1 matrix, tries to identify
facet defining classes, and uses lifting procedures to make local constraints globally valid.
The similarity in the approaches carries over to the descriptive results, and we will encounter
familiar structures like cliques, cycles, etc. What misses in comparison to set packing are
significant classes of polynomially solvable set covering problems, polynomially separable
types of inequalities, and completely described cases. This algorithmic lack is apparently due
to the ineffectiveness of graph theoretic approaches to set covering. In other words: The
algorithmic theory of hypergraphs is way behind its graphical brother.

This section is organized as follows. The remainder of this introduction states some basic
properties of the set covering polytope, most notably the relation to the independence system
polytope. The only Subsection 1.9.1 gives a list of facet defining matrices and some results
on rank facets.

The subsequent subsections resort to the following basic properties of the set covering poly-
tope. Recall from Section 1.3 that a set covering problem with 0/1 matrix A is equivalent
to an optimization problem over an independence system J(A) via an affine transformation
y:=1—x:

(SCP) min wl(1 —y) =w'l— (ISP) max wly
A1 —y)>1 (i) Ay < (A-D)
(1-y) <1 (if) y >0
(1-y) >0 (iii) y<1
(1—-y)e{0,1}" (iv) y € {0,1}".
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The independence system J(A) has the set of column( indice)s of A as its ground set, and its
cycles are the nonredundant rows of A.

The above relation implies that (SCP) and (ISP) are equivalent problems, and in a very
direct way: z is a solution of (SCP) if and only of 1 — z is a solution of (ISP). This means in
polyhedral terms that the associated polytopes satisfy

Qr(A) =1 — Psp(A)

and we need to study only one of them. More precisely, we have the following.

1.9.1 Corollary (Set Covering and Independence System Polytope)
Let A be a 0/1 matrix and Q(A) and Pigp(A) be the associated set covering and independence
system polytope, respectively. Then:

a'z > « is valid/a facet for Qr(A) <= a'z < a1 — « is valid/a facet for Pisp(A).

The significance of the set covering/independence system polytope for combinatorial opti-
mization is that polyhedral results for Q;(A)/Pisp(A) carry over to many combinatorial opti-
mization problems. Namely, combinatorial optimization problems can often be interpreted as
optimization problems over special independence systems and this means that their polytopes
inherit all facets of the more general body. We will point out some relations of this type that
have been observed in the literature next to the discussion of the corresponding classes of
inequalities.

Some simple properties of the set covering polytope are collected in

1.9.2 Observation (Dimension, Up Monotonicity, Bounds, and Nonnegativity)
Let A be a 0/1 matrix that has at least 2 nonzero entries in each row and Q;(A) be the
associated set covering polytope.

(i) Qr(A) is full dimensional.
(ii)) Qr(A) is up monotone, i.e., z € Qr(A) = y € Qr(A) forallx <y < 1.
(iii) The upper bound constraints z; < 1 induce facets of Q;(A).

(iv) A nonnegativity constraint z; > 0 defines a facet of Q;(A) if and only if the minor A}
that results from A by a contraction of column j has at least 2 nonzeros in each row.

(v) Ifa"z > « defines a facet of Qr(A) that is not one of the upper bound constraints z; < 1,
all coefficients of aTx > o are nonnegative.

1.9.1 Facet Defining Matrices

The technique that is used in the literature to derive classes of valid and facet defining
inequalities for the set covering polytope is the study of submatrices of a given m x n 0/1
matrix A, similar to the study of subgraphs of the conflict graph in the set packing case.
Likewise, this approach is motivated by and related to the study of minimally nonideal matrix
minors: The general theory of nonideal matrices guarantees the existence of certain “cores”
of locally facet defining structures.

Let us get more precise. The derivation techniques for inequalities for set covering polytopes
from submatrices are based on the up-monotonicity of Q;(A). Namely, if A;; is some arbitrary
minor of A, where I is some set of row( indice)s of A, and J some set of column indices, and
the nonnegative inequality etz > « is valid for Q;(A;)N{z € R* |z, =1 Vj ¢ J} and
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has a; = 0 for j ¢ J, it is also valid for Q7(A). The simple extension technique that we
have just described is not very satisfactory, but it points to the principle that substructures
of A give rise to valid and facet defining inequalities. This motivates the concept of a facet
defining 0/1 matriz in analogy to facet defining graphs for set packing problems: We say
that the matrix A defines the facet a™x > o if this inequality is essential for Q;(A). A
first research topic on set covering polytopes is now to undertake a classification of such
facet defining matrices and the corresponding inequalities. The facet defining matrices will
serve as candidates for minors of some given 0/1 matrix of interest. Having identified such
a minor, we can set up a corresponding inequality and try to extend it to an inequality that
is globally valid. The investigation of possibilities to do this extension in a systematic way
leads to the study of lifting techniques. The lifting problems for set covering inequalities are
slightly more complicated then in the set packing case, because one deals with additional
columns and rows, but the general principle is the same; we refer the reader to Nemhauser
& Trotter [1973], Sassano [1989], and Nobili & Sassano [1989] for examples of sequential and
combinatorial simultaneous lifting procedures.

We give next a list of facet defining matrices for the set covering polytope.

Generalized Antiweb Inequalities, Laurent [1989], Sassano [1989]. For natural
numbers n >t > ¢, a generalized antiweb AW(n,t,q) is a n(;:ll) x n 0/1 matrix that
has a row ZZ-GQ e;r for each g-element subset @) of each set of ¢ consecutive column indices
{jy-..,j+t—1} (indices taken modulo n), see Figure 1.13. Associated to this matrix is the

generalized antiweb inequality

-
PR,
B e

> ap > [n(t —q+ 1)/t
j=1

Figure 1.13: The Generalized Antiweb AW(5,3,2).

The generalized antiweb inequality is facet defining if and only if either n = ¢ or ¢ does not
divide n(g — 1), see Laurent [1989] and Sassano [1989].

Generalized antiwebs subsume a number of structures that have been investigated earlier:
Generalized cliques (n = t) by Nemhauser & Trotter [1973], Sekiguchi [1983], and Euler,
Jinger & Reinelt [1987], generalized cycles (¢ =t and t does not divide n) by Sekiguchi [1983]
and Euler, Jinger & Reinelt [1987], and generalized antiholes, (n = gt + 1) by Euler, Jinger
& Reinelt [1987]. The last mentioned authors have also investigated some generalizations
of their antiwebs, that arise from (i) duplicating columns of the matrix AW(n,t,q) any
number of times and (ii) adding any number of additional columns with certain rather general
properties like not having too many nonzero entries; see also Schulz [1996, Section 4.4] for
some further extensions. They can show that these generalizations are also facet defining. An
application to the independence system of acyclic arc sets in a complete digraph exhibits the
classes of k-fence inequalities for the acyclic subdigraph polytope as generalized clique, and the
Moébius ladder inequalities as generalized cycle inequalities, a further example is mentioned
in Nobili & Sassano [1989]. Nemhauser & Trotter [1973] mention a relation to the knapsack
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problem, where the class of cover inequalities turns out to correspond to the generalized clique
inequalities of the associated independence system polytope, see also Padberg [1975b].

The antiwebs AW(2k +1,2,2), the odd holes, have been investigated further by Cornuéjols &
Sassano [1989]. They study the effects of switching zeros in odd holes to ones and can com-
pletely characterize the cases where such operations do not destroy the validity and faceteness
of the odd hole inequality.

Sassano [1989] and Nobili & Sassano [1989] give two further (and more complicated) classes
of facet defining matrices that arise from certain operations on the antiwebs AW(n,q, q), one
a lifting, the other a composition operation.

Generalized Web Inequalities, Sassano [1989]. Generalized webs are the complements
of generalized antiwebs: For natural numbers n >t > g, the generalized web W(n,t,q) is a
(Z) — n(éj) x n 0/1 matrix that has a row } ;.o el for each g-element subset @ of column
indices such that @ is not contained in any of the sets {j,...,7 +t — 1} (indices taken
modulo n) of ¢ consecutive column indices, see Figure 1.14. Associated to such a web matrix

is the generalized web inequality

n A T R
. _ A T |
Z%Zn t, S T

i=1

Figure 1.14: The Generalized Web W(7, 3, 2).

which is facet defining if ¢ does not divide n, see Nobili & Sassano [1989].

Further Inequalities. The inequalities that we have considered so far were all rank in-
equalities, i.e., they had all only 0/1 coefficients on their left-hand sides. We mention now
two classes of facets with more general coefficients.

Nobili & Sassano [1989] have studied a class of inequalities from compositions of rank facets.
Starting point is a matrix operation, the complete bipartite composition, that constructs from
two 0/1 matrices A; and As the new matrix

A E
AIOAQ::(‘EI A2>

Here, E denotes a matrix with all one entries. Nobili & Sassano [1989] show that if the rank
inequality 1Tz, > «ay is valid for Q7(A;) and the second rank inequality 1Tz > ay is valid
and, in addition, tight for Q;(As), the inequality

(042 — ].)].TIl + ].TJ?Q Z (65)

defines a facet of Qr(A; o Ay).
Finally, we mention that Balas & Ng [1989a,b] have completely characterized those facets of
the set covering polytope that have only coefficients of 0, 1, and 2 on the left-hand side.

*
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A second branch of research on the set covering polytope is devoted to the study of necessary
and sufficient conditions that make a valid inequality facet defining. Like in the set packing
case, the literature focusses on the class of rank inequalities. To set up this class, consider an
m X n 0/1 matrix A and define its rank as the number

B(A) :=min 1%z, Az >1, z € {0,1}".

Then, the inequality
n
Z z; > B(A)
=1

is the rank inequality that is associated to A. Rank inequalities are valid by definition, but
there is no complete characterization of those matrices known that give rise to facet defining
rank constraints. But a number of necessary and sufficient conditions have been derived that
we survey next. It will turn out that deletion minors play an important role in this context,
and, for the remainder of this subsection, we want to denote by A.; the deletion minor of A
that results from a deletion of all columns that are not contained in J, i.e., A.; consists of
the columns of A that have indices in J and those rows, whose support is contained entirely
in J. This matrix is the “uncovered” part of A that remains when one sets all variables z;,
je&J, tol.

The necessary conditions for a rank inequality to be facet defining can be given in terms of
the notions of closedness and nonseparability. We say that a set J of column indices is closed
if B(A.;uqry) > B(A.;) holds for all columns k ¢ J, i.e., if the addition of any k to J strictly
increases the rank. J is nonseparable if B(A.;) + B(A.;») < B(A.y) holds for any partition
J=J 1 J" of J into sets J' and J”, i.e., a separation results in a loss of rank.

1.9.3 Observation (Necessary Conditions for Rank Facets)
Let A be an m x n 0/1 matrix, let J be any subset of column indices, and let A.; be the
minor that results from deleting from A the columns that are not in J. Then:

If the rank inequality ). ; x; > B(A) defines a facet of Qr(A), the set J must be closed and
nonseparable.

There are some cases where the condition in Observation 1.9.3 is known to be also sufficient:
When A is the circuit-node incidence matrix of a matroid, and when the independence sys-
tem J(A) that is associated to A is the set of solutions of a single knapsack problem, see
Laurent [1989].

A sufficient condition for the faceteness of the rank inequality that is associated to an m X n
0/1 matrix A can be stated in terms of a critical graph G = (V, E). This graph has the set
of column( indice)s of A as its nodes and two nodes 7 and j are adjacent if and only if there
exists a covering T € Q(A)NZ™ that satisfies 177 = B(A) and such that the vector T—e; +e;,
which results from exchanging the elements ¢ and j, is also a feasible covering.

1.9.4 Observation (Sufficient Condition for Rank Facets, Laurent [1989])

Let A be an m x n 0/1 matrix, let Q;(A) be the associated set covering polytope, and let G
be the critical graph of A. Then:

If G is connected, the rank inequality 377, zj > (B(A) defines a facet of Qr(A).

This observation generalizes a number of earlier results of Sekiguchi [1983], Euler, Jiinger &
Reinelt [1987], and Sassano [1989].
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We close the discussion of rank inequalities for the set covering polytope with two approaches
to the heuristic separation of cuts this type.

Rank Inequalities From K-Projection, Nobili & Sassano [1992]. Given an m x n
0/1 matrix A, a subset J C {1,...,n} of columns, its complement J = {1,...,n}\ J, and
an integer k € Z, a k-projection of A with respect to J is a 0/1 matrix A,y with
n — |J| = |J| columns and the property that any of its covers can be extended to a cover of A
that contains exactly & columns from the set J. This matrix is unique up to permutation of
rows; in fact, Aly(p—p = bl((b1A|Ai_(]):k)_7), where bl A| 4, (7)— is the submatrix of bl A that
has as its rows all the covers of A that contain exactly & columns from J. One can prove that
Q 1(A|I( ]):k) is the orthogonal projection of the “equality constrained” set covering polytope

conv{z € {0,1}" : Az > 1, z(J) = k} onto the subspace R/, hence the name k-projection.
The operation has the property that 8(A) < B(Aly(n=k) + k-

Under special circumstances, k-projections can be used to construct rank inequalities. Namely,
suppose that the equation B(A) = B(Aly(s)=k) + k holds such that A is k-projectable with
respect to J, as we say. In this case, we can write the rank inequality associated to A as

S wy > B(Alur—r) + k= B(A),
j=1

i.e., we can construct it from the rank inequality for A|$( 7)=k which is simpler in the sense
that it has a smaller right-hand side.

Nobili & Sassano [1992] suggest a separation heuristic for rank inequalities that is based on
the iterative application of k-projections. They focus on the simplest case where £k =1 and J
is the support of a row of the original matrix A, i.e., they always project with respect to one of
the equations A;.z = 1. Projectability is established using two exponential sufficient criteria
which are checked in a heuristic way. As the construction of the 1-projections is exponential
as well, the authors resort to heuristically chosen submatrices at the cost of a weakening of
the right-hand side. Projection is continued until the resulting matrix becomes so small that
the covering number can be determined exactly. The separation routine, augmented by a
clever lifting heuristic, has been successfully used in a branch-and-cut code for the solution
of set covering problems from a library of randomly generated instances from the literature
with several hundred rows and columns.

Conditional Cuts, Balas [1980], Balas & Ho [1980]. The cutting planes that we
consider in this paragraph are special in the sense that they can very well (and are indeed
supposed to) cut off parts of the set covering polytope under investigation: They are only
valid under the condition that a solution that is better than the best currently known one
exists, hence the name conditional cut.

A more precise description is the following. Suppose that an upper bound z, on the optimum
objective value of the set covering problem (SCP) is known and consider an arbitrary family
20 C 2" of column index sets v. If we can ensure that the disjunction \/ gy z(v) = 0 holds
for any solution x with a better objective value than z,, the inequality

T4 Z 1
JEUpe gy Supp Ar(u)-\n

is valid for all z € Qr(A) such that ¢’z < z, and can be used as a cutting plane. Here, for
each column set v, A, (). is an arbitrary row of A.
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Conditional cuts are of “rank type”; the concept subsumes a number of earlier classes such
as the ordinal cuts of Bowman & Starr [1973] and Bellmore & Ratliff [1971]’s cuts from
involutory bases. Balas & Ho [1980] suggest a separation heuristic for conditional cuts that
is based on LP duality arguments; the procedure has been applied with success in a branch-
and-cut algorithm to set covering problems with up to 200 rows and 2,000 columns.



Chapter 2

Set Packing Relaxations

Summary. This chapter is about set packing relazations of combinatorial optimization
problems associated with acyclic digraphs and linear orderings, cuts and multicuts, multiple
knapsacks, set coverings, and node packings themselves. Families of inequalities that are valid
for such a relaxation and the associated separation routines carry over to the problems under
investigation.

Acknowledgement. The results of this chapter are joint work with Robert Weismantel'.

2.1 Introduction

This chapter is about relazations of some combinatorial optimization problems in the form
of a set packing problem and the use of such relaxations in a polyhedral approach.

Set packing problems are among the best studied combinatorial optimization problems with
a beautiful theory connecting this area of research to Fulkerson’s anti-blocking theory, the
theory of perfect graphs, perfect and balanced matrices, semidefinite programming, and other
fields, see the previous Chapter 1 of this thesis for a survey. Likewise, the set packing polytope,
i.e., the convex hull of all node packings of a graph, plays a prominent role in polyhedral com-
binatorics not only because large classes of (facet defining) inequalities are known. Perhaps
even more important, many of them can be separated in polynomial time, in particular odd
cycle and orthogonality constraints, see Grotschel, Lovasz & Schrijver [1988] and Lovész &
Schrijver [1991].

LOtto-von-Guericke Universitit Magdeburg, Fakultit fir Mathematik, Institut fiir Mathematische Opti-
mierung, Universititsplatz 2, 39106 Magdeburg, Email robert.weismantel@mathematik.uni-magdeburg.de
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Our aim in this chapter is to transfer some of these results to other combinatorial optimization
problems. We show that the acyclic subdigraph and the linear ordering problem, the max cut,
the k-multicut, and the clique partitioning problem, the multiple knapsack problem, the set
covering problem, and the set packing problem itself have interesting combinatorial relazations
in form of a set packing problem. Families of inequalities that are valid for these relaxations
and the associated separation routines carry over to the problems under investigation. The
procedure is an application of a more general method to construct relaxations of combinatorial
optimization problems by means of affine transformations.

The chapter contains seven sections in addition to this introduction. Section 2.2 describes our
method to construct set packing relaxations. Section 2.3 is devoted to a study of the acyclic
subdigraph and the linear ordering problem, see Grotschel, Jiinger & Reinelt [1985a,b]. A
main result here is that a class of Mobius ladders with dicycles of arbitrary lengths belongs
to a (larger) class of odd cycles of an appropriate set packing relaxation; this superclass
is polynomial time separable. Section 2.4 deals with set packing relaxations of the clique
partitioning, the k-multicut, and the max cut problem, see Grotschel & Wakabayashi [1990]
and Deza & Laurent [1997]. We introduce two types of “inequalities from odd cycles of
triangles”. The first of these classes contains the 2-chorded cycle inequalities, the second
is related to circulant inequalities. Section 2.5 treats the set packing problem itself. We
show, in particular, that the wheel inequalities of Barahona & Mahjoub [1994] and Cheng &
Cunningham [1997] are odd cycle inequalities of a suitable set packing relaxation. We also
introduce a new family of facet defining inequalities for the set packing polytope, the “cycle
of cycles” inequalities. This class can be separated in polynomial time. Section 2.6 deals
with the set covering problem. Again, we suggest a set packing relaxation in order to derive
polynomially separable inequalities. We have implemented one version of such a separation
procedure for use in a branch-and-cut code for set partitioning problems. Implementation
details and computational experiences are reported in Section 3.3 of this thesis. Section 2.7
considers applications to the multiple knapsack problem, see Martello & Toth [1990] and
Ferreira, Martin & Weismantel [1996]. The final Section 2.8 relates some results of the
literature on set packing relaxations for 0/1 integer programming problems with nonnegative
constraint matrices to our setting.

The following sections resort to some additional notation and two well known results for the
set packing or stable set problem. Let

(SSP) max w'z
Az < 1
e {0,1}"

T

be an integer programming formulation of a set packing problem on a graph G = (V, E) with
nonnegative integer node weights w € ZY, where A = A(G) € {0,1}**V is the edge-node
incidence matrix of G. Associated to (SSP) is the set packing or stable set polytope that we
denote in this section by

Pssp = conv {XS : §'is a stable set in G} = conv{x € {0,1}": Az < 1}

or, where convenient, also by Pssp(G). For reasons that will become clear in the next section,
we will actually not work with the stable set polytope Psgp itself, but with its anti-dominant

Pssp := Pssp —RY, = {z € RV : Jy € Psgp : 2 < y}.
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Figure 2.1: A Polyhedron and Its Anti-Dominant.

This construction allows to include vectors with arbitrary negative coordinates without de-
stroying the polyhedral structure of Psgp: Obviously, the valid inequalities for Pggp are
exactly the valid inequalities for Pssp with nonnegative coefficients. Since the stable set poly-
tope Psgp is down monotone, its nontrivial constraints all have nonnegative coefficients, and
we can thus work with I\SSSP as well as with Pggp. Figure 2.1 gives an illustration of a polytope
and its anti-dominant.
We will need two results about Iv’ssp that are summarized in the following two theorems.
2.1.1 Theorem (Edge, Clique, and Odd Cycle Inequalities, Padberg [1973a])
Let G = (V, E) be a graph and let Pgsp be the anti-dominant of the associated set packing
polytope.
(i) Ifij is an edge in G, the edge inequality z; + z; < 1 is valid for Pggp.
(ii) If Q is a clique in G, the clique inequality
in <1
1€Q

is valid for ]\Sggp; it is facet defining for ]\Sggp if and only if () is a maximal clique (with
respect to set inclusion).

(iii) If C C V is the node set of an odd cycle in G, the odd cycle inequality
Y@ <(Cl-1)/2
ieC
is valid for PSSP.
Separation of clique inequalities is NP-hard, see Garey & Johnson [1979, Problem GT 19]. But
the clique inequalities are contained in the class of orthogonality inequalities, see Grotschel,

Lovész & Schrijver [1988], that can be separated in polynomial time. Odd cycle inequalities
are polynomial time separable, see again Grotschel, Lovasz & Schrijver [1988, Lemma 9.1.11].

2.1.2 Theorem (Orthogonality & Cycle Inequalities, Grétschel et al. [1988])
Let G = (V, E) be a graph, Pgsp the anti-dominant of the associated set packing polytope,
and z € QV. Suppose that z; + xj <1 holds for all edges ij € E. Then:

(i) Orthogonality inequalities for Pgsp can be separated in polynomial time.

(ii) Odd cycle inequalities for Pgsp can be separated in polynomial time.
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2.2 The Construction

Our aim in this section is to describe a method to construct set packing relazations of combi-
natorial optimization problems. The setting is as follows. We are interested in some combi-
natorial optimization problem that is given by an integer programming formulation

(IP) max wiz Az <b, z€Z™

Here, A € Z™*™ b € Z™, and w € Z™ are an integral matrix and vectors, respectively. The
associated fractional and integer polyhedra are

P(Ab) :={z e R" | Az <b} and Pip(A,b):=conv{z e Z"| Az <b}.

If the meaning is clear, we also write P for P(A,b) and Pip for Pip(A,b).
Our method starts with an affine function

7:R* 5 R?, 2+ Iz — 7°

given by a rational matrix IT € Q%™ and vector 7° € Q7; note that the image space can be of
higher dimension than the preimage. We call such functions aggregation schemes or simply
schemes. A scheme is integer if it maps integer points to integer points, i.e., w(Z") C Z", or,
equivalently, if IT and 7° are both integer, i.e., Il € Z"™™ and 7 € Z". Finally, the image 7(P)
of a polyhedron P under the scheme 7 is called the m-aggregate or, if there is no danger of
confusion, simply the aggregate of P.

Our motivation for studying aggregations is that they give rise to valid inequalities for some
polyhedron P of interest. Namely, if @' < @ is valid for an aggregate w(P), the ezpansion

a'r(r) <@ < allz <a+an’

of this inequality is a constraint in R” which is valid for the original polyhedron P.
The facial structure of an aggregate is, of course, in general as complicated as that of the
original polyhedron. But it is often possible to find a relazation

P D n(P)

of the aggregate m(P) that is of a well studied type. In this case, one can resort to known
inequalities for the relaxation P to get an approximate description of the aggregate m(P) and,
via expansion, a description of a polyhedral relaxation of the original polyhedron P.

The crucial points in this procedure are the choice of the aggregation scheme and the iden-
tification of a suitable relaxation. The subsequent sections resort to the following method
to construct set packing relazations. Starting point is the observation that we are inter-
ested in combinatorial programs, i.e., 0/1 optimization problems (IP). Associated to such
programs are integer polyhedra P = Pp. Restricting attention to likewise integer schemes
(i.e., m(Z™) C Z™, recall the above definition), the resulting aggregates are integer as well:

W(PIP)IP = W(PIP) A (integer) Prp and integer 7.

The next step is to construct a conflict graph & = (0, €). To do this, we need a scheme that
is bounded from above by one on the polyhedron Pp of interest, i.e.,

’/T((II) <1 Vx € Pp.
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Figure 2.2: Constructing a Set Packing Relaxation.

Such schemes give rise to a conflict graph as follows. & has a node for every component of
the scheme, i.e., U = {1,...,m}. We draw an edge uv between two nodes if 7 can not attain
its maximum value of one in both components simultaneously:

up € €: <= my(r) + m(z) <1 Vo € Prp.

In this case, we say that u and v are in conflict. The anti-dominant ngp(@) of the conflict
graph is now a set packing relazation of the m-aggregate m(Pip) in the sense that

Pssp(®) D n(Prp).

Note that it is not possible to replace Psgp(®) with Pssp (), because the scheme 7 can attain
negative values, see Figure 2.2 for an illustration.

Once the set packing relaxation Pggp(®) D m(P) is found, inequalities and separation routines
for Iv’ssp(t'ﬁ) carry over to the polyhedron P of interest. Given some point z to be tested for
membership in Pip, we simply (i) compute 7(z), (ii) solve the separation problem for 7(x)
and ]\Sggp(ﬂi), and, if a separating hyperplane @'Z < @ has been found, (iii) expand it. If all
of these three steps are polynomial, this yields a polynomial time separation algorithm for a
class of valid inequalities for Pip, namely, for the expansions of all polynomial time separable
and polynomial time expandable inequalities of ngp(@). Promising candidates for this are,
in particular, the odd cycle and orthogonality constraints for }\Sssp(éﬁ).

The following sections present ezamples of set packing relaxations for a variety of combina-
torial optimization problems.

We remark that for convenience of notation, we will occasionally consider paths, cycles, di-
paths, dicycles, etc. as sets of nodes, edges, or arcs, and we will denote edges as well as arcs
with the symbols 75 and (i, 7); the latter symbol will be used in cases like (7,7 + 1).

2.3 The Acyclic Subdigraph and the Linear Ordering Problem

Our aim in this section is to construct a set packing relaxation of the acyclic subdigraph and
the linear ordering problem in a space of exponential dimension. It will turn out that clique
and odd cycle inequalities of this relaxation give rise to (and generalize) several classes of
inequalities for the acyclic subdigraph and the linear ordering problem, namely, fence and
Mébius ladder inequalities. We suggest Grotschel, Jiinger & Reinelt [1985a] as a reference for
the ASP, see also Goemans & Hall [1996, and references therein] for a recent study of known
classes of inequalities, and Grotschel, Jiinger & Reinelt [1985b] for the LOP.
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The acyclic subdigraph and the linear ordering problem involve a complete digraph D, =
(V, A) on n nodes with integer weights w, on its arcs a € A. An acyclic arc set in A contains
no dicycle. The acyclic subdigraph problem (ASP) asks for an acyclic arc set with maximum
weight on its arcs. Acyclic arc sets that contain, for any pair of nodes 7 and j, either the
arc ij or the arc ji, are called tournaments. The linear ordering problem (LOP) is to find a
tournament of maximum weight. TP formulations for the ASP and the LOP read as follows:

max E Wi Tij max E WijTij

ijEA ijEA
(i) Zij +xj =1 Vi,jeV,i#j
(ii) Z zi; < |C|—1 Vdicycles C C A (ii) Z zi; <|C|—1 Vdicycles C C A
ijelC ijeC
(iii) z €{0,1}4 (iii) z €{0,1}4.
(ASP) (LOP)

(ASP) is a relaxation of (LOP) and, what is more, the linear ordering polytope Ppop is a face
of the acyclic subdigraph polytope Pasp. In particular, all inequalities that are valid for Pagp
are also valid for P,op. T'wo such classes of inequalities for both the ASP and the LOP are
the k-fence and the Mdobius ladder inequalities, see Grotschel, Jinger & Reinelt [1985a).

Figure 2.3: A 4-Fence.

Figure 2.4: A Mobius Ladder of 5 Dicycles.

A (simple) k-fence involves two disjoint sets of “upper” and “lower” nodes {u1,...,u;} and
{l1,...,lx} that are joined by a set of k pales {uily,...,ugl;}. All pales are oriented “down-
ward”. The k-fence is completed by adding all “upward” pickets l;u; with the exception of the
antiparallel pales. We remark that one can also allow that pales and pickets consist not only
of a single arc, but of an entire dipath, thereby obtaining a larger class of general k-fences;
for simplicity of exposition, however, we want to restrict ourselves here and elsewhere in this
section to simple fences. Figure 2.3 shows a (simple) 4-fence.

A Moébius ladder consists of an odd number 2k + 1 of dicycles Cy, ..., Co such that C; and
Ci11 (indices taken modulo 2k + 1) have a dipath P; in common, see Figure 2.4; this time,
we want to consider also the non simple case.

Fences and Mobius ladders give rise to valid inequalities for Paygp: For a k-fence Fj and a
Mobius ladder M of 2k + 1 dicycles we have

Zx'j<k2—k+1 and i Z < o . ] —
t = Tij > Z|Cl\Pz| (k+1).
=0

ijEF} i=0 ij€C;\P;
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Note that a Mobius ladder inequality as above has coefficients larger than one if an arc is
contained in more than one of the dipaths C; \ P;. This is different from Groétschel, Jiinger &
Reinelt [1985a]’s (original) definition, where the coefficients take only values of zero and one
and the Mobius ladder must meet a number of additional technical requirements to support
a valid inequality. The two definitions of a Mobius ladder inequality coincide if and only if
no two dipaths C; \ P; have an arc in common (Mébius ladder without arc repetition).

We will show now that fences and Mdébius ladders are cliques and odd cycles, respectively, in
an (exponential) conflict graph &(Dy,) = (U, €). & has the set of all acyclic arc sets of D,
as its nodes. We draw an edge uv between two acyclic arc-set nodes u and v if their union
contains a dicycle. In this case, we say that u and v are in conflict because they can not be
simultaneously contained in (the support of) a solution to (ASP).

B 6 6 O @ Q@

Fy F} @

W ) W O & O

Fy ® Fy Fy )

Figure 2.5: A Fence Clique.

It is now easy to identify the fences and Mobius ladders with cliques and odd cycles of &.
To obtain a k-fence Fj, we look at the k acyclic arc sets F}. that consist of a pale u;l; and
the pickets l;u; that go up from [; for « = 1,... k. Any two such configurations F} and

F,g, i # j, are in conflict (they contain a dicycle). Hence, all of them together form a clique.
Figure 2.5 illustrates this construction. Likewise, the Mobius ladders correspond to odd cycles
of conflicting dipaths, namely, the dipaths C; \ P;, see Figure 2.6.

%Oﬁ%?
Cs\ Py df> Ci\ Py

@\m %\%

Figure 2.6: A Mobius Cycle of Dipaths.
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The next step to obtain the fence and the Mobius ladder inequalities from the clique and odd
cycle inequalities of the (anti-dominant of the) set packing polytope IVJSSP(QS) associated to
the conflict graph & is to construct a set packing relaxation of the ASP. To this purpose,
consider the aggregation scheme 7 : R* — R¥ defined as

o (2) 1= Z zi; — (Jo| — 1) V acyclic arc sets b € 0.
ijeo
m(x) is integral for all integral = € RA. Moreover, for every incidence vector x € Pagp of an
acyclic arc set supp(z) C A in D,,, we have that 7(z) attains its maximum value of one in

component m,(z) if and only if v is contained in supp(z). Since two conflicting acyclic arc
sets can not simultaneously be contained in supp(z), we have that

up € € <= my(z) + m(z) <1 Va € Pasp NZA

and, by convexity, also for all x € Pagp. This argument proves that Fssp(ﬁ) is a set packing
relaxation of Pagp.

2.3.1 Lemma (Set Packing Relaxation of the ASP) 7 (Pagp) C Psgp (8(Dy)).

Note that it is not possible to replace IVDSSP with Pssp, because the components of 7 can
take negative values. More precisely, 7(z) is in general not the incidence vector of a stable
set in Pgsp(®), but max {0, 7(x)} is, with the maximum taken in every component (recall
Figure 2.2).

Lemma 2.3.1 allows us to ezpand (see the definition on page 54) an inequality @' T < @ that
is valid for Pggp into the inequality @’ 7(z) <@ for Pasp. Our next theorem states that
the fence and Mo6bius ladder inequalities are expansions of clique and odd cycle inequalities,
respectively.

2.3.2 Theorem (Fence and Mébius Ladder Inequalities)
Let D,, be the complete digraph on n nodes, Pasp the corresponding acyclic subdigraph
polytope, & the conflict graph associated to D,,, and Psgp(®) the set packing relaxation of

Pasp.
(i) Every k-fence inequality for Pasp is the expansion of a clique inequality for ]\Sggp(Qi).
(ii) Every Mdbius ladder inequality for Pagp is the expansion of an odd cycle inequality for
Pssp(®).

Proof.

(i) Let Fj be a k-fence. The acyclic arc sets F,ﬁ, 1 =1,...,k, defined on the previous page,
form a clique in &, see the discussion on the previous page. An expansion of the corresponding
clique inequality yields the desired k-fence inequality:

k
Y mple) <1
=1

k

= g —(FI -1 = [ Y zij-(k-1)]=> zy-k+k<1
i=1 \ijeF i=1 \ijeF; ijEFy

— injSkQ—k—i-l.
1JEFY,
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(ii) Let M be a Mobius ladder consisting of an odd number 2k + 1 of dicycles Cy, . .., Cy such
that C; and C;4; have a dipath P; in common. The argument on page 57 showed that the
dipaths C;\ P; form an odd cycle of 2k + 1 acyclic arc sets in &. Expanding the corresponding
odd cycle inequality for Iv’ssp(ﬁ), one obtains the Mobius ladder inequality for M:

2k
ZWQ‘\Pi () <k
1=0

2k

= S @ —(CG\P|-1) | <k
=0 l]GCZ\PZ
2k 2k

—_ 3y xijs<z|oi\a|)—<k+1>.

O

Fence and Mobius ladder inequalities have been discussed in a number of different frame-
works in the literature. Euler, Jinger & Reinelt [1987] interpret fences and Mdobius ladders
without arc repetitions as generalized cliques and generalized odd cycles of an independence
system relazation of the ASP. Miiller & Schulz [1995, 1996] give cutting plane proofs of fence
and Mobius ladder inequalities in the context of transitive packing, see also Schulz [1996,
Chapter 4]. Caprara & Fischetti [1996] give a derivation of M&bius ladder inequalities in
terms of {0,1} Chudtal-Gomory cuts. The last two constructions work for Mébius ladders
with arc repetitions and yield a class that is “in the middle” between Grotschel, Jinger &
Reinelt [1985a]’s Mo6bius ladder inequalities and our’s, depending on the number of dipaths
that contain a given repeated arc.

Separation of fence inequalities was shown to be A/P-hard by Miiller [1993]. Looking at the
separation of Mobius ladder inequalities, we notice that the construction that we presented to
prove Theorem 2.3.2 (ii) yields a class of odd cycle of dipath inequalities that subsumes the
Mobius ladder inequalities. Generalizing this class further by allowing the paths C; \ P; to
intersect themselves on nodes and/or arcs, i.e., by substituting in the definition of a Mdbius
ladder on page 56 diwalk for dipath and closed diwalk for dicycle, we obtain an even larger
class of odd cycle of diwalk inequalities for the acyclic subdigraph polytope. Note that these
inequalities do in general not correspond to odd cycles in the acyclic arc set conflict graph
&, because diwalks may contain dicycles. This obstacle can be overcome by extending & in
a finite way (including certain relevant diwalks). At this point, however, we do not want to
enter this formalism and defer the details of the extension to the proof of Theorem 2.3.3.
We can devise a polynomial time separation algorithm for odd cycle of diwalk inequalities,
even though the number of diwalks is exponential and their length is arbitrary. The idea is to
construct a most violated cycle of diwalks out of properly interlinked longest diwalks. Suppose
that M is an odd cycle of diwalks (we want to denote these diwalks with a slight extension of
notation by C;\ P;) that induces a violated inequality, and consider the diwalk P; linking the
two (successive) closed diwalks C; and Cj;1. Rearranging, we can isolate the contribution of
P; in the constraint as

Bl= Y w< 3 (D —IC\BI) + Y @i~ ICia \ (Pt UR)| + (k +1)
ijEP; j#i+1l ijEC;\P; i§€Ci+1\(P;UPi41)

(Here, all sets are to be understood as multisets. Note also that we have < because the
constraint was, by assumption, violated.)
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If we replace P; by a diwalk P that is shorter with respect to the length function

[Pl = mij =y (1 —wy), (2.1)
ijep ijeP

we get a more violated cycle of diwalks inequality. If we think of any closed diwalk C; as being
composed out of four diwalks, namely the diwalk Pi1 := P;, that C; has in common with the
succeeding closed diwalk C; 1, the diwalk PZ-2 from Pz-l’s head to the diwalk PZ-3 := P;_4, that
C; has in common with the preceeding closed diwalk C;_1, and the remaining diwalk Pi4 from
Pi?”s head to Pz-l’s tail, the same argument holds for any of these diwalks. This observation
allows us to show

2.3.3 Theorem (Polynomial Separability of Odd Cycle of Diwalk Inequalities)
Let D, be the complete digraph on n nodes and Pasp the associated acyclic subdigraph
polytope. Suppose that x € Q4 satisfies the constraints (ASP) (ii) and 0 < z < 1. Then:

Odd cycle of diwalk inequalities can be separated in polynomial time.

Proof.

Using Dijkstra’s algorithm, we can compute a shortest diwalk P(u,v) with respect to the
length (2.1) from any node u to any node v of D,. We can assume these diwalks P(u,v)
w.l.o.g. to be dipaths and, in particular, to be of polynomial length. This yields a polynomial
number of shortest diwalks of polynomial length and, moreover, (not every, but) a most
violated cycle of diwalks will consist of a polynomial number of these shortest diwalks.

We can find a set of them forming an odd cycle of diwalks as follows. We think of all diwalks
P(u,v) as a possible common diwalk P; of two successive closed diwalks C; and Cj41 in a
cycle of diwalks. To get the diwalks C;\ P; as the pieces of the cycle, we compute for any two
diwalks P; and P; the (2.1)-shortest diwalk P;(P;) that starts at P;’s head, contains P;, and
ends at P;’s tail. Such a diwalk P;(P;) will link (on P;) properly with another diwalk P;(Py)
to form a cycle of diwalks. Computation of the P;(P;) can be performed in polynomial time
and yields, in particular, a polynomial number of n(n — 1)(n(n — 1) — 1) = O(n*) diwalks of
polynomial length.

We can now construct a graph that has these diwalks P;(P;) as its nodes with node weights
equal to the walk lengths (2.1) and that has all edges of the form (P;(P;),P;(Py)). The node
weight on an edge never exceeds one because x satisfies the dicycle inequalities (ASP) (ii), a
most violated cycle of diwalks inequality corresponds to a most violated odd cycle inequality
in the Pj(P;)-graph, and we can find a most violated odd cycle inequality there with the
algorithm of Grotschel, Lovész & Schrijver [1988, Lemma 9.1.11]. O

2.3.4 Corollary (Separation of Mébius Ladder Inequalities)
A superclass of the Mébius ladder inequalities can be separated in polynomial time.

To discuss the results on Mobius ladder separation of the literature, we draw the reader’s
attention to a subtle difference between the ASP and the LOP. While the length of the
dicycles in a facet defining Mobius ladder inequality (as defined in this paper) for the acyclic
subdigraph polytope can be arbitrarily large, the constraint can only define a facet for the
linear ordering polytope if the length of each dicycle is at most four, see Grotschel, Jinger &
Reinelt [1985a]. For the LOP, one can thus restrict Corollary 2.3.4 to the case |C;| < 4 and
then it also follows from Miiller & Schulz [1995] and Caprara & Fischetti [1996]. For the ASP,
Caprara & Fischetti [1996] showed polynomial time separability of Mdbius ladder inequalities
where all dicycles have at most constant length.
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2.4 The Clique Partitioning, Multi-, and Max Cut Problem

In this section, we investigate set packing relaxations of combinatorial optimization problems
in connection with cuts: The clique partitioning, the k-multicut, and the max cut problem.
We will see that the 2-chorded cycle inequalities for the clique partitioning polytope can be
seen as cycles of “lower triangle” inequalities. An analogous construction for cycles of “upper
triangle” inequalities is related to the circulant inequalities for the max cut polytope. As a
reference for the clique partitioning problem, we suggest Grotschel & Wakabayashi [1990], see
also Oosten, Rutten & Spieksma [1995] for a recent report, for the multicut and the max cut
problem Deza & Laurent [1997].

The three cut problems of this section come up on a complete graph K, = (V, E) on n nodes
with integer weights w : E — Z on the edges. The clique partitioning problem (CPP) is to find
a partition of V into an arbitrary number & of cliques V = C; U ... U Cy (where U denotes
a union of disjoint sets), such that the sum of the weights of the edges that run between
different cliques is maximal. In other words, we are trying to find a multicut 6(Cy : --- : Cy)
of maximum weight, where the number & of (non empty) members C; of the clique partition
Ci U ... Cf is arbitrary. One obtains the k-multicut problem (k-MCP) from this formulation
by restricting the number of cliques to be less than or equal to some given number k, and the
maz cut problem (MCP) by prescribing k£ = 2. Thus, any (max) cut is a k-multicut (k > 2),
and any k-multicut comes from a clique partition. We remark that the CPP is often stated
in an equivalent version to find a clique partition that minimizes the sum of the edge weights
inside the cliques.

Integer programming formulations of the clique partitioning and the k-multicut problem read
as follows (z;; = 1 indicates that 47 is in the multicut):

max E WijTij max § :wijxij

ijEE ijEE
(i) Yz <|IEW) -1 VWCV
ijEB(W)
with |W| =k + 1
(11) Tij — Tjk — Tik, <0 EV{iaja kY SV (i) @y — 2 — zip <0 V{i,j,k} CV
(iii) z €{0,1} (iii) z €{0,1}F
(CPP) (k — MCP)

Setting k to 2, inequalities (k-MCP) (i) turn out to be the “upper triangle” inequalities
zij + i + xy, < 2 for all {i,j,k} CV and (2-MCP) is an integer programming formulation
for the max cut problem (we speak of upper triangle inequalities because their normal vectors
are oriented “upward” such that the induced face is on the “upside” of the polytope). For
k = n, on the other hand, (k-MCP) (i) becomes void and (n-MCP) coincides with (CPP).
Hence, (CPP) is a relaxation of (k-MCP) which in turn is a relaxation of (MCP) and the
associated polytopes Pcpp, Pr_mcp, and Pycp satisfy

Pcpp 2 Pr—vcp 2 Pucp.

In particular, any valid inequality for the clique partitioning polytope is also valid for the
k-multicut and the max cut polytope. One such class is the family of 2-chorded cycle inequal-
ities of Grotschel & Wakabayashi [1990].
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A 2-chorded cycle is an odd cycle C of K,, together with its set of 2-chords C, see Figure 2.7.
The associated inequality states that

Yo @i — Y @iy < (0] -1)/2.

ijeC ijeC

Figure 2.7: A 2-Chorded Cycle.

Miiller [1996], and later Caprara & Fischetti [1996], proved that (superclasses of the) 2-chorded
cycle inequalities can be separated in polynomial time, see also Miiller & Schulz [1996]. We
will show now that this class arises from odd cycle inequalities of a set packing relaxation
of the clique partitioning (or k-multicut or max cut) problem. Our arguments will yield an
alternative proof for the polynomial time separability of this class.

The relaxation involves a “lower triangle” conflict graph Ga(K,) = (UVa,Ea). Va consists
of all ordered triples (4,7, k) € V3 of distinct nodes of K,,, the edges & of & are of the form
(1,7, k)(1,1,9), (i,7,k)(1,4,4), (4,4,k)(l,4,k), and (4,7, k)(l, k,i) (the meaning of this definition

will become clear in a second).

-1 1 -1 1
Q-® QO QP @@?@ O—®
+1I\ 0 —1\ /41 —1\ 20 0~ /+1 0~ /-1

D @ @

(j,i, k) (k,37,%) (k,4,7) (J, k,4) (4,k,7)

Figure 2.8: Labeling Lower Triangles.

To construct a set packing relaxation of the clique partitioning problem with this graph, we
define an aggregation scheme 7 : RE — R¥A ag

TAG 0 (L) 1= Tij — Tjk V ordered triples (7,7, k) € Va.

WA(i,j,k)(:E) is integral if € R¥ is integral. Moreover, for every multicut z € Pcpp, the
component WA(i,j,k)((L‘) attains its maximum value of one if and only if the nodes 7 and k
belong to the same clique (z;; = 0), but node 7 does not (z;; = x;; = 1). The reader may
think of the triples (4,7, k) as “edge-labeled triangles” as shown in Figure 2.8. Enumerating
all possible conflicts between these labeled triangles, it is easy to see that

up € Ep <— 7rAu((L‘)+7rAu((L‘)§l V:EEPCPPQZE

and thus for all x € Pcpp. In other words: a was defined in such a way that two triples are
joined by an edge if and only if it is impossible that both triples attain their maximum value
of one under 7 simultaneously. This argument shows that Psgp(®a) is a “lower triangle” set
packing relaxation of Pcpp:

2.4.1 Lemma (Set Packing Relaxation of the CPP) 7a(Pcpp) C Pssp (Sa(Ky))-
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The construction is called a “lower triangle set packing relaxation” because one obtains the
components 7(; j 1) (7) = 7;j — T, < 1 of w from the lower triangle inequalities (CPP) (ii)

Tij — Tjk — ik <0 == @ij — Tk < ik

by setting x;; := 1.
We are now ready to state our result that the 2-chorded cycle inequalities are expansions of
odd cycle inequalities of Psgp(®a).

2.4.2 Theorem (2-Chorded Cycle Inequalities)

Let K,, be the complete graph on n nodes, Pcpp the corresponding clique partitioning poly-
tope, Ba the lower triangle conflict graph, and I\SSSP (BA) the lower triangle set packing
relaxation of Pcpp. Then:

Every 2-chorded cycle inequality for Pcpp is the expansion of an odd cycle inequality for
Pgsp (B4a).

Figure 2.9: An Odd-Cycle of Lower Triangles.

Proof.

Let C'U C be a 2-chorded cycle in K,, with node set {0, ... ,2k}. By definition, C = {ij : i =
0,...,2k, j=i+1}and C = {ij:i=0,...,2k, j =i+ 2} (where indices are taken modulo
2k +1).

Consider the 2k + 1 triples v; := (4,7 — 2,4 — 1), ¢ = 0,...,2k (indices modulo 2k + 1). One
verifies that v;0;41; € € represents a conflict and forms an edge of an odd cycle in &a, see
Figure 2.9 for an example. The associated odd cycle inequality expands to the 2-chorded
cycle inequality in question:

ZWA(“ 2,i— 1) Z$zz 2) —2,i—1) Zwl] wa |C|_1)/

ijeC ijeC
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Calling the expansions of odd cycle inequalities for PSSP(Qﬁ A) inequalities from odd cycles of
lower triangle inequalities and noting |Va| = O(n3), we obtain

2.4.3 Corollary (Separation of Ineq’s from Odd Cycles of Lower Triangle Ineq’s)
Let K, be the complete graph on n nodes and Pcpp the associated clique partitioning poly-
tope. Suppose x € Q¥ satisfies the constraints (CPP) (ii) and 0 < z < 1. Then:

Inequalities from odd cycles of lower triangle inequalities can be separated in polynomial time.

2.4.4 Corollary (Separation of 2-Chorded Cycle Inequalities)
A superclass of the 2-chorded cycle inequalities can be separated in polynomial time.

Note that the conflicts between successive triples v; = (4,7 —2,71—1) and v; 1 = (i+1,i—1,17)
in a 2-chorded cycle stem from the common edge connecting nodes ¢ and ¢ — 1 that has a
coefficient of —1 in my,,, and 0 in m,,. But conflicts arise also from common edges with +1
and —1 coefficients. Thus, besides possible node/edge repetitions and the like, odd cycles of
lower triangle inequalities give also rise to inequalities that do not correspond to 2-chorded
cycle inequalities.

So far we have studied inequalities from pairwise conflicts of lower triangle inequalities. In
the case of the max cut problem, the constraints (2-MCP) (i) form a class of “upper triangle
inequalities”

Tij + Tjk + Tig < 2 Vi, j, ke V.

Analogous to the lower triangle case, we will now construct “inequalities from odd cycles of
upper triangle inequalities” for the max cut polytope. These constraints are related to the
C(2k + 1,2)-circulant inequalities of Poljak & Turzik [1992].

A C(2k + 1,2)-circulant is identical to a 2-chorded cycle on an odd number of 2k + 1 nodes.
We distinguish circulants C'(2k+1,2) with odd k and with even k. The associated inequalities
are

> oz <3k+1,  ifkmod2=1 > <3k, ifkmod2=0.
ije€C(2k+1,2) ijeC(2k+1,2)

Figure 2.10: The Odd-k Circulant C(7,2).  Figure 2.11: The Even-k Circulant C(9,2).

Even-k circulant inequalities have been introduced by Poljak & Turzik [1992]. These con-
straints have a right-hand side of 3k, whereas the odd case requires an increase of one in the
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right-hand side: Figure 2.10 shows the odd-k circulant C(7,2) (k = 3); the white and gray
nodes form the shores of a cut with 10 =3-3+4+1 > 3-3 = 9 edges highlighted. Alternatingly
putting pairs of successive nodes on the left and on the right shore of the cut except for the
first node, one verifies that the right-hand side 3%k + 1 is best possible for odd k. Figure 2.11
shows a tight configuration for the case where k is even. (A rigorous proof for the validity of
these constraints will follow from the upcoming discussion.)

We will show now that the circulant inequalities can be seen as “strengthened” odd cycle
inequalities of an appropriate “upper triangle” set packing relaxation of the max cut prob-
lem; strengthened means that for even k, the right-hand side of the cycle of upper triangles
inequality exceeds the right-hand side of the corresponding circulant inequality by one. Our
considerations allow to design a polynomial time algorithm for separating inequalities from
cycles of upper triangle inequalities. Poljak & Turzik [1992], on the other hand, have shown
that separation of the ezact class of C(2k + 1,2)-circulant inequalities is A/P-hard.

0 +1 +1
ORONO ()—B)
+1\ /+1 41\ 70 0% /1

(4, k) (i,7k) (, 27)

Figure 2.12: Labeling Upper Triangles.

As usual, the upper triangle set packing relaxation is based on an upper triangle conflict
graph 82(K,,) = (U2, ¢2). This time, V> consists of all 2-tuples (i, jk) € V x E such that
i & jk, while 2 is the set of all (4, jk)(j, kl). To construct a set packing relaxation of Pycp
by means of this graph, we introduce the aggregation scheme 72 : R¥ — RT® defined as

”T(Ai,jk)(x) =T + i — 1.

One gets W(Aij k)(x) < 1 from the upper triangle inequality

:L‘Z'j—i-xik—i-xijQ < Iij—l-Iik—lSl—:L‘jk

by setting x5 := 0, hence the name “upper triangle” conflict graph. This rearrangement also

proves that W(Ai i k)(x) attains its maximum value of one if and only if node 7 is on one side of

the cut, while nodes j and k are on the other. Again, one may think of the nodes 4, j, and k

as forming triangles with the edges labeled as indicated in Figure 2.12 and sees that
unEQﬁA <~ WA(J?)—F’ITUA(J?)Sl VxEPMCPﬂZE.

u

Thus, ngp(éiA) is an “upper triangle” set packing relaxation of Pyicp.

2.4.5 Lemma (Set Packing Relaxation of the MCP) 7 (Pycp) C Pgssp (@A(Kn)).

This construction yields the circulant inequalities for £ mod 2 = 1 as expansions of odd cycle
inequalities for the upper triangle set packing relaxation of the max cut polytope. The case
k mod 2 = 0 can be settled by strengthening the associated odd cycle inequality, i.e., one can
a posteriori: decrease the right-hand side by one and the inequality remains valid.
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2.4.6 Theorem (Circulant Inequalities)
Let K, be the complete graph on n nodes, Pyicp the corresponding max cut polytope, &>
the upper triangle conflict graph, and IVDSSP((’ﬁA) the upper triangle set packing relaxation of
Pyicp.
(i) Every odd-k circulant inequality for Pyicp is the expansion of an odd cycle inequality
for PSSP(Q5A).
(ii) Every even-k circulant inequality for Pyicp is the expansion of a strengthened odd cycle
inequality for ]\SSSP(QSA).

Figure 2.13: An Odd Cycle of Upper Triangles.

Proof.

(i) Let C'(2k + 1,2) be an odd-k circulant with node set {0,...,2k + 1}. Consider the 2k + 1
2-tuples v; := (4, (i+1,i+2)) (with indices taken modulo 2k+1). One verifies that the tuples
v; and v;;; are in conflict, i.e., v;0;,41 € &, and form an odd cycle in &>, see Figure 2.13.
The associated odd cycle inequality expands to an odd-£ circulant inequality:

2k
A
<
;W(i,(i—l—l,i-ﬂ)) (z) <k
2k
— Z($(m‘+1) + T(ii+2) — 1) <k
1=0

<~ Z]?ij <3k +1.
ij€C(2k+1,2)
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(ii) The even case is analogous to the odd case. To see that one can reduce the right-hand side
of the odd cycle inequality by one and Z?ﬁo W(Ai’(iﬂ,i”))(x) < k—1 is still valid, suppose this
is not so and let € Pycp be the incidence vector of a cut that violates this constraint. Now,
max {0, 7% (z)} is the incidence vector of a stable set in 2, and, clearly, this vector must be
tight for the (unstrengthened) odd cycle inequality. This means that we have k 2-tuples with
max {O,W(Ai,(i+1’i+2))(x)} =1, and k + 1 2-tuples with max {O,W(AZ.,(HLHQ))(:E)} = 0, that are
arranged in such a way that the two types appear alternatingly except for one time, where we
have two “zeros” next to each other. Looking at a tuple with max {0, ’/T(Ai (i+1 H_2))(35)} =1,
we see that node 7 must be on one side of the cut while nodes 7 + 1 and 7 + 2 must be on the
other. The next “one” max {0, W(Ai+2’(i+3,i+4))((£)} = 1 forces nodes i + 3 and 7 + 4 to be on
the same side as ¢. Starting without loss of generality at 7T(A0 (1,2)) = 1 and continuing k£ times
like this, all nodes of the circulant are assigned to one side of the cut or another in a unique
way. When k is even, this results in nodes 2k — 1, 2k, and 0 ending up on the same side

such that Wékfl,(%yo))(x)} = —1, see the right side of Figure 2.13 for an example; but then

Z?io W(Ai (i+1 Z.JFQ))(:E) < k — 1, a contradiction. O

Calling the expansion of an odd cycle inequality for Fssp(ﬁA) an inequality from an odd cycle
of upper triangle inequalities, we obtain

2.4.7 Corollary (Separation of Ineq’s from Cycles of Upper Triangle Ineq’s)
Let K,, be the complete graph onn nodes and Pyicp the associated max cut polytope. Suppose
x € QF satisfies the constraints (2-MCP) (i), (ii), and 0 < & < 1. Then:

Inequalities from odd cycles of upper triangle inequalities can be separated in polynomial time.
2.4.8 Corollary (Separation of Circulant Inequalities)

(i) A superclass of odd-k C'(2k +1,2) circulant inequalities can be separated in polynomial
time.

(ii)) A superclass of even-k C(2k + 1,2) circulant inequalities with their right-hand sides
increased by one can be separated in polynomial time.

We remark again that Poljak & Turzik [1992] have shown that it is AP-complete to determine
whether a graph contains a C'(2k 4 1,2) circulant and thus, separation of the ezact class of
C(2k + 1,2) circulant inequalities is N/P-hard.

2.5 The Set Packing Problem

We have demonstrated in the examples of the preceeding sections that certain combinatorial
optimization problems have interesting set packing relaxations. Perhaps a bit surprising, we
show now that the set packing problem itself also has interesting set packing relaxations!
These considerations yield alternative derivations, generalizations, and separation techniques
for several classes of wheel inequalities, including two classes introduced by Barahona &
Mahjoub [1994] and Cheng & Cunningham [1997], as well as new classes such as, e.g., certain
“cycle of cycles inequalities”. A survey on results for the set packing problem can be found
in Chapter 1 of this thesis.

The examples of this section are based on a “rank” set packing relaxation that we introduce
now. Given a set packing problem (SSP) on a graph G = (V, E)), the associated conflict graph
& = (%, &) of the relaxation has the set U := {H : H C G} of all (not necessarily node
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induced) subgraphs of G as its nodes. In order to define the set of edges, we consider the
aggregation scheme 7 : RV — RY defined as

w(z) = Z x; — (a(H) — 1) V subgraphs H € U of G,
i€V (H)

where a( H) denotes the rank, i.e., the maximum cardinality of a stable set, of H. We draw an
edge between two subgraphs H and W if there is no stable set in G such that its restrictions
to H and W are simultaneously stable sets of maximum cardinality in H and W, i.e.,

HW € ¢ <= 7mg(z)+mw(z) <1 VxEPSSP(G)ﬂZV.

By definition, the rank conflict graph & depends only on G and this is why we occasionally
also denote it by &(G). Well known arguments show that Pggp(®) is a set packing relaxation
of Pygp in the exponential space RY.

2.5.1 Lemma (Rank Set Packing Relaxation of the SSP) 7(Psgp) C IVDSSP(Qi).

2.5.1 Wheel Inequalities

One method to derive classes of polynomial time separable inequalities from the rank relax-
ation is to consider subgraphs of & of polynomial size. A natural idea is to restrict the set of
®’s nodes to

Wy = {H:HCG: |V(H)| <k},

the subgraphs H of G with bounded numbers of nodes |V (H)| < k for some arbitrary, but
fixed bound k. The smallest interesting case is k = 2, where H (|V (H)| < 2) is either empty,
a singleton, an edge, or a coedge (complement of an edge). The odd cycle inequalities that
one obtains from this restricted relaxation Pssp(&[2}]) contain, among other classes, the odd
wheel inequalities of the set packing polytope.

A 2k 4 1-wheel is an odd cycle C of 2k + 1 nodes {0,...,2k} plus an additional node 2k + 1
that is connected to all nodes of the cycle. C' is the rim of the wheel, node 2k + 1 is the hub,
and the edges connecting the node 2k 4+ 1 and 7, 1 =0, ..., 2k, are called spokes. For such a
configuration, we have that

2k

kzogi1 + ZIBZ <k.
=0

Figure 2.14: A 5-Wheel.

An odd wheel inequality can be obtained by a sequential lifting of the hub into the odd cycle
inequality that corresponds to the rim. Trying all possible hubs, this yields a polynomial time
separation algorithm for wheel inequalities. An alternative derivation is
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Figure 2.15: A Wheel and a Cycle of Nodes and Edges.

2.5.2 Theorem (Odd Wheel Inequalities)
Let G = (V, E) be a graph, Pssp the corresponding set packing polytope, & the rank conflict

graph, and Pssp(®) the rank set packing relaxation of Psgp. Then:

Every odd wheel inequality for Pssp is the expansion of an odd cycle inequality for Psgp (&[25]).

Proof.

Consider a 2k + 1 wheel with rim C = {0,...,2k} and hub node 2k + 1. The subgraphs
v, := G[{i,2k +1}],7i=1,3,...,2k — 1, induced by the spokes with odd rim nodes, and the
subgraphs v; = G[{i}], i = 0,2,...,2k, induced by the even rim nodes, form an odd cycle in
&, see Figure 2.15. Expanding the associated odd cycle inequality yields the wheel inequality:

2k 2k
Zﬂ'ui(x) = Z (x; + Top+1) + Z x; = kxop11 + ZZBZ <k. [l
i=0 i=1,3,...,2k—1 i=0,2,...,2k i=0

2.5.3 Corollary (Separation of Ineq’s from Odd Cycles of Nodes, Edges, Coedges)
Ineq’s from odd cycles of nodes, edges, and coedges can be separated in polynomial time.

We show now two examples of cycles of nodes, edges, and coedges that give rise to facetial
inequalities that do not correspond to odd wheels. The cycle on the left side of Figure 2.16
consists of the nodes 0, 2, and 3 and the edges (1,5) and (4,6), the one on the right of the
edges (1,6), (2,7), (3,8), and (4,9) and the coedge (0,5). The associated inequalities are

$0+($5+$1)+$2+$3+($6+IL‘4) <2< Z?:()Jtl'g?

(:E5+(IIO—1)-l-((IIG-l-(IIl)—i-(:E7+(L‘2)+(:E8+(L‘3)+(£E9+(II4) <2< Z?:Oxié?).

8.

@
'. :. .- : .' :.o. t. ) ..... ..: .

Figure 2.16: Two Generalizations of Odd Wheel Inequalities.

Another generalization of odd wheel inequalities was given by Barahona & Mahjoub [1994] and
Cheng & Cunningham [1997]. They introduce two classes of inequalities that have subdivisions
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of odd wheels as support graphs, where each face cycle must be odd, see Figure 2.17. Following
Cheng & Cunningham [1997]’s terminology and denoting the set of end nodes of the even
spokes (with an even number of edges) of an odd wheel W of this kind with some number
2k + 1 of faces by &, the set of end nodes of the odd spokes (with an odd number of edges)
by O, and the hub by h, a wheel inequality of type I states that

W]+ €]
k:L‘h—i--Z wi—i-ZIL‘Z'ST—l. (2.2)
i€eW—h 1€E

A second variant of wheel inequalities of type II (associated to the same wheel) states that

Wi+0] -1

k+ 1)z, + T + r; < ———————.

(k + 1)z, ie%:h i Zez(; i < : (2.3)
We remark that these wheels do in general not arise from cycles of subgraphs of bounded size
because they contain potentially very long paths.
2.5.4 Theorem (Odd Wheel Inequalities)
Let G = (V, E) be a graph, Pssp the corresponding set packing polytope, & the rank conflict
graph, and IVDSSP(QS) the rank set packing relaxation of Psgp. Then:

Every odd wheel inequality of type I and 11 for Pssp is the expansion of an odd cycle inequality
for P SSP (@) .

&)
Py

hub h =0
even spoke ends & = {2,6} © (5) Py
odd spoke ends O = {4,9,10} (0)

SRS 0

Py

Figure 2.17: A 5-Wheel and a 5-Cycle of Paths of Type I.

Proof.

(i) Wheel inequalities of type I.

The idea of the proof is to obtain the wheel inequality (2.2) of type I as a cycle of paths.
Orienting a 2k 4 1-wheel clockwise, it consists of 2k 41 spoke paths S;, ¢ =0, ..., 2k, and the
same number of rim paths R; such that R; connects the ends of spokes S; and S; ;1 (indices
in the proof are taken modulo 2k + 1). We can then compose the wheel from the paths

P m S U R;, if Sj11 is even \ 0, ifz:is odd i=0.... .2k
R;\ Sit1, if Siy;isodd {h}, ifi is even,



2.5 The Set Packing Problem 71

see Figure 2.17. By definition, a path P; consists of the spoke S; (plus minus the hub depending
on i) and the full rim path R; if the end node of the next spoke (in clockwise order) is even,
or the rim path R; without the end of the next spoke in case this spoke is odd. In this way,
the even spoke-ends, having a coefficient of two in the wheel inequality, appear in two paths,
the odd spoke-ends in one. Finally, the hub is removed from all paths with even index. It
is not hard to see that any two successive paths P; and P;;; are in pairwise conflict: The
subpaths P; \ {h} (with the hub removed) are all odd and in pairwise conflict, and the hub is
in conflict with any of these subpaths. The odd cycle inequality corresponding to the paths P,
expands into the odd wheel inequality (2.2):

2k
> wp(x) <k
=0

k k—1
= Y D w02 ) +> | DL mi— (1P| —2)/2 | <k

i=0 \jEPy; 1=0 \jEeP2iq1

—1+k —(k+1)—2k
<— kxp+ Z :Ej+zxj—|W| et —(k+1) <k

JEWN\{h} JEE 2
(W |+ |E| — 2k —2 W+ €]
— kxh+.z xj+,zxj§ 9 —i—k:T—l.
JeW\{h} jee

Here, |P;| denotes the number of nodes in the path P;.

hub h =0
even spoke ends & = {2,6}
odd spoke ends O = {4,9,10}

Figure 2.18: A 5-Wheel and a 5-Cycle of Paths of Type II.

(ii) Wheel inequalities of type II.
The wheel inequalities (2.3) of type II can be derived in much the same way as their relatives
of type L. For the sake of completeness, we record the path decomposition

P m S U R;, if Sj11 is odd \ 0, ifz:is even i=0.... .2k
R;\ Siy1, if Sjy1 is even {h}, ifiis odd,
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One can verify that, again, any two successive paths are in conflict. A final calculation to
expand the resulting odd cycle inequality yields the wheel inequality (2.3) of type II:

2k
> wp(x) <k
=0

k

k—1
= Y D w02 ) +> | DD mi—(Pun|—2)/2 | <k

1=0 jePQi =0 jEP2i+1

W|l—-1+(k+1 O|—(k+1)—2k
(k+ 1)xzp + Z (L‘j~FZ(L‘j-| | +E+D 0] -(k+1) <k

< 5
JjeW\{h} jeo
[W|+ 10| -2k —1 [W|+ 10| -1
<~ (k—i—l)(l)h-l-‘z (L‘j—i-Z(L‘jS 9 —i—k:f.
JjeW\{h} jeEO

O

One can also derive polynomial time separation algorithms of much the same flavour as for
the Mobius ladder inequalities; such procedures are given in Cheng & Cunningham [1997].

2.5.2 A New Family of Facets for the Set Packing Polytope

The rank relaxation of the set packing problem offers ample possibilities to define new classes
of polynomially separable inequalities for the set packing problem. We discuss as one such
example a cycle of cycles inequality; cycle of cliques inequalities and certain liftings of them
are studied in Tesch [1994, Section 7.3].

The way to construct a cycle of cycles inequality is to link an odd number 2k +1 of odd cycles
Co, - - -, Oy to a circular structure such that any two successive cycles are in pairwise conflict,
ie., mc,(z) + 7o, (z) < 1 (indices taken modulo 2k + 1).

One way to do this is to select from each cycle C; three successive nodes L; C C; that will
serve as a part of the inter-cycle links yet to be formed. The link L; has the property that
7, (z) = 1 implies that at least one of the nodes in L; is contained in the stable set supp(z),
ie.,

me(x) =Y zi— (G| -1)/2=1= > z;>1.

JjeC; JEL;

If we make sure that any two successive links L; and L;y; are joined by the edge set of the
complete bipartite graph K33, we have that

o (r) =1 = Z zj> 1= Z zj =0= 7, (z) <0 Vz Psgp(G)NZY
JEL; JELi+1

and, vice versa, that m¢,,, (z) = 1 = m¢,(z) < 0 holds for all incidence vectors z of
stable sets in G. But then, every two successive cycles C; and Cjy; are in conflict, i.e.,
7% (x) + 7%+ (x) < 1, and the cycles C; form an odd cycle in &, see Figure 2.19 (links are
colored gray).
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Figure 2.19: A 5-Cycle of 5-Cycles.

2.5.5 Theorem (Cycle of Cycles Inequality)

Let G = (V,E) be a graph and Pssp be the corresponding set packing polytope. Let Cj,
1=0,...,2k, be an odd cycle in G and L; C C;, 1 =0,...,2k, a set of three successive nodes
in C;. Assume further that L; and L1, =0,...,2k, are joined by a complete K3 3. Then:

The cycle of cycles inequality
2k 2k
> > 5 < (Zucw - 1)/2) —(k+1)
i=0 jEC; i=0

is valid for Psgp.

Proof.
2k
ZWCi($) <k
ZQZkO
= > D -G -)/2-1)) <k
1=0 JEC;
2k 2k
= Y z< (Z((IQI -1)/2 - 1)) +k= (Z(|Ci| - 1)/2> —(k+1).
FEUC; i=0 i=0 0

2.5.6 Theorem (Separation of Cycle Of Cycles Inequalities)
Cycle of cycles inequalities can be separated in polynomial time.
Proof.

The number of potential links L; is polynomial of order O(|V'|3). We set up a link graph that
has the links as its nodes; this device will, in a second, turn out to be a subgraph of &. Two
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links are connected by an edge if and only if they are joined by a K3 3. To assign weights to
the links, we calculate for each link L; the shortest even path P; in G (with an even number
of nodes) that connects the two endpoints of the link; here, shortest means shortest with
respect to the length function (1 — z; — z;)/2 for all edges ij € E. L; U P; forms a shortest
odd cycle C; through L; with respect to the length >, - (1 — z; — 2;41)/2 = 1/2 — 7¢,(2),
i.e., a longest odd cycle C; through L; with respect to the length m¢, (z). We set the weight
of link L; to the value m¢,(z), obtain the link graph as a subgraph of &[{C;}] (some edges
that correspond to “non-link conflicts” are possibly missing), and detect a violated odd cycle
inequality in the link graph if and only if a violated cycle of cycles inequality in G exists
(eventually, we first have to separate the edge inequalities of the link graph). O

A cycle of cycles inequality will in general not be facet inducing, for example, if one of the
cycles has a chord that joins two non-link nodes. But one can come up with conditions that
ensure this property. The most simple case is where the cycles C; are holes, all node disjoint,
and the only edges that run between different holes belong to the links, i.e., we have a “hole
of holes”. In this case, the cycle of cycles inequality is easily shown to be facet inducing using
standard techniques, like noting that every edge in a hole of holes is critical.

2.5.7 Proposition (Facet Inducing Cycle of Cycles Inequalities)

If every cycle in a cycle of cycles inequality is a hole, and the only edges that run between
different holes emerge from the links, then the cycle of cycles inequality is facet inducing for
the set packing polytope Pssp(G) associated to the support graph G of the inequality.

We want to give now an alternative proof for the faceteness of the hole of holes inequality.

The technique that we are going to demonstrate works also for other constructions of this

type. It is our aim to give an example how aggregation techniques, although not designed for

facetial investigations, can sometimes lend themselves to results in this direction.

Proof (of Proposition 2.5.7).

The idea of the proof is to exploit the composition structure of a hole of holes € = {Cy, ..., Cy }.
To this purpose, it is convenient to consider € sometimes as a hole in the conflict graph &, in

which case we want to denote it by €, and sometimes as a structure in the original graph G,

and then we want to use the original notation €. The first step is to look at the inequality as

a linear form in the image space of the aggregation, namely, as the odd cycle inequality

Yo T <k (2.4)

of the set packing polytope Pssp(€) associated to the odd hole €. As constraint (2.4) is a
facet of Psgp(€), there are 2k + 1 affinely independent incidence vectors ", r = 0, ..., 2k, of
set packings on the induced face. Likewise, each of the individual holes C; has a set of |C}]
affinely independent incidence vectors of set packings z** in the graph C;, s = 1,...,|C;], that
are tight for the odd cycle inequality associated to Cj, i.e.,

cil g .
Szl = (Ioi| - 1)/2, i=0,...,2k s=1,...,|Cil.
Moreover, there is an incidence vector z?° of a set packing in C; such that

SI% a0 = (loj - 1)/2 - 1, i=0.....%.
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Note that
Szl — (63l - 1)/2 - 1) =1, i=0,...,2k s=1,...,|Ci,
C; ; .
Sz — (Gl - 1)/2-1) =0, i=0,...,2k

We will use the vectors 2% to expand the vectors " into a set of Z?Eo |C;| affinely independent
incidence vectors of stable sets in € that are tight for the hole of holes inequality in question.
To this purpose, we can assume without loss of generality that

=1, r=0,...,2k,

i.e., the r-th component of the r-th (aggregated) incidence vector Z" is one. We now “blow

up” each vector Z" into |C;| vectors y™* € R®, s = 1,...,|C,|, defined as
z0, ifzg, =0
yo, = «", Ty =landi#r i=0,...,2k.
z', 7y, =landi=r,

(y"csi indexes the subvector of y"* € R® with all components that correspond to the hole C;.)
In other words: We take each incidence vector " and substitute for each of its components

Te,, 0 = 0,...,2k, a vector z'*: If T, = 0, we take 0, if T T, = 1, we take z''. The only
exception to th1s procedure is coordlnate r, where we do not only substitute z"', but try all
possibilities "¢, In all cases, however, 7(y"*) =" for all s =1,...,|C;|.

This results in a total of Z?ﬁo |C;| vectors y™. It is easy to see that these “expansions of
stable sets by stable sets” are incidence vectors of stable sets in € and that they are tight
for the hole of holes inequality under consideration. We claim that they are also affinely
independent. For suppose not; then there are multipliers A5, not all zero, that sum up to
zero such that ) . Arsy"® = 0. But this implies that

2k [1Cr]
S ) = Y =3 [ Sohn | 7 =0
rs rs r=0 \ s=1
and affine independence of the aggregated vector " yields
|Cx|
ZAS—O r=0,...,2k. (2.5)

Considering the rows of > A,sy"® = 0 that correspond to the individual holes C,, we obtain

ZAzsyCT r=0,...,2k.
As for 7 # r the vectors y’cf = z*' are constant for all s, these equations simplify to
D SIFLID DIVIRD SIS pr WL S
” N
=0, see (2.5)

and imply A = 0, a contradiction. Thus, the incidence vectors y"® were indeed affinely
independent and the hole of holes inequality facet inducing for its support. O
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2.5.3 Chain Inequalities

We have seen in the preceding subsections a variety of derivations of classes of inequalities
from cycle and clique inequalities of appropriate set packing relaxations. To give an example
of a different combinatorial type, we show in this subsection that a family of chain inequalities
that were introduced by Tesch [1994] can be seen as strengthened (see page 65) expansions
of Nemhauser & Trotter [1973]’s antiweb inequalities, see also Laurent [1989].

A 2k + 1-chain C is similar to a 2-chorded cycle with 2k 4+ 1 nodes 0,...,2k; the difference
is that the two chords (0,2k — 1) and (1, 2k) are replaced with the single edge (1,2k — 1), see
Figure 2.20. An antiweb C(k,t) is a graph on &k nodes 0, ...,k — 1, such that any ¢ successive
nodes 7,2+ 1,...,2+t—1 form a clique, see Figure 2.21. Chains are very similar to 2-chorded
cycles; these, in turn, coincide with the class of antiwebs C(2k + 1, 3).

Chains and antiwebs give rise to inequalities for the set packing polytope. The chain and
antiweb inequalities state that

Figure 2.20: A 13-Chain. Figure 2.21: The Antiweb C(7, 3).

2.5.8 Theorem (Chain Inequalities)
Let C' be 2k + 1-chain, Pssp the corresponding set packing polytope, & = (U, €) the rank
conflict graph, and IVDSSP(®) the rank set packing relaxation of Pssp. Then:

Every chain inequality for Psgp is the expansion of a strengthened antiweb inequality for
Pgsp(®).

Proof.
Consider in & the 2k — 1 nodes

o1 := G{1,2k}] v;:=G[{i}], i=2,...,2k—2, and bop_; := G[{2k —1,0}],

and let 20 := {vy,...,09¢_1}. The reader verifies that 20 induces an antiweb in &, more
precisely,

B[] = C(2k — 1,3).
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An expansion of the antiweb inequality corresponding to &[20] yields

S < |2

=1

2k—2 2k — 1
< ($1+I2k—1)+ E Ii+(I2k_1+I0—1)§\‘ J
=2 3
2k
2k + 2
< E ;< 1.
ioxz_{ 3 J+

A final strengthening of this inequality (reducing the right-hand side by one, see page 65)
yields the desired chain inequality. The validity of the strengthening can be inferred in a
similar way as in the proof of Theorem 2.4.6. O

2.5.4 Some Composition Procedures

While the examples of the preceding subsections had analytic flavour, we study in this sub-
section applications of set packing relaxations to constructive approaches to the stable set
polytope. Our result is that certain composition procedures of the literature have a natural
interpretation in terms of set packing relaxations.

The general principle behind composition approaches is the following: One considers some
graph theoretic operation to construct a complex graph G from one or more simpler ones,
and investigates the polyhedral consequences of this operation. Such consequences can be
(i) to obtain analogous operations to construct valid or facet defining inequalities for G from
known ones for the original graphs, or, in rare cases, (ii) to obtain a complete description
of PSSP(G) from likewise complete descriptions of the anti-dominants of the set packing
polytopes associated to the original graphs. A survey on composition methods for the set
packing problem can be found in Section 2.5 of this thesis.

Operations of type (i) that give rise to facets are called facet producing procedures and we
study three examples of this type in the remainder of this subsection (we investigate only their
validity). The graph theoretic composition technique behind all of them is node substitution
(in different variants): Given is some graph G replacing one or several nodes by graphs and the
affected edges by appropriate sets of edges, one obtains a new graph G. The facet producing
procedure associated to such a substitution translates valid/facet defining inequalities for
Pssp (@) into valid/facet defining inequalities for ]\SSSP(G).

This concept has an obvious relation to ezxpansion. Namely, consider the expansion

az<a < an(r)<a

of an inequality for the rank relaxation ngp(@) of some graph G: One obtains the support
graph G[supp@'I1] of the expansion from the support graph &[suppa'] of the aggregated
inequality by a sequence of node substitutions and identifications. Constructing inequalities
in this way means thus to look at a given graph G as the conflict graph (or a subgraph of it)
of some graph G that can be constructed from G-

construct G such that G =6(G).

This technique —to start with the conflict graph and construct a suitable original graph— is
our interpretation of composition in terms of aggregation.
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Figure 2.22: Applying a Composition Procedure.

We turn now to the examples and start with a procedure of Wolsey [1976]. Given a graph
G = (V,E) with nodes V = {1,...,n}, the operation constructs a new graph G = (V, E)
from G by replacing node n with a path (n + 1,n,n + 2) involving two new nodes n + 1 and
n + 2, such that n 4+ 1 is adjacent to some subset v; of neighbors of the “old” node n, while
n + 2 is adjacent to the remaining neighbors. Figure 2.22 shows an example where node 6 of
a graph is replaced by the path (7,6,8) and the new node 7 is connected to the old neighbors
71 = {3,4} of 6. The procedure asserts that, if @'Z < @ was a valid inequality for Pgsp (@),
the constraint

T+ TpTng1 + Gnnso < a0+ ap (2.6)

holds for IVDSSP(G). This inequality can be obtained from a rank relaxation of G that involves
the aggregation scheme 7 : RV — RV defined as

mi(z) = {xi’ A

Tp+1+Tn +Tpi2—1, i=n.

7w maps each node onto itself except for the path (n,n + 1,n + 2) which is aggregated into a
single node. One easily checks

2.5.9 Lemma (Composition Procedure I) G = &(G).

An expansion of @'Z < @ yields inequality (2.6). We remark that this argument does not
show that this procedure translates facets into facets.

Our second example is due to Wolsey [1976] and Padberg [1977]. The procedure joins an
additional node 2n + 1 to all nodes 1,...,n of the given graph G = (V, E), and the graph
G = (V, E) arises from this join by subdividing each of the new edges (2n + 1,7) with a node
n+i. In this case, the inequality @'% = S aw <afor Pssp (@) gives rise to the constraint

n n n
Zﬁi(fvi + Tni) + (Z a; — 5) Tont1 < Zﬁi (2.7)
i=1 i=1 i=1

for Pggp(G) (and is, in fact, even facet inducing, if a'T < @ was). Figure 2.23 shows an
application of this technique to the graph G on the left side with nodes 1,...,5 (adding the
grey node 6 in the middle results in a certain graph G~ that will be explained in a second).
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Figure 2.23: Another Composition Procedure.

To obtain inequality (2.7) from a rank relaxation, we consider the scheme 7 : RV — RV
defined as

mi(z) = Ti+ Tnti + w1 — 1, 1=1,....n
¢ o -
Ton+1, 1=n-+1,

where we have set G := (V,E ) := (VU {n+1},E).
2.5.10 Lemma (Composition Procedure II) G = &(G).

In other words, the conflict graph G of G coincides with G augmented by an additional node
n+ 1 that is not connected to any other node. Obviously, any inequality ., @;%; < @ that
is valid for Pssp (@) is also valid for ]\Sggp(@*).

It is now not true that an expansion of the inequality > | @;%; < @ for Pssp (é*) yields the
desired inequality (2.7), but we get it with one additional “strengthening type” argument.

This argument is that if Y | @;7; < @ is valid for Pssp (@*), the stronger inequality

n
E @ Ti < Tpp1d
i=1

is perhaps no longer valid for Pssp(G'), but it is valid for 7(Psgp(G)). An expansion of this
inequality yields the inequality (2.7) of interest (but again no facetial result).

As an example of a much more general composition technique, we consider now the substi-
tution of a node v of G by some graph G, such that the resulting graph G = (V, E) is the
union of G — v and G, with all nodes of G, joined to all neighbors of v in G. Substitutions
of this type were studied by Chvatal [1975], who showed not only that if @'z < @ is a facet

of Pssp (G) and bz < f3 a facet of Pgssp (G,), the inequality

@y Z by + Z Gy, <ap (2.8)
UEV(EU) =%
UFEY

is valid for I\SSSP(G), but that all facets of I\SSSP(G) are of this form. Note that this operation
subsumes the famous multiplication of a node to a clique of Fulkerson [1972] and Lovész
[1971], that plays an important role in studying the polyhedra associated to perfect graphs.
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To derive the validity of inequalities (2.8) for fixed but arbitrary v € V and ETiig 3 as above
from a set packing relaxation, we consider the aggregation scheme m: RV — RY given as

Ty, u F# v
W“((I;) = Zwev(av)gwxw b
T =g, u=v
7 is bounded by one in every component, integral in all coordinates different from v, but not

integral in v and in particular not a rank aggregation (7 is our only non-rank example in this
. s = . > =\ . I
section). But if b T < § is a support of Pssp(G,), i.e., there is an incidence vector T of a

stable set in G, such that the inequality bz < 3 is tight, the aggregate W(IVDSSP(G)) has not
only integer and thus zero-one vertices only, but, in fact

2.5.11 Lemma (Composition Procedure III) n(Pgsp(G)) = Pssp(G).

Once this relation is established, an expansion of the inequality @'z < @f yields Chvatal’s
inequality (2.8) (but not an equivalent result about complete descriptions).

Proof (of Lemma 2.5.11).

We prove first that W(IVDSSP(G)) is integral. The proof is by contradiction, i.e., suppose
7(Pssp(G)) is not integral. Then there must be a non integer vertex m(z°), where 2° is a
vertex of Pssp(G). Note that z° > 0 and so must be 7(z?). The only fractional component
of 7(x%) can be m,(2°) and it must be nonnull. By assumption, there exist incidence vectors
7° and ' of stable sets in G, such that

b'3°=0 and b7 =3
The vectors 2! and 22 that arise from z° by replacing x% with 7° and 3! are again incidence

vectors of stable sets in G, because & is nonnull and the stable set supp z° has a node in

_ Gy
G,. But then
(%) = (B—b'2%)/B n(a") + (b °)/B n(a?)

is not a vertex, a contradiction.
The last step to establish m(Pssp(G)) = Pssp(G) is to note that m,(x) + m,(7) < 1 holds for
any vertex 7(z) € {0,1}V of 7(Pssp(@)) if and only if uw € E(G). O

2.6 The Set Covering Problem

We propose in this section a set packing relaxation of the set covering problem that gives
rise to polynomially separable classes of inequalities. This is important for two reasons:
(i) Set covering deals with general independence systems, see Section 1.3 of this thesis, while
many problems in combinatorial optimization arise from special independence systems; hence,
the set covering results carry over. Unfortunately, however, (ii) very few classes of (polynomial
time) separable inequalities for the set covering problem are known; we are only aware of the
odd hole inequalities, see Subsection 1.9.1, Nobili & Sassano [1992]’s k-projection cuts, Balas
[1980]’s conditional cuts, and certain classes of {0, %} Chvatal-Gomory cuts, see Caprara &
Fischetti [1996], see also Schulz [1996, Section 4.6] for some classes of this type.
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The need to develop cutting planes for the set covering polytope was the starting point for our
work on set packing relaxations. We have implemented one version of such a procedure for use
in a branch-and-cut algorithm for set partitioning problems; details about and computational
experience with this routine are reported in Chapter 3 of this thesis.

The set covering problem (SCP) is the integer program

(SCP) min wls Az>1, z¢€ 7,

where A € {0,1}"*" and w € Z". The associated polyhedron is denoted in this section by
Pscp or Pscp(A). For a survey on set covering, see Chapter 1.

The set packing relazation for (SCP) that we suggest is based on an exponential conflict graph
& = (U, &) that records pairwise conflicts of substructures of the matrix A. We take the set
0 := 2{1+"} (where 2% denotes the powerset of some set S) of all subsets of column( indice)s
of A as the nodes of ® and define an aggregation scheme 7 : R* — R¥ as

7y (z) :zl—ij VJ CA{l,...,n}.
JjeJ
We draw an edge between two (not necessarily disjoint) sets I and J of columns when their

union covers a row of A, or, equivalently, some variable in I U J has to be set to one:

IJe¢ <— Ai:IUJ DA, — W[($)+WJ(£E)§1 Vo € Pscp NZ™.

2.6.1 Lemma (Set Packing Relaxation of the SCP) n(Pscp) C ]\Sggp(Qi).

This set packing relaxation has been considered by Sekiguchi [1983] in a special case. He
studies 0/1 matrices A with the property that there is a partition 20 of the column( indice)s
Wpegy ® = {1,...,n} into nonempty column sets v such that (the support of) each row A,. is
the union of exactly two such column sets, i.e., VA,.: u,p € W:u#1v A suppA,. =ulo.
Figure 2.24 shows an example of a 0/1 matrix that has such a Sekiguchi partition.

12 3 45 6 7 89
1 1 1|1
2 111 10.].1. .
A= 3| . ]t o1|1]. . . W = {1,2} U {3} U {4,5} U {6}
4 1 1 .. 1] .|. . U{7}U{8,9}
b} B T e O I A B A |

Figure 2.24: A Sekiguchi Partitionable 0/1 Matrix.

Using essentially the same technique as we did to prove Proposition 2.5.7 (about the faceteness
of hole of holes inequalities), Sekiguchi [1983] shows that for a 0/1 matrix A that has a
Sekiguchi partition 20 it is not only true that

W(PSCP) = FSSP(QS[m])a

but, even more, that the facets of Pscp are ezactly the expansions of the facets of ]\SSSP(QS[QII]).
We remark that Sekiguchi considers in his proof the, as we would say, aggregation scheme
7: R — RY defined as

To(x) 1= sz Vo € 20,
i€v

that is “complementary” to ours in the sense that 7 + 7 = 1.
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We mention the odd hole inequalities for the SCP, see, e.g., Cornuéjols & Sassano [1989], as
one example for a class of inequalities that can be obtained from a set packing relaxation in
the sense of Sekiguchi.

In this context of set covering, the term odd hole is commonly used to refer to the edge-node
incidence matrix A(2k+1,2) = A(C(2k+1,2)) € RZk+1Dx2k+1) of the circulant C(2k + 1, 2):

1, fj=diorj=i¢+1 (mod2k+1),

A2k +1,2);; = {0 o

The associated odd hole inequality asserts that

2k+1

inZk—i-l
i=1

is valid for Pscp(A(2k + 1,2)).

2.6.2 Proposition

Let A(2k 4+ 1,2) be an odd hole, Pscp the corresponding set covering polyhedron, & the
conflict graph associated to A(2k +1,2), and Pssp(®[20]) the Sekiguchi relaxation of Pscp,
where 20 = {{i} | i =1,...,2k + 1} is the (unique) Sekiguchi partition of A(2k +1,2). Then:
The odd hole inequality associated to Pscp is the expansion of an odd cycle inequality for
Fssp(ﬁ[ﬁﬂ]).

We omit the simple proof of this proposition and proceed with an example of an expanded

cycle inequality that can not be obtained from a Sekiguchi relaxation; we call this larger class
of (inequalities from expansions of) cycle inequalities for & aggregated cycle inequalities.

Yo

5 6 7 8 9

(]
- @ m
1 1
1 1 03

)

o
Il
U W N -
—_
— = =
—_ = .
— = .
—_ =

Figure 2.25: A Not Sekiguchi Partitionable 0/1 Matrix and an Aggregated 5-Cycle.

The matrix A on the left of Figure 2.25 gives rise to a 5-cycle € in & formed by the nodes vy =
{1,2,3}, v; = {4}, g = {5,6}, v3 ={4,7}, and vy = {8,9}. A is not Sekiguchi partitionable,
because row Aj. calls for the sets supp A;. \ supp As. = {3,4} and supp A;. Nsupp As. = {4}
as elements of the partition, but these sets are not disjoint. An expansion of the odd cycle
inequality corresponding to € yields

4
Zﬂ'oi () <2
=0

< (1—:51—:EQ—(II3)+(1—:E4)-l-(l—:E5—$6)+(1—x4—$7)+(1—$8—$9)§2
<~ z1+ T+ a3+ 224+ 25+ T6 + 27 + 8+ T9 > 3.
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Turning back to general case and looking at the separation of inequalities for Pscp from the
set packing relaxation ]\Sggp(Qﬁ), we can obtain polynomially separable classes by restricting
attention to node induced subgraphs &[20] of the conflict graph of polynomial size. A heuristic
way to do this is to split the support of each row A;. into two “equal sized halves”

suppA;. = T U T

with respect to a given fractional covering z, i.e., we split such that A;;x; = A7, and take
20 as the set of these “halves”:

W:={I,I|i=1,...,m}.

The idea behind this procedure is to (i) obtain a “reasonable” (polynomial) number of 2m
nodes (in fact, in our computations a lot of these always turned out to be identical) with values
of m(z), m7(z) close to 3 that lead (ii) with some probability not only to a significant number
of edges at all, but (hopefully) even to “tight edges” of the set packing relaxation, which
in turn (iii) offers some potential to identify violated inequalities. We have implemented
this procedure to separate aggregated cycle inequalities in a branch-and-cut code for set
partitioning problems; for more implementation details and computational experience with
this routine see Chapter 3 of this thesis.

Another separation idea that suggests itself would be to derive inequalities from submatrices
of A. But in contrast to the set packing case, such inequalities are in general only valid for
their row and/or column support. They have to be lifted to become globally valid and we do
not know how to derive efficiently separable classes of inequalities in this way.

We close this subsection with an attempt to demonstrate the flexibility of the concept of the
set packing relaxation Pggp(®) by stating a result of Balas & Ho [1980] on cutting planes
from conditional bounds in “set packing relaxation terminology”.

Balas & Ho assume that some upper bound z, on the optimum objective value of the set
covering program (SCP) is known. In this situation, they consider some family of variable
index sets 20 C U and investigate conditions that ensure that at least one of the corresponding
aggregated variables m, (), b € 20, has a value of one for any solution x with a better objective
value than z,. If this condition can be established (Balas & Ho [1980] suggest arguments and
algorithms based on LP duality), the conditional cut

€T > 1
1€Uy c oy SUPP 41 (0. \0

can be used as a cutting plane. Here, for each column set v, A,(,). is an arbitrary row of A.
Note that conditional cuts are again of set covering type.

2.7 The Multiple Knapsack Problem

In this section, we investigate a set packing relaxation of the multiple knapsack problem in
an exponential space. It will turn out that the validity of certain classes of extended cover
and combined cover inequalities can be explained in terms of a single conflict of two “item-
knapsack configurations”. As references to the multiple knapsack problem we give Wolsey
[1990], the textbook Martello & Toth [1990, Chapter 6], Ferreira, Martin & Weismantel [1996],
see also the thesis of Ferreira [1994], and the survey article Aardal & Weismantel [1997].
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The multiple knapsack problem (MKP) is the integer program

(MKP) max Z Z Wik

iel keK
(i) Zai%’k < a VkeK
el
(ii) Y omw <1 Viel
keK
(if) z € {0,1}K.
Here, I = {1,...,n} is a set of items of nonnegative integer weights and profits a,w € Z%,

that can be stored in a set K of knapsacks of capacity a each. Associated with the MKP is
the multiple knapsack polytope Pykp.

The set packing relaxation that we propose involves the following conflict graph & = (U, €).
® has the set U = 27X (where 2% denotes the powerset of some set S) of all sets of possible
“item-knapsack pairs” as its nodes. We will call such a set of item-knapsack pairs a(n item-
knapsack) configuration. To define the edges of the conflict graph, we consider the aggregation
scheme 7 : RI*K — RY defined as

mo(@) = (3 wik) — ((0)] - 1).
tkev
Here, I(v) = {i € I : 3k € K : ik € v} denotes the set of items that appear somewhere in the
configuration v. my(x) is one for some solution = of (MKP) if and only if z assigns all items
in v to feasible knapsacks with respect to v, i.e., all items 7 € I(v) of the configuration satisfy
zi,, = 1 for some (i, k) € v. Two configurations u and v are in conflict and we draw an edge
between them if 7, () + my(z) < 1 holds for all z € Pykp NZ*K, i.e., it is not possible to
simultaneously assign all items in u and v to feasible knapsacks.

2.7.1 Lemma (Set Packing Relaxation of the MKP) n(Pykp) C Psgp(®).

We show now that the classes of extended cover inequalities and combined cover inequalities
of Ferreira, Martin & Weismantel [1996] arise from expansions of edge inequalities of this set
packing relaxation; our discussion refers to Ferreira [1994]’s description of these inequalities.
An extended cover inequality involves two configurations v’ and v” of the form

o' =1 x {kl,kg} and " =T1" x {kQ}

with two knapsacks k1 and ko and two sets of items I’ and I”. In this situation, it is in general
not true that my (z) + myr(z) < 1 holds, but one can look for combinatorial conditions that
ensure this inequality. Ferreira [1994, page 74] assumes that

(i) I' forms a cover for knapsack ki, i.e., the items in I’ do not all fit into k1, and that
(ii) I" U {i} forms a cover for knapsack ko for each item i € I'.
(Actually, he assumes also I' N I"” = ().) (i) means that if 7y (z) = 1, i.e., all items I’ of
the first configuration are assigned to the knapsacks ki and ko, then at least one item of I’

must be assigned to ko, and then myr(z) < 0 due to (ii). This implies the validity of the edge
inequality 7y (z) 4+ me () < 1 that expands into the extended cover inequality

S T + D Ty + Y Tiky < I+ I - 1.

iel’ iel’ iel”
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Of similar flavour are the combined cover inequalities. This time, the configurations are
o' = (Il X {kl}) U (IQ X {kQ}) U (I’ X {kg}) and o =T1" x {kg},
with three different knapsacks k1, k2, and k3 and satisfying (confer Ferreira [1994, page 82])

(1) I' = Il U .[2 and |Il ﬂIZ| = ]_,
(ii) I is a cover for ki, Iy a cover for ko, and
(i) I" U {4} is a cover for knapsack ks for each item i € I'.

(Ferreira [1994] assumes again I' N 1" = (.) my(z) = 1 and (i) together imply that at least
one item from I' must be assigned to knapsack ks, and then (ii) results in 7, (z) < 0 as for
the extended cover inequalities. Expanding the edge inequality my () 4+ my () < 1, we obtain
the combined cover inequality

Z(I,‘Z'kl + Z(I;ikz + inkg + Z Tk, < |I’| + |I”| — 1.

i€l i€l el’ i€l
The following theorem summarizes our results on extended and combined cover inequalities.

2.7.2 Theorem (Extended and Combined Cover Inequalities)
Let MKP be a multiple knapsack problem, Pyxp the associated multiple knapsack polytope,
and Pggp(®) the set packing relaxation of Pykp.

(i) Every extended cover inequality for Pykp is the expansion of an edge inequality for
Pssp(8).

(ii) Every combined cover inequality for Pyixp is the expansion of an edge inequality for
Pgsp(®).

2.8 The 0/1 Programming Problem with Nonnegative Data

We have seen in the previous sections examples of set packing relaxations for special combi-
natorial optimization problems. To give a perspective in a more general direction, we want
to draw the reader’s attention now to a set packing relaxation for a class of 0/1 integer pro-
gramming problems that was suggested by Bixby & Lee [1993]. This construction assumes
only nonnegativity of the constraint matrix, but no particular structure; it yields clique, odd
cycle, etc. inequalities in the natural variables.

Set packing constraints of this type form one of the rare families of structural cuts for general
integer programming problems, i.e., cuts that are derived by searching, detecting, and utiliz-
ing some combinatorial structure in an a priori unstructured constraint system. Set packing
relaxations try to set up a conflict graph, the famous single knapsack relaxation of Crowder,
Johnson & Padberg [1983] analyzes the diophantine structure of an individual row, Padberg,
van Roy & Wolsey [1985]’s flow covers are based on combinatorial properties of fixed charge
problems, and the feasible set inequalities of Martin & Weismantel [1997] come from inter-
sections of several knapsacks. These classes of structural cuts are the first of only three types
of tools to solve 0/1 integer programs by branch-and-cut. Enumeration is, unfortunately, the
second and the third consists of general cutting planes for 0/1 integer programs: Gomory
[1960]’s cuts, see Balas, Ceria, Cornuéjols & Natraj [1994] for an exciting recent renaissance,
lift-and-project cuts, see Balas, Ceria & Cornuéjols [1993], or Lovéasz & Schrijver [1991]’s
matrix cuts. To put it brief: There is significant interest in identifying further families of
structural cuts for general integer programs.
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One class of integer programs with an embedded set packing structure consists of 0/1 programs
with nonnegative constraint systems

(IPT) max w'z Atz <b", ze€{0,1}"

Here, AT € Z'"*"™ and b" € Z" are a nonnegative integral matrix and right-hand side vector,
and w € Z" is an integer objective; no further structural properties are assumed. The polytope
associated to this program is denoted by Ppp+.

Bixby & Lee [1993] propose for such programs the following “natural” set packing relaxation.
The conflict graph & = (U, €) of the relaxation has the column( indice)s of the matrix AT,
or, if we want, the variables, as its nodes, i.e., U = {1,...,n}. The edges are defined in terms
of the identity aggregation scheme 7 : R” — R"™ that has

mi(z) == x4, i=1,...,n.

There is an edge between two columns 7 and j if and only if not both of them can be contained
in a solution to (IP1) at the same time, i.e.,

ij € € < A;,F—i—A;fngr = mi(z) +mi(z) <1 Vi € Pp+ NZ".

2.8.1 Lemma (Set Packing Relaxation of IP, , Bixby & Lee[1993]) n(Pp+) C Pssp(8).

The natural set packing relaxation yields clique, odd cycle, and other set packing inequalities
in the original variables. An extension of the natural set packing relaxation to the mixed
integer case is currently studied by Atamturk, Nemhauser & Savelsbergh [1998].
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Chapter 3

An Algorithm for Set Partitioning

Summary. We document in this chapter the main features of a branch-and-cut algorithm
for the solution of set partitioning problems. Computational results for a standard test set
from the literature are reported.

Acknowledgement. We thank Robert E. Bixby' for many discussions about out-pivoting
and for making this method available in the CPLEX callable library.

3.1 Introduction

This chapter is about the design and the implementation of a branch-and-cut algorithm for
the solution of set partitioning problems: Our code BC. We assume for our exposition that the
reader is familiar with the features of such a method. In particular, we do neither discuss the
theoretical background of cutting plane algorithms, see Grotschel, Lovasz & Schrijver [1988],
nor the basic features and the terminology of branch-and-cut codes, see Nemhauser & Wolsey
[1988], Padberg & Rinaldi [1991], Thienel [1995], and Caprara & Fischetti [1997]. In fact, our
algorithm BC is to some extent a reimplementation of Hoffman & Padberg [1993]’s successful
code CREW_OPT: The flowchart of BC coincides with the one of CREW_OPT, and the same applies
to the primal heuristic, pool and searchtree management, and even to the data structures.
Thus, we elucidate only those parts of our implementation where we see some contribution.
This applies to the mathematical core of the algorithm: Separation and preprocessing.

Our description is intended to give enough information to allow a reimplementation of the
routines in BC. We do, however, neither discuss software engineering and programming issues,
nor do we report the computational tests that guided our design decisions.

'Robert E. Bixby, Dept. of Math., Univ. of Houston, TX 77204-3476, USA, Email bixby@rice.edu.
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Our first contribution is a separation routine. We have implemented a new family of cutting
planes for set partitioning problems: The aggregated cycle inequalities of Section 2.6. Re-
call that these inequalities stem from a set packing relaxation of the set covering problem.
Together with Nobili & Sassano [1992]’s k-projection cuts and the odd hole inequalities for
the set covering polytope, see page 47 in Subsection 1.9.1 of this thesis, that have report-
edly been implemented by Hoffman & Padberg [1993], these cuts form one of the very few
families of combinatorial inequalities for the set covering polytope that have been used in a
branch-and-cut algorithm.

Our second contribution concerns preprocessing. We have extended some known techniques
of the literature and explored their performance with probabilistic methods. We have also
investigated the interplay of iterated use of preprocessing operations with a dual simplex
algorithm. It turns out that much of the potential of preprocessing can only be realized after
certain degeneracy issues have overcome. We have developed a novel pivoting technique that
resolves this problem completely.

Pointers to other recent computational work on set partitioning problems are Atamturk,
Nemhauser & Savelsbergh [1995] (Lagrangean relaxation with iterated preprocessing), Wedelin
[1995] (Lagrangean relaxation with a perturbation technique), and Chu & Beasley [1995] (pre-
processing and genetic algorithms).

This chapter is organized as follows. In Section 3.2 we discuss preprocessing. We give a
list of preprocessing operations from the literature and perform a probabilistic analysis of
their running time. The iterated application of such techniques in a simplex based branch-
and-cut algorithm runs into an unexpected obstacle: Degeneracy problems prevent us from
removing large redundant parts of the problem without destroying a dual feasible basis. We
show how to overcome this problem. Separation procedures are treated in Section 3.3. We
discuss implementation details of our routines for the detection of violated clique, cycle, and
aggregated cycle inequalities. Computational results are presented in Section 4.7.

The subsequent sections resort to the following notation. We consider set partitioning prob-
lems of the form

(SPP) min wg + w'z
Az =1
z € {0,1}",

where A € {0,1}™*™ and w € Z" are an integer matrix and a nonnegative integer objective
function, respectively. p is the density of the matrix A, A is supposed to be the maximum
number of nonzero entries in a column, and p is the average number of entries in a column.
G = G(A) is the column intersection graph associated to A; this graph gives rise to termi-
nology like “the neighbors y(j) of a column A.;” etc. The real number wy, the offset, is a
positive constant that plays a role in preprocessing. We denote by z* an arbitrary but fixed
optimal basic solution of the LP relaxation of (SPP), its objective value by z*, the reduced
costs by w, and by F' the set of fractional variables of z*.

Associated to (SSP) are the set packing and set covering relazations

(SSP) max wg +w'z (SCP) min wy+w'z
Azr <1 Azx >1
z €{0,1}" z € {0,1}™.

It is well known that all of these problems are N/P-hard, see Garey & Johnson [1979]. We do
not discuss further complexity issues here (see Emden-Weinert et al. [1996] for this topic).
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3.2 Preprocessing

Preprocessing or presolving is the use of automatic simplification techniques for linear and
integer programs. The techniques aim at “improving” a given IP formulation in the sense
that some solution method works better. We are interested here in preprocessing for branch-
and-cut algorithms. These algorithms have LP (re)optimizations as their computational bot-
tleneck and their presolvers try to make this step more effective by (i) reducing the size of
and (ii) “tightening” IP formulations, and by (iii) identifying “useful substructures”. Here,
tightness is a measure for the quality of an IP formulation: We say that (IP) is a tighter for-
mulation than (IP’) if the integer solutions of both programs are the same, but the solution
set of the LP relaxation of (IP) is contained in that of (IP’).

There are many ways to put (i)—(iii) into practice: Fixing of variables, removing redundant
constraints, tightening bounds, reduced cost fixing, probing, and constraint classification
are just a few popular examples of reductions, as preprocessing techniques are also called.
Surveys on preprocessing for IPs can be found in Crowder, Johnson & Padberg [1983], the
textbook Nemhauser & Wolsey [1988, Section 1.1.6] and the references therein, Hoffman &
Padberg [1991], and Suhl & Szymanski [1994], while Brearley, Mitra & Williams [1975], the
lecture notes of Bixby [1994], and Andersen & Andersen [1995] review (closely related) LP
presolving techniques. Most of these methods are simple — but amazingly effective, as the
above publications’ computational sections document.

Special problems offer additional potential for preprocessing, and set partitioning is one of
the best studied classes of integer programs in this respect. The following subsections sur-
vey preprocessing techniques for set partitioning, discuss efficient implementations, analyse
expected running times, and report some computational results.

3.2.1 Reductions

We give next a list of reductions for set partitioning problems that subsumes (as far as we
know) all suggestions of the literature. Each technique describes, in principle, a transforma-
tion and a back transformation of a given set partitioning problem into another one and a
correspondence of (optimal) solutions, but as the reductions are quite simple, we state them in
a shortcut informal way as in Andersen & Andersen [1995]. These reductions will be discussed
in more detail in Subsections 3.2.4-3.2.12.

PO (Empty Column) dj:A;=0
If column j is empty, one can
(i) eliminate column j if w; >0

(it) eliminate column j and add w; to wy if w; <O0.

P1 (Empty Row) dr:A,.=0
If row r is empty, the problem is infeasible.

P2 (Row Singleton) Ar,j: A = e]T

If row r contains just one column j, one can “fiz x; to one”, i.e.,

(i) eliminate column j and add w; to wy,
(ii) eliminate all columns i € y(j) that are neighbors of column j, and

(1) eliminate all rows s € supp A.; that are covered by column j.
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P3 (Dominated Column) Ji, Jr Ai =35 A5 N wip > e wi, i E T
If column 1 is a combination of other columns j € J and w; > Zjejwj, one can eliminate
the “dominated” column 1.
P3’ (Duplicate Column) Ji,j: A=A N wp>wj, (#]
If two columns i # j are identical and w; > w;, one can eliminate column 1.
P4 (Dominated Row) Ar,s: Ap. <Ay, T#S
If row r is contained in row s, one can
(i) eliminate all columns j € supp(4s. — A;.) and
(ii) eliminate the “dominated” row r.

P4’ (Duplicate Row) Ar,s: Ap. = As.y, T F#S
If two rows r # s are identical, one can eliminate the “duplicate” row r.
P5 (Row Clique) r,j :supp Ar. Cy(j) N j & supp A,.
If all columns in row r are neighbors of a column j not in row r, one can eliminate column j.
P6 (Parallel Column) Ir, s,i,5 1 Ar. — As. = e} — eJT, r£Ss,iE]
If two rows r # s have a common support except for two elements i # j, one of them contained
in row r and the other in row s, the variables x; = x; are “parallel”, and one can
(i) eliminate columns i and j if they are neighbors, i.e., ij € E(G),
or
(it) merge column i and j into a “compound” column A.;+ A.; with cost w; +w; otherwise.

P7 (Symmetric Difference) Ir, s, 6,5 Ap. > Ag. — Ap. + QeJT, r#£s,r#ts#t
If row r contains all columns that are in row s, but not in t, and some column j that is in
row t, but not in s, one can eliminate column j.
P7 (Symmetric Difference) Ir,s,t :supp Ap. D supp(Ag. — Ap), r#s,r#t,s#t
If row r covers the symmetric difference of rows s and t, one can

(i) eliminate all columns j € supp(As. — Ay.) in the symmetric difference and

(ii) eliminate row s.

P8 (Column Singleton) Ir,j:Aj=e A (|suppA,| =2V Is: A, — e;r < As)
If column j is a unit column e, and either row r is a “doubleton” (has only two nonzero
elements) or row r, with a,; set to zero, is covered by some other row s, one can
(i) substitute xj =1 =37, arix; in the objective to obtain (wo + wy) + (w"—wjA. )z,
(ii) eliminate column j, and
(iii) eliminate row r.

The next two reductions assume knowledge of an upper bound z,

Zy > min wlz
Ar =1
z € {0,1}"

on the optimal objective value of the set partitioning problem and knowledge of LP infor-
mation: P9 requires an optimal basis of the LP relaxation of (SPP) and associated data, in
particular the objective value z*, the solution z*, and the reduced costs w, P10 lower bounds z
on the values of certain LPs. For these reasons, rules P9 and P10 are called LP based.
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P9 (Reduced Cost Fixing) B (@ =0 A 2, <2"+w;) V (2] =1 A 2, < 2" — W)
(i) If 7 =0 and z, < z* +W;, one can eliminate column j.

(1) If 7 =1 and 2, < 2* —Wj, one can fiz x; to one.

P10 (Probing) 3j,2,Tj 12y <z <min c'z,Az =1,0<z<1,z; =7;, 7;€{0,1}
(i) If z, < z <min w'lz, Az =1,0 <z <1,z; =0, one can fix x; to one.

(ii) If z, <z <min w'z,Az = 1,0 <z <1,z; =1, one can eliminate column j.

Some of these reductions are “folklore” and do not have a genuine origin in the literature. But
however that may be, P2-P4 appear in Balinski [1965, page 285] (in a set covering context),
P1-P4 and P7 in Garfinkel & Nemhauser [1969], and P1-P5 in Balas & Padberg [1976]. P6
is due to Hoffman & Padberg [1993], substitution techniques like P8 are discussed by Bixby
[1994]. P9 was introduced by Crowder, Johnson & Padberg [1983], probing techniques like
P10 are mentioned in Suhl & Szymanski [1994], some related procedures of similar flavour in
Beasley [1987] (for set covering problems).

Given all these reductions, the next point is to devise a good strategy for their application.
As the application of one rule can result in additional possible simplifications for another
rule, one usually applies reductions PO-P8 in a loop, doing another pass until no further
simplifications can be achieved. P9 and P10 can be applied at any other point: Once the
LP and/or bounding information is computed, these reductions are independent of the other
rules.

Table 3.1 gives an impression of the significance of preprocessing for the solution of set
partitioning problems. The figures in this table were obtained by preprocessing the Hoffman
& Padberg [1993] acs test set of 55 set partitioning problems from airline crew scheduling
applications with the preprocessing routines of our code BC, that uses a subset of reductions
P1-P10. The first column in Table 3.1 gives the name of the problem, and the next three
columns its original size in terms of numbers of rows, columns, and matrix density p, i.e.,
the percentage of nonzero elements in the matrix. Applying some of the non LP-based
preprocessing rules P1-P8, the problems are reduced as indicated in the three succeeding
“Presolved” columns. The remainder of the table goes one step further: After solving the
LP relaxation of the preprocessed problem and calling some primal heuristic, the problem is
preprocessed again. This time, knowledge of the LP lower bound z* and the upper bound z,
from the heuristic allows also the use of LP-based techniques, in this case reduced fixing (P9).
The results of this second round of preprocessing, using a subset of reductions P1-P9, are
reported in the “Presolved: LP-based” section of the table. The success of the LP based
methods depends on the size of the gap between the heuristic upper bound z, and the LP
lower bound z*, and this gap (z, — 2*)/zy, given as a percentage of the upper bound (the
possible improvement of z,), is reported in column “Gap”. A value of +o0o means that no
valid solution is known. Sometimes, the LP relaxation is already integral and the problem is
solved. In this case, indicated by the entry “LP” in the Gap column, it is not necessary to
compute a further upper bound or perform a second round of preprocessing, hence the dashes
in the corresponding preprocessing columns. One problem, nw16, was even solved in the first
preprocessing phase such that not a single LP had to be solved; this outcome is indicated by
the entry “PP” in column Gap. The final “Time” column gives the sum of the preprocessing
times for, depending on the problem, one or two calls to the preprocessor in CPU seconds on
a Sun Ultra Sparc 1 Model 170E.
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Name Original Presolved Gap Presolved: LP-based Time
Rows Cols p Rows Cols p % Rows Cols p Sec.

nwél 17 197 0.22 17 177 0.22 4.23 12 15 0.20 0.01
nw32 19 294 0.24 17 241 0.27 3.64 13 42 0.25 0.01
nw40 19 404 0.27 19 336 0.27 4.96 13 36 0.24 0.03
nw08 24 434 0.22 19 349 0.28 LP — — — 0.01
nwib 31 467 0.20 29 465 0.21 LP — — — 0.01
nw21 25 577 0.25 25 426 0.24 9.91 19 51 0.22 0.03
nw22 23 619 0.24 23 531 0.24 0.60 17 18 0.21 0.00
nwi2 27 626 0.20 25 451 0.15 LP — — — 0.02
nw39 25 677 0.27 25 567 0.26 8.27 11 29 0.19 0.01
nw20 22 685 0.25 22 566 0.25 1.11 15 18 0.24 0.03
nw23 19 711 0.25 12 430 0.38 2.65 11 27 0.30 0.03
nw37 19 770 0.26 19 639 0.26 6.17 13 22 0.21 0.03
nw26 23 771 0.24 21 514 0.25 2.87 17 30 0.20 0.03
nwl0 24 853 0.21 20 643 0.25 LP — — — 0.02
nw34 20 899 0.28 20 750 0.28 3.18 15 20 0.25 0.01
nw28 18 1210 0.39 18 599 0.36 5.97 11 20 0.38 0.03
nw25 20 1217 0.30 20 844 0.30 11.41 20 101 0.24 0.02
nw38 23 1220 0.32 20 881 0.36 0.11 15 18 0.30 0.03
nw27 22 1355 0.32 22 926 0.31 4.51 13 19 0.26 0.03
nw24 19 1366 0.33 19 926 0.33 11.04 16 43 0.28 0.02
nn01 18 1072 0.25 17 983 0.26 8.30 17 983 0.26 0.04
nn02 23 1079 0.26 19 820 0.32 2.23 15 19 0.28 0.04
nw35 23 1709 0.27 23 1403 0.27 8.74 19 91 0.28 0.03
nw36 20 1783 0.37 20 1408 0.36 +0o0 20 1408 0.36 0.05
nw29 18 2540 0.31 18 2034 0.31 13.06 17 488 0.30 0.08
nw30 26 2653 0.30 26 1884 0.30 69.84 26 1884 0.30 0.07
nw31 26 2662 0.29 26 1823 0.29 2.23 20 34 0.26 0.06
nwi9 40 2879 0.22 32 2134 0.22 LP — — — 0.07
nw33 23 3068 0.31 23 2415 0.31 2.96 13 19 0.21 0.06
nw09 40 3103 0.16 33 2296 0.19 LP — — — 0.07
nw07 36 5172 0.22 33 3104 0.23 LP — — — 0.11
aa02 531 5198 0.01 361 3928 0.02 LP — — — 0.24
nw06 50 6774 0.18 37 5936 0.20 18.98 37 883 0.18 0.28
aa06 646 7292 0.01 507 6064 0.01 0.25 419 892 0.01 1.18
k101 55 7479 0.14 47 5957 0.13 1.00 44 1151 0.12 0.36
aa05 801 8308 0.01 533 6371 0.01 0.37 532 6354 0.01 1.00
aa03 825 8627 0.01 558 6970 0.01 0.43 558 6823 0.01 1.09
nwil 39 8820 0.17 28 5946 0.21 0.00 25 32 0.09 0.24
nwi8 124 10757 0.07 81 7934 0.08 8.44 81 7598 0.08 0.74
us02 100 13635 0.14 44 8946 0.17 LP — — — 0.50
nwi3 51 16043 0.13 48 10901 0.12 0.21 46 100 0.06 0.45
us04 163 28016 0.07 98 4285 0.08 0.73 69 86 0.06 1.05
nw03 59 43749 0.14 53 38956 0.15 2.70 50 421 0.12 1.62
nw01 135 51975 0.06 135 50069 0.06 LP — — — 0.77
us03 7 85552 0.18 50 23207 0.21 LP — — — 3.32
nw02 145 87879 0.06 145 85258 0.06 LP — — — 1.39
nwl?7 61 118607 0.14 54 78173 0.15 14.48 52 11332 0.16 4.84
nwid 73 123409 0.10 68 95169 0.10 LP — — — 3.73
nwi6 139 148633 0.07 0 1 0.00 PP — — — 7.13
nw05 71 288507 0.10 58 202482 0.12 LP — — — 9.00
k102 71 36699 0.08 69 16542 0.08 2.16 62 3415 0.08 1.41
us01 145 1053137 0.09 86 351018 0.10 5.79 86 36201 0.10 57.95
nw04 36 87482 0.20 35 46189 0.20 9.47 35 15121 0.22 2.31
aa04 426 7195 0.02 343 6200 0.02 5.21 343 6189 0.02 1.62
aa01 823 8904 0.01 616 7625 0.01 3.46 616 7586 0.01 1.55
> 55 6378 2305749 — 4736 1105692 — — 3433 109619 — 104.86

Table 3.1: Preprocessing Airline Crew Scheduling Problems.



3.2 Preprocessing 113

The figures in Table 3.1 show that already without LP-based information, the problem size can
often be reduced substantially by rules P1-P8. Using additional LP and heuristic information
leads often (but not always) to a further reduction in problem size of about an order of
magnitude, and the preprocessing can be performed in a short time. Note that the matrix
density is essentially unaffected by preprocessing, i.e., it is not true that “only very sparse or
dense parts are removed”. The extent of the reductions can be explained as a consequence of
the generation of the acs problems: The instances are the output of an automatic, heuristic,
and randomized column generation process that tends to produce redundant formulations for
various reasons that we can not discuss here.

The second goal of preprocessing, namely, tightening of the formulation, could, however, not
be achieved: In all cases (except nw16), the optimal objective values of the LP relaxations of
the original and the preprocessed problem are identical. (The values are not reported in the
table.) And in fact, (strictly) dominated columns, for example, can not become basic in an
optimal solution anyway and neither does their identification provide information that is not
also given by the LP solution, nor does elimination of dominated columns help in the sense
that it leads to a different LP solution. One can check that similar conclusions hold also for
most of the other preprocessing rules; only P7, P7’, and P10 can potentially fix variables to
values that would not automatically be assigned to them by an optimal LP solution.

The last two paragraphs argued that the effect of preprocessing set partitioning problems is
less a tighter LP relaxation than a reduction is problem size. There are three main advantages
of solving smaller problems in a branch-and-cut context. First, a better use of the cache: If
large contiguous parts of the problem data can be transferred into high-speed memory, list
processing operations, like the computation of inner products, can be carried out much more
efficiently. Note that some care has to be taken to profit from this effect; it is in particular
not enough to fix or eliminate variables just by adjusting bounds, because this can result in
useless data being not only transferred into and out of the cache, but also in “clogging” it.
Instead, fixed columns must be purged from memory that is accessed for calculations in the
cache. A second advantage is that a reduction in the number of rows results in a smaller basis
and this speeds up the simplex algorithm. Third, it is of course also true that elimination
reduces the number of arithmetic operations. Considering problem us01, for example, it is
clear that pricing out 36,000 columns is much faster than pricing out one million, even if all
of the redundant ones are fixed by bound adjustments. To illustrate these effects, we can
compare the total time to solve the LP relaxations of the 55 original acs problems with the
time needed to solve the presolved instances: Preprocessing halves LP time from 547.380
to 266.970 seconds, just as it halves the number of nonzeros, and this trend can safely be
extrapolated. But simplex iterations, as expected in the light of the above discussion, are
nearly unchanged: 13,277 with in comparison to 16,128 without preprocessing (using the dual
simplex algorithm of CPLEX [1997], steepest edge pricing, and turning off the preprocessing
capabilities of this code, again on a Sun Ultra Sparc 1 Model 170E). The numbers for problem
us01 are 116.840 seconds/296 iterations to 280.110 seconds/240 iterations, i.e., this problem
(that makes up about half of the test set in terms of nonzeros) does not bias the results of the
above comparison into a misleading direction. A rule of thumb for practical set partitioning
solving is thus that after solving the first one or two LPs, the bulk of the data will have been
eliminated, and the remainder of the computation deals with comparably small problems.
We close this introductory section with some general remarks on algorithmic aspects. At first
glance, preprocessing appears to be completely trivial, because it is so easy to come up with
polynomial time procedures for all rules except P3 and indeed, straightforward implementa-
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tions work well for small and medium sized problems. The only essential issue is to keep an
eye on exploiting the sparsity of the constraint matrix (e.g., by storing columns and rows as
ordered lists of their nonzero entries) and this is the only implementation detail mentioned in
most of the literature. For large scale problems, however, naive implementations will not work
any more. For example, searching for duplicate columns by comparing all pairs is out of the
question for problems with 100,000 or more columns, although this algorithm has a polyno-
mial complexity of O(n?) operations (assuming that each column has at most some constant
number of nonnull entries). Recent algorithms for large scale set partitioning problems of
Hoffman & Padberg [1993] and Atamturk, Nemhauser & Savelsbergh [1995] thus (i) use only
simple preprocessing rules that are (ii) implemented in a more sophisticated way. Both of
these articles contain discussions on design and implementation of preprocessing routines.
The remainder of this section describes the design and implementation of the preprocessing
module of our set partitioning solver BC. Subsection 3.2.2 contains some preliminaries on data
structures. Subsections 3.2.4 to 3.2.12 investigate the individual preprocessing rules P1-P10.
We describe and discuss our particular implementations and do a probabilistic analysis of the
expected running times. Subsection 3.2.13 draws the readers attention to a conflict that comes
up in repeated calls of preprocessing routines in a branch-and-cut framework: Elimination
of variables and/or rows can destroy the dual feasibility of the basis. We argue that this
phenomenon is a significant obstacle and develop a pivoting technique that overcomes the
problem completely. The final Subsection 3.2.14 puts the pieces together and describes the
global layout of the complete preprocessing module.

3.2.2 Data Structures

We will see in the discussions of individual routines in the following subsections that the whole
task of preprocessing consists of doing various kinds of loops through the columns and rows
of the constraint matrix, occasionally deleting some of the data. The data structures of the
preprocessing module must allow to perform these basic operations efficiently and we discuss
in this subsection some basic issues that come up in this context. These explanations are a
preparation for the probabilistic analysis of the following subsection.

0 1 2 3 4 5
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Figure 3.1: Storing Sparse 0/1 Matrices in Column Major Format.

We use a representation of the matrix in row and column major format as ordered and
contiguous lists of the nonzero entries of the columns and rows. Figure 3.1 gives an example
of column major format, row major format is obtained by storing the transposed matrix in
column major format. The matrix in the example has 7 rows and 6 columns that are numbered
starting from 0. Its 13 nonzero entries are stored by row index column wise, in ascending
order, and contiguously in an array ind[]: The first three entries 1,2, and 5 give the row
indices of the nonzero entries of column 0, the next four entries correspond to column 1, and
so on; the empty column 4 has, of course, no entry. The arrays cnt[] and beg[] are used
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to locate the data for a particular column in the ind[] array: cnt[i] gives the number of
nonzero elements in column 4, and beg[i] denotes the starting index for data of this column
in the array ind. For more details, see, e.g., the manual CPLEX [1995].

Column major format allows fast loops through columns. As an example, consider the fol-
lowing C-type pseudocode to scan column i:

int nne;
register int *colpnt = ind + beglil;
register const int *colend = colpnt + cnt[i];
for (; colpnt < colend; colpnt++) {
nne = *colpnt;
. // some further operations

}

Note that this loop requires per nonzero just one comparison of two pointers that can be
kept in registers, one increment of a pointer in a register, and one memory dereference, i.e.,
only three operations. The slowest of these is the dereference, but this operation can benefit
from loading the ind[] array, or large contiguous parts of it, into the cache. Note that this
doesn’t work for pointer oriented data structures if data got fragmented in the computer’s
main memory, at least not if no additional precautions are taken. Note also that a pointer
oriented structure requires at least one additional pointer dereference.

The structure also offers various kinds of possibilities to eliminate columns conveniently. The
simplest method is to just set the cnt to zero. This technique results in some superfluous
data in the cnt and beg arrays, and chunks of “dead” data in the ind array, with the already
mentioned negative effects. At some point, it hence pays to re-store the matrix, eliminating
garbage of this type; this can be done in time linear in the number of remaining nonzeros.
Column major format is, of course, unsuited for any kind of row oriented operations. To
perform these efficiently as well, we store the matrix a second time in row major format. We
like to point out that this is still more memory efficient than a pointer oriented representation,
because only two entries are required for each nonzero (one ind entry for each nonzero in the
row and one in the column representation).

We have to pay for the simplicity of row and column major format when it comes to keeping
the two copies of the matrix synchronized: Eliminating columns with any one of the above
mentioned methods renders the row representation invalid (and vice versa), and the only
method to make them match again is to transpose the matrix, i.e., to set up the row repre-
sentation from scratch. This can be done in time linear in the number of nonzeros in two
passes through the matrix: The first pass determines the number of entries per row, and the
second pass puts the elements in their places. To keep this bookkeeping effort at a minimum,
it is of course advisable to first perform all column oriented operations, then transpose once,
do row computations, transpose once, and so on. This strategy yields reasonable results: The
first round of preprocessing in Table 3.1 spends 10.010 seconds out of a total of 80.830 in
transposition and these numbers are also representative for later stages of the computation.
This means that we pay a price of about 15% in computation time for using the simple row
and column major format. It is not so easy to estimate how this compares to other possible
data structures because of the effect of additional operations performed in a row or column
scan and we have not implemented an alternative version, but we feel that the above consid-
erations together with our computational findings justify the use of row and column major
format for preprocessing purposes.
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3.2.3 Probabilistic Analyses

We estimate in this subsection the expected running time of two basic list processing operations
that we will use frequently in the sequel. These results will allow us to compute expected
running times for the preprocessing rules of Subsection 3.2.1. Our results are summarized in
the following Table 3.2. Here, each number gives the expected running time for the application
of an entire rule, i.e., the value O(nlogn) for rule P3’ gives the expected running time for
removing all duplicate columns and so on. A — means that we have not analyzed the rule.

‘ Operation ‘ Expected Running Time ‘
PO | Empty Columns O(n)
P1 | Empty Rows O(m)
P2 | Row Singletons O(mn) (amortized)

P3 Dominated Columns

P3" | Duplicate Columns O(nlogn)
P4 | Dominated Rows O(mu?)
P4" | Duplicate Rows O(mlogm)

P5 Row Cliques —

P5M | Row Clique Heuristic | O(M?np?e " (np)M /(1 — p)M)
P6 Parallel Columns —

P7 | Symmetric Differences | —
P7" | Symmetric Differences | O(npu
P8 | Column Singletons O(np?)
P9 | Reduced Cost Fixing | O(n)
P10 | Probing —

Table 3.2: Estimating Running Times of Preprocessing Operations.

The first list processing operation that we consider is the lexzicographic comparison of two
random 0/1 sequences of infinite length, which is supposed to model a test whether two
columns or rows of a random 0/1 matrix are identical or not. We will show that (under
certain assumptions) this test takes constant expected time. The second operation is the
iterative intersection of random 0/1 sequences of finite length. This time, we think of a
situation where we want to find common rows in a set of columns or common columns in a
set of rows. Again, it will turn out that the intersection of random 0/1 sequences becomes
empty “fast”.

Lexicographic Comparison of Two Random Infinite 0/1 Sequences. We compute
in this paragraph the expected number of operations for a lexicographic comparison of two
infinite random 0/1 sequences in a certain uniform probabilistic model. Our analysis will be
based on the following assumptions:

(i) We look at infinite random sequences of zeros and ones, where the ones appear inde-
pendently with some probability p € (0, 1).
(ii) The sequences are stored in a sparse format as ordered lists of the indices of their
nonnull entries.
(iii) Two sequences (from {0,1}°°) are compared lexicographically by scanning their index
lists from the beginning, doing as many comparisons as there are common entries in the
two index lists plus one additional comparison to detect the first difference.
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We have already pointed out that we want to use this setting as a model for a lexicographic
comparison of two columns or rows in a 0/1 matrix (of a set partitioning problem). In this
context, assumptions (ii) and (iii) are canonical. (i) assumes identically and independently
distributed ones in the sequences. Formally, such a sequence a belongs to a probability space

({0,1}°°, A, P)

that has as its groundset the set of all 0/1 sequences with an associated o-algebra A and a
probability distribution P such that the border distributions are binomial with parameter p,
i.e., the two probabilities P(a; = 0) =1 — p and P(a; = 1) = p, i € N, exist and have the
stated values. This is certainly unrealistic: The model results in low probabilities for the
existence of duplicate columns and this obviously contradicts the computational findings of
Table 3.1. But, for want of something better, we will nevertheless work with (i). Making
the best of it, we can be happy about the technical advantage that this model has only one
parameter, the probability p, which is to be identified with the matrix density. Our goal will be
to obtain the expected number of operations to compare two 0/1 sequences lexicographically
as a function of p. Considering infinite sequences for this purpose has the advantage that the
analysis becomes independent of the number of rows or columns. As it takes certainly more
time to compare two infinite sequences than two finite ones, this results in a model that is
valid for lexicographic comparisons of rows and columns.

In this (not completely specified model) ({0,1}°°, A, P) consider the following random exper-
iment: Choose two 0/1 sequences at random and perform a sparse lexicographic comparison
according to (iii). Let the random variable Y, : {0,1}* x {0,1}** — N U {oco} denote the
number of comparisons until the first two indices differ. Assumptions (i)-(iii) suggest that the
probability that such a lexicographic comparison takes k& comparisons of individual indices of
nonzeros (k > 1) should be

P, =k =) (; _ me—n(l P gp1—p), ke (3.1)

i=k

In this expression, p? is the probability that a common nonzero appears at a random position
in both 0/1 sequences, and (1 — p)? is the probability for a common zero. There are (‘,79:1)
possibilities to distribute & — 1 common ones over the first j — 1 positions in both sequences
that account for the first £ — 1 comparisons, and

. ) o
(2_1>p2(1¢ 1)(1_p)2((] 1)—(k—1))

is the corresponding probability. The final term 2p(1 — p) is the probability for a difference
in position j that is detected in the kth and last comparison. The following theorem assumes
that the model ({0,1}°°, A, P) has property (3.1).

3.2.1 Lemma (Lexicographic Comparison of Two Random 0/1 Sequences)
Let p € (0,1) and ({0,1}°°, A, P) be a probability space. Let further Y, be a random variable
that counts the number of index comparisons in a lexicographic comparison of two random

elements a,b from ({0,1}*°, A, P). If condition (3.1) holds, then:

B(Y,) = (2 p)/2—2p) ~ 1.
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Proof. The term P(Y, = k) can be simplified to

P(Y, = k) = i (i _ i) 01— (U D) g0 )
=k
= p?"D2p(1 — p) 2 (i _ i) (1= p2-p) ™"
= p?k=D2p(1 — );
T e =)

— 2(1p—p) (pr>k

22 p k-1
C2-p \2—p
=o(1 -0

)

where ¢ := (2 —2p)/(2 — p). In this calculation, the identity

D Bl (A [(SICRY b

(,0(2 - P))k j=k

arises from considering the Taylor series around ¢ty = 0 of the function

L) S REs (- F =Y (jZﬁT)tj -y @:Dt(j—k)
j=

J=0

att=1—p(2—p).

Since o = (2 —2p)/(2 — p) € (0,1) for p € (0,1), the function p : N — [0,1], k — P(Y, = k)
is the density of the geometric distribution Geo, on 2N with parameter p. If we consider,
motivated by the above arguments, the term Geo,({k}) = P(Y, = k) as the probability that
exactly & comparisons of indices are necessary to compare two infinite 0/1 sequences that
are stored in sparse format, with the ones occurring independently at each position with
probability p, the expected number of individual index comparisons is simply the expectation
of this distribution

E(Y,) = B(Geo,) = 1/o = (2 - p)/(2 — 2p).

The number E(Y,) = (2 — p)/(2 — 2p) tends fast to one as matrix density decreases

2—p P
E(Y, = =1 — 1
(¥2) 2—2p +2—2p p—0

even though the we are considering sequences of unbounded length: For a comparably high
density of p = 0.2 (cf. Table 3.1) we would expect 1.125 comparisons, for p = 0.1 only 1.05,
and for p = 0.01 only 1.005 comparisons.
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Iterated Intersection of Finite Random 0/1 Sequences. The infinite sequence model
of the previous paragraph is not suited for an analysis of iterated intersections of 0/1 se-
quences, because (under any reasonable assumptions) a finite number of such sequences will
have an empty intersection with probability zero. Thus, we modify our model to deal with
finite sequences: We look at the sequences as the result of m independent repetitions of a 0/1
experiment where the one has probability p. Formally, this model can be stated as

({0,1}™, Q1 2101 Bi,, ,),

the m-fold product of the model ({0, 1}, 2{0’1},Bi1,p) that describes a single experiment (here,
Biy, , denotes the binomial distribution with parameters m and p). This finite model is, of
course, subject to the same criticism as its infinite brother.

To analyze the sequence intersection algorithm, consider the following random experiment.
Initialize an index set R as R := {1,...,m}, draw one sequence from {0,1}" after the other
at random, and update the set R by intersecting it with the sequence’s support; this process
is continued forever. Let a random variable X, , count the number of sequence intersections
until R becomes empty for the first time.

3.2.2 Lemma (Iterated Intersection of Random 0/1 Sequences)

Let p € (0,1) and ({0, 1™ Qi 2{0.1} Bim,p) be a probability space. Let further X, , be a
random variable that returns for an infinite number of randomly drawn sequences a1, a3, . . .
from ({0, 1™ Qi 2{0.1} Bim,p) the smallest number k—1 such that N¥_, supp a; = (. Then:

E(Xm,p) <mp/(1—p) =mp=p.

Proof. The first step to compute E(X,,,) is to note that the probability for k sequences to
have a common one in some place is p*, not to have a common one in some place is 1 — p¥,
to have empty intersection in all places is (1 — p¥)™, and the probability for k sequences to
have nonempty intersection in some of their m places is

P(Xmp>k)=1—(1—-p"" EkeN

The expectation can now be computed as
oo
mp) = ZkP(Xm,p = k)
i~ o0
—ZP mp > 21—1— Zlm (1—pFym
1
<Zm1m11— (1—p Zmp —m(1——1>

p
— /(1 - p).
Here, the inequality
1™ — (1= p")™ <m 1™ (1— (1Y)
follows from applying the mean value theorem to the function f: R — R, ¢ — ¢™. O

Considering the term 1/(1 — p) as a constant, we arrive indeed at about mp = p sequences
that have to be intersected. Note that this number does not count the number of operations
in the iterated sequence intersection algorithm, but the number of intersections.
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3.2.4 Empty Columns, Empty Rows, and Row Singletons

Reductions PO, P1, and P2 are trivial and there is not much to say about their implementation.
To find empty columns it is enough to go once through the objective and through the cnt[]
array of the matrix’s column representation, which can be done in O(n) time. Empty rows
are identified analogously in O(m) time. The neighbors of a row singleton j are identified as
follows: Scan column j; each nonzero entry identifies a row and all entries in this row, except
for the singleton j itself, denote neighbors of the singleton and can be eliminated. Note that
a nonzero in a row is used at most once to identify the neighbor of a row singleton, i.e., the
routine has linear amortized running time over all passes.

3.2.5 Duplicate and Dominated Columns

Elimination of duplicate columns is a striking example for the effectiveness of even very
simple preprocessing rules. Table 3.3, that gives statistics on the success of BC’s individual
non LP based preprocessing subroutines when applied to the Hoffman & Padberg [1993]
airline crew scheduling test set (in “Pass” many passes), shows the impact of this simple
reduction. A quick glance at the table is enough to see that removing duplicate columns is
the most significant preprocessing operation in terms of reduction in the number of nonzeros
and columns (but not in rows, of course). One reason for this was already mentioned earlier:
The acs problems, as many other “real world” set partitioning instances, were set up using
automatic column generation procedures that produce the same columns more than once. A
second reason is that identical columns can very well correspond to different activities: In
airline crew scheduling, for example, two rotations may service the same flight legs, but on
different routes at different costs.

The implementations of the literature seem to identify duplicate columns by comparisons of all
pairs of columns enhanced by hashing techniques. Hoffman & Padberg [1993] compute a hash
value for each column, quicksort the columns with respect to this criterion, and compare all
pairs of columns with the same hash value. The hash value itself is the sum of the indices of the
first and the last nonnull entry in a column. Atamturk, Nemhauser & Savelsbergh [1995] use
the same algorithm, but a more sophisticated hash function: They assign a random number to
each row and the hash value of a column is the sum of the random numbers corresponding to
its nonnull entries. Both procedures do, in the worst case, a quadratic number of comparisons
of two columns.

BC’s algorithm does an (expected) number of O(n logn) comparisons by simply (quick)sorting
the columns lezicographically. We remark that this strategy is particularly easy to implement
calling, e.g., the C-library’s gsort ()-function. In practice, one can slightly improve the run-
ning time by applying some linear time presorting operation to the columns using, e.g., some
hashing technique. BC puts the columns into “buckets” according to the column cnt (see
Subsection 3.2.2), i.e., the number of nonnull entries, and sorts the individual buckets as
described above.

To estimate the expected running time of BC’s quicksorting procedure, we resort to Lemma 3.2.1
that states that in a certain uniform probabilistic model the expected number of operations
to compare two random columns is constant (for bounded matrix density). Since uniform dis-
tribution of the sorted items in the partitions is an invariant of the quicksort algorithm, this
results in an expected complexity of the complete procedure for removing duplicate columns
of O(nlogn) operations.
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Original P2 P
Name Rows ¢ Cols p3! Pass Rows Cols P b4 P51e Rows Cols b8
nwél 17 197 20 1 0 0 0 0 0 0 0 0
nw32 19 294 52 2 1 0 0 0 0 0 0 1
nw40 19 404 68 1 0 0 0 0 0 0 0 0
nw08 24 434 80 2 0 0 0 0 0 0 0 5
nwlb 31 467 2 2 2 0 0 0 0 0 0 0
nw21 25 577 151 1 0 0 0 0 0 0 0 0
nw22 23 619 88 1 0 0 0 0 0 0 0 0
nwi2 27 626 173 2 0 0 0 0 0 0 0 2
nw39 25 677 110 1 0 0 0 0 0 0 0 0
nw20 22 685 119 1 0 0 0 0 0 0 0 0
nw23 19 711 275 5 1 0 0 0 0 0 0 6
nw37 19 770 131 1 0 0 0 0 0 0 0 0
nw26 23 771 229 4 0 0 0 0 22 2 6 0
nwl0 24 853 206 2 0 0 0 0 0 0 0 4
nw34 20 899 149 1 0 0 0 0 0 0 0 0
nw28 18 1210 385 2 0 0 0 0 226 0 0 0
nw25 20 1217 373 1 0 0 0 0 0 0 0 0
nw38 23 1220 336 2 0 0 0 0 0 0 0 3
nw27 22 1355 429 1 0 0 0 0 0 0 0 0
nw24 19 1366 440 1 0 0 0 0 0 0 0 0
nn01 18 1072 89 2 1 0 0 0 0 0 0 0
nn02 23 1079 255 3 0 0 0 0 0 0 0 4
nw35 23 1709 306 1 0 0 0 0 0 0 0 0
nw36 20 1783 375 1 0 0 0 0 0 0 0 0
nw29 18 2540 506 1 0 0 0 0 0 0 0 0
nw30 26 2653 769 1 0 0 0 0 0 0 0 0
nw31 26 2662 839 1 0 0 0 0 0 0 0 0
nwl9 40 2879 737 2 0 0 0 0 0 0 0 8
nw33 23 3068 653 1 0 0 0 0 0 0 0 0
nw09 40 3103 800 2 0 0 0 0 0 0 0 7
nw07 36 5172 2065 2 0 0 0 0 0 0 0 3
aa02 531 5198 0 4 1 0 98 70 394 1 11 0
nw06 50 6774 825 2 0 0 0 0 0 0 0 13
aal6 646 7292 5 4 0 0 63 72 317 2 5 2
k101 55 7479 676 3 0 0 4 4 0 0 0 0
aa05 801 8308 0 5 11 20 107 147 611 3 8 0
aal3 825 8627 1 4 17 52 106 138 366 4 69 2
nwil 39 8820 2863 2 0 0 0 0 0 0 0 11
nwi8 124 10757 2779 2 0 0 0 0 1 0 0 43
us02 100 13635 2331 2 0 0 54 1 0 0 0 1
nwil3 51 16043 5139 2 0 0 0 0 0 0 0 3
us04 163 28016 13005 4 0 0 36 25 4551 1 0 3
nw03 59 43749 4787 2 0 0 0 0 0 0 0 6
nw01 135 51975 1906 1 0 0 0 0 0 0 0 0
us03 7 85552 39362 4 0 0 14 13 0 0 0 0
nw02 145 87879 2621 1 0 0 0 0 0 0 0 0
nwl?7 61 118607 40427 2 0 0 0 0 0 0 0 7
nwil4 73 123409 28235 2 0 0 0 0 0 0 0 5
nwl6 139 148633 148494 2 1 0 0 0 0 0 0 138
nw05 71 288507 86012 2 0 0 0 0 0 0 0 13
k102 71 36699 20157 2 0 0 2 0 0 0 0 0
us01 145 1053137 682495 2 0 0 58 1 0 0 0 0
nw04 36 87482 41292 2 0 0 0 0 0 0 0 1
aal4 426 7195 0 4 0 0 31 52 40 0 0 0
aal1 823 8904 9 4 0 0 70 134 214 2 8 1
> 55 6378 2305749 1134631 115 35 72 643 657 6742 15 107 292

Table 3.3: Analyzing Preprocessing Rules.
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Elimination of dominated columns is a generalization of removing duplicate columns: The
latter reduction is the special case where the set J is restricted to contain just a single
member. The main difficulty in implementing the general rule is, of course, to find this set J
in an efficient way. The only known algorithm seems to be enumeration, which is out of the
question even for medium sized problems. This and the already mentioned property of the LP
relaxation to keep dominated columns at zero values in optimal solutions anyway can explain
the apparent lack of implementations of this rule in the literature and the preprocessor of our
algorithm BC does also not search for dominated columns. We remark that there are heuristic
procedures for the set covering variant of the reduction, see Beasley [1987].

3.2.6 Duplicate and Dominated Rows

Removing duplicate rows of a 0/1 matrix is equivalent to removing duplicate columns from
the transpose. Hence, the implementation of this operation is governed by exactly the same
considerations as for the columns. The probabilistic analysis carries over as well, since it
assumes only the independent random occurrence of ones in the matrix with probability
equal to the density. The result is an expected number of O(mlogm) index comparisons to
remove all duplicate rows.

This favorable running time does not entirely show up in our computations for the acs test
set. The reason is that these instances come ordered in a “staircase form” with sequences
of consecutive ones in the rows, which increases the probability of common nonzeros in two
rows. This does not fit with the analysis and leads to an increase in running time of the
procedure.

Figure 3.2: Bringing Set Partitioning Problem nw41 (17 x 197) into Staircase Form.

A simple way out of this problem would be to permute rows and columns randomly, but
staircase form also has its advantages elsewhere. Since removing duplicate rows is not a
bottleneck operation, we opted to leave the matrices as they are and employ more elaborate
presorting techniques instead. We use a two level hashing, first assigning the rows to “buckets”
according to the number of nonzero entries (as we did for the columns) and then subdividing
these buckets further into subbuckets of rows with the same sum of nonzero indices. The
individual subbuckets are sorted using shakersort (an alternating bubblesort with almost
linear expected running time for small arrays) for “small” buckets (< 8 elements in our
implementation) and quicksort else. With this tuning, removing duplicate rows takes about
the same time as removing duplicate columns.

As was already pointed out earlier, removing rows from a set partitioning problem is partic-
ularly advantageous for branch-and-cut solvers, because it reduces the size of the LP basis
which has a quadratic impact on parts of the LP time like factorization. For this reason,
extending the removal of duplicate rows to dominated rows is of significant interest. Use of
the latter reduction is reported by Hoffman & Padberg [1993] and Atamturk, Nemhauser &
Savelsbergh [1995].
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BC’s procedure to remove dominated rows is based on the sequence intersection algorithm of
Subsection 3.2.3. It exploits the simple observation that the set of rows that dominate some
row A,. can be expressed as the “intersection of the columns in this row”

ﬂ supp A.j.

jEsupp Ar.

The method is simply to compute this set by intersecting the columns iteratively, stopping
as soon as either r is the only row left in the set or when there is exactly one additional last
candidate row, that is compared directly to r.

We will argue in the next paragraph that one can expect the stopping criterion in this proce-
dure to apply after about p intersections of columns. Considering about p nonzero elements
in each column and, if necessary, one more (see Subsection 3.2.3) in the final comparison of
two columns, this results in an expected O(u?) operations per row. Doing this m times for
m rows, we expect to remove all dominated rows in O(mpu?), or, if one likes this better, in
O(m?p?) steps.

To estimate the number of column intersections until the stopping criterion applies, we will
make use of Lemma 3.2.2: We claim that F(X,,_1,) is an upper bound on the expected num-
ber of intersections in the column intersection algorithm. To see this, note that all columns
considered in the algorithm have an entry in row r, but their remainders are distributed

according to the model ({0, 1ym-t ®;7:11 2{0’1},Bim_1,p) for one row less, namely, row r.

In this m — 1-row model, E(X,,_1,) counts the number of intersections until no row is left,
which corresponds, in the original m-row model, to the number of intersections until only
row 7 is left. This ignores, of course, the possibility to stop earlier if |R| < 2 (in the m-row
model), and hence E(X,,_1,) is an upper bound on the number of columns considered by
the algorithm.

3.2.7 Row Cliques

Elimination of columns that extend a row cliqgue seems to have been used for computation by
Chu & Beasley [1995]. Using the same rules as Hoffman & Padberg [1993] (P1,P2,P3',P4/,
and P6) otherwise, they report a slightly bigger reduction in problem size. A straightforward
way to implement the rule would be to tentatively set each variable to one, all its neighbors
to zero and check whether this contradicts some equation. This algorithm requires, however,
one row scan for each nonzero element of the matrix. This is not acceptable, and as far as
we know, nobody has suggested a better method to implement this reduction. But we will
argue now and give some computational evidence that an exact implementation of this rule
is not worth the effort.

We would expect from the analysis of the sequence intersection algorithm in Subsection 3.2.3
that the probability of a column to intersect many other columns (in a row) is extremely small
such that the chances to eliminate such a column are at best questionable. This argument
can be made more precise using the probabilistic model of Subsection 3.2.3. As we computed
in the proof of Lemma 3.2.2 ibidem, the probability for k£ columns to intersect in some of their
m rows is P(Xy,, > k) = 1— (1 — p¥)™. This probability, which increases with larger p values
and larger m and decreases with larger k, respectively, is almost zero for the applications that
we have in mind: Considering “unfavorable” settings like a rather high density of p = 0.1 and
a comparably large number m = 1000 of rows (cf. Table 3.1), and a tiny row clique of just
8 columns, this number is 1 — (1 — 10~8)1000 < 106,
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For this reason, and for the sake of speed, BC implements a heuristic version of P5 that consid-
ers only rows with at most some constant number M of entries (16, in our implementation).
The rule is denoted by P5M and the effect of P5'6 on the Hoffman & Padberg [1993] test set
can be seen from Table 3.3. To satisfy our curiosity, we have tested the full rule P5 as well:
Applying P5 instead of P5'6 resulted in 18 more rows and 8,140 more columns removed by
the preprocessor, at the expense of several days of computation time.

BC’s implementation of rule P5M is based on the formula

ﬂ v() = ﬂ U supp As.

jEsupp Ar. jesupp Ay, \ s€supp A._;

Here, the neighbors of (all columns in) row r are determined by intersecting the neighbor sets
v(7) of the individual columns and these are computed by scanning all corresponding rows.
The complete routine determines, for some given matrix A, all rows with at most M nonzeros,
and applies the above procedure to each of these rows.

To compute the ezpected complexity of this algorithm, we consider again the probabilistic
model of Subsection 3.2.3, that looks at each row of the m x n 0/1 matrix A as the result of
n independent 0/1 experiments with a probability of p for one. If the random variable Y,, ,
counts the number of nonzeros in a row, we would expect P5M to take

O(mP(Yn, < M) - M -mnp?*) = O(Mnp*P (Y, < M))

operations. The first term mP(Y,, , < M) in this expression is the expected number of rows
with at most M nonzeros. Each of these M nonzeros (term two) corresponds to a column
with mp entries on average, and for each of these entries, we have to scan a row with about
np entries.

Arguments in the next paragraph suggest that P(Y, , < M) < (M +1)e ™ (np)M /(1 — p)M.
This results in a total of

O(Mnpe™(np)™ /(1 — p)™)
expected operations to perform P5M. For a numerical example, consider “unfavorable” pa-

rameters of M = 16, m = 100, n = 1000, p = 0.1; the result is less than 1073.
The upper bound on the probability P(Y; , < M) can be computed as follows:

P(Y,, < M) = % (?) S(L—

1=0

<(1-p) ; (ﬂ)
<(1-p)"(M+1) (1”_[’p>M assuming np/(1 — p) > 1
= (M + 1)(1 — p/m)™m/m. <%>M

< (M +1) e ™M np) /(1 = p)™

= (M +1) e " (np)™ /(1 — p)™.
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3.2.8 Parallel Columns

Elimination or merging of parallel columns has been used by Hoffman & Padberg [1993]. The
rule requires some book keeping to be able to undo the merging of columns into compound
columns once a solution has been found; note that repeated merging can result in compound
columns that correspond to sets of original variables. BC does not implement this rule, and
we do not analyze it here.

3.2.9 Symmetric Differences

The symmetric difference rule P7' is particularly attractive, because it leads to the elimination
of both rows and columns. An implementation based on checking all triples of rows is a
disaster, but the column intersection technique of Subsection 3.2.3 can be used to design an
efficient procedure. The algorithm in BC computes for each row s the column j with the
smallest support. Now we distinguish two cases:

(i) Column j is supposed to be contained in the symmetric difference of row s and some,
not yet known, row £. The only possible rows to cover the symmetric difference are the
rows in supp A;. \ {s}. For each such row r, the potential rows ¢ are limited to the set

ﬂ supp A.;
i€supp As. \supp A;.

that agree with s on the columns that are not covered by r. This set is computed using
iterative column intersection and each of the resulting candidates ¢ is checked.

(ii) Column j is supposed to be contained in the intersection of row s with some row ¢ # s;
clearly, s € supp A.;. For each such row ¢, the symmetric difference supp(A,. — A;.) is
computed and a row r covering this difference, i.e., from the set

ﬂ supp A.;
i€supp(As. —At.)

is determined by means of iterative column intersection.

A heuristic estimate of the running time of this procedure is as follows. In case (i), we expect
to consider a column with less than the mean of u = mp nonzeros. For each nonzero, we apply
the column intersection algorithm which takes O(u?) operations and yields (less than) O(u)
candidate rows t. For each of these candidate rows, we scan three rows which takes O(np)
operations. We would thus expect that performing (i) once for each of m rows takes a total
of O(m - p- (4?4 pnp)) = O(mp3(1 + n/m)) operations. In case (ii), we consider the same
column with expected p nonzeros. For each of these entries, we scan two rows to compute a
symmetric difference, which takes O(np) operations. Then the column intersection algorithm
with O(p?) operations is applied, and, eventually, x candidate rows checked, taking another
O(unp) operations. This results in O(m - p - (np + p? + punp)) overall operations, which is
of the same order as in the first case. Thus, the total expected number of operations in this
procedure is an acceptable

O((m + n)p*) = O(npu®).

The same technique could also be used to implement the generalization P7 of this rule, but,
unfortunately, this was not done for the preprocessing module of BC.
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3.2.10 Column Singletons

Elimination of rows and columns using column singletons is a special case of a more general
substitution operation. This technique works as follows. Consider an integer program

min wy+w'z Az =0b, Cxr<d, <z <u, z€Z"

with an objective that contains a constant offset term wyp, some equations, inequalities, and
lower and upper bounds (possibly +00) on the variables. Without loss of generality we can
assume a11 to be positive and bring the first equation into the form

zy=bi/an — Y ay;/anz;.

i>2

This equation can be used to eliminate z; by Gaussian elimination in the objective, the other
constraints, and the bounds. The result of this operation is one variable (z1) and one con-
straint (Aj.z = by) less, potential fill in the equations and inequalities, and a transformation
of the two bounds /1 < z; < w1 and the integrality stipulation z; € Z into the form

bl — 11U S Z a1;T; S b1 — a1111 and bl/an — Z ali/auxi € 7. (3.2)
1>2 1>2

Sometimes these constraints will be redundant. One restrictive but relevant and easily de-
tectable case is when the transformed integrality stipulation on the right of (3.2) holds because
the equations Ax = b have integer data, i.e., A € Z™*™ and b € Z™, and a1, = 1, i.e., the
pivot is one and there is no division in the Gaussian elimination, and when, in addition, the
transformed bounds are redundant because

bl — U1 S Zmin {alili,aliui} S Zmax {alili, aliui} S b1 — ll. (3.3)
1>2 1>2

Under these circumstances, the substitution results in a reduction in the number of rows and
columns of the program and we speak of preprocessing by substitution. This technique is
widely used in LP and MIP solvers, e.g., in CPLEX [1997]. To control fill, implementations
generally restrict substitution to columns with few entries, like singleton columns, or to rows
with few entries, like doubleton rows, see Bixby [1994].

An obstacle to the application of this rule to set partitioning problems is that the bound
redundancy criterion (3.3) is computationally useless in this application. Namely, assum-
ing that all fixed variables have already been removed earlier, condition (3.3) reads 0 <
| supp(A;. —e1)| < 1. This can and will hold exactly for the trivial case of a doubleton row.
Another criterion is thus needed for set partitioning problems, and

As. Z Ar. — €1

for another row s # r, as suggested in rule P8, is a suitable choice to guarantee (3.2).
Row s can be identified by column intersection, and this yields a running time of at most

O(m -y - np) = O(np®)

operations: At most m singletons can be eliminated, each candidate requires one application
of the column intersection algorithm with O(u?) operations, and the resulting candidate row
is checked and substituted into the objective in O(np) operations.
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Note that the result of a sequence of substitutions is independent from the elimination order,
but the amount of work is not. The three equation example in Figure 3.3 illustrates how this
is meant. In the example, column singleton z; can be eliminated from equation (1). After
the first row and column have been deleted, x2 can be eliminated using equation (2), and
finally x3 from (3). Doing the substitutions in this order —x; from (1), 25 from (2), and
zg from (3)— produces no fill. Given the original matrix A and this ordered “substitution
history” list, one can reproduce a P8-processed problem in time proportional to the number
of nonzeros in the substitution equations by substituting these equations in the given order
into the objective and by eliminating rows and columns. Using some other order leads to
additional work. For example, substituting in Figure 3.3 for zo first using (2) produces two
nonzeros in equation (1) at 3 and x4 and continuing to substitute in any order results in a
worst possible fill.

X1+ z2 =1 (1)
Xo+az3+ai=1 (2)
xg+z4=1 (3)

Figure 3.3: Eliminating Column Singletons in the Right Order to Avoid Fill.

This phenomenon can become relevant in a branch-and-cut context on two occasions. First,
when a solution to a preprocessed problem has been found and substitutions have to be re-
versed, this should be done in reverse order of the substitution history by computing the
values of the substituted variables from the corresponding original equations; note that this
does in general not work with some other elimination order. And second, when a preprocessed
subproblem in the searchtree has to be reproduced. BC does not store the objectives of pre-
processed subproblems, because this would require an array of O(n) double variables at each
node. Instead, the objective is recomputed from scratch each time. Doing this without mak-
ing any substitutions in the matrix requires a zero fill substitution order. The consequence is
to store the order of column singleton substitutions on a “history stack”.

A final word has to be said about the impact of substitution on the objective function and the
solution of the LP relazation. Many set partitioning problems from scheduling applications
have nonnegative objectives, and so do the acs problems. Substitution destroys this property
by producing negative coefficients. Unexpectedly, the LP relaxations of problems that were
preprocessed in this way become difficult to solve, probably because the start basis heuristics
do not work satisfactory any more. But fortunately, there is a simple way out of this dilemma.
The idea to counter the increase in LP time is to make the objective positive again by adding
suitable multiples of the rows. BC’s procedure implements the formula

wo + wlz 4+ 7(Az — 1),
where
Tp 1= MAX jesupp Ay cw; <0 lwj|/|supp A4, r=1,...,m.

The impact of rule P8 on the acs test can be read from Table 3.3: A nice success is that
problem nw16 can be solved by preprocessing with this rule. P8 has also proved valuable in
dealing with set packing constraints (see the vehicle availability constraints in Chapter 4) in
a set partitioning solver: Transforming such inequalities into equations introducing a slack
variable produces column singletons that can potentially be eliminated.
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3.2.11 Reduced Cost Fixing

Reduced cost fixing is another example of a strikingly simple and effective preprocessing opera-
tion. We draw the reader’s attention to Table 3.1, where a comparison of the “Presolved” and
“Presolved: LP-based” columns indicates that reduced cost fixing (based on the knowledge
of a good upper bound from the primal heuristic) accounts for a reduction in the number of
columns and nonzeros of one order of magnitude.

3.2.12 Probing

Probing (a rule that we have not completely specified) belongs to a group of ezpensive prepro-
cessing operations in the sense that they require the exact or approximate solution of linear
programs. There is additional information gained in this way that makes these operations
powerful (P10 is, for example, stronger than P5), but there is of course a delicate trade-off
between time spent in preprocessing and solving the actual problem.

An implementation of probing by tentatively setting variables to their bounds can be done
with postoptimization techniques, using advanced basis information: Having an optimal basis
at hand, one sets one variable at a time to one of its bounds and reoptimizes with the dual
simplex method; after that, one reloads the original basis and continues in this way. This
method has the disadvantage that there is no control on the amount of time spent in the
individual LPs. Some control on the computational effort is gained by limiting the number
of simplex iterations in the postoptimization process at the cost of replacing the optimal LP
value with some lower bound. If the iteration limit allows only “few” iterations, this offers the
additional possibility to avoid basis factorizations using an eta file technique: In each probe,
the basis is updated adding columns to the eta file; when the iteration limit is exceeded (or the
problem solved), the original basis is restored by simply deleting the eta file. This technique
is implemented in CPLEX [1997], but despite all these efforts, probing is still expensive.

BC uses probing of variables in its default strong branching strategy, (cf. Bixby, personal
communication): Some set of candidate variables for probing are determined (the 10 most
fractional ones), each of these is probed 25 dual simplex iterations deep, and any possible
fixings are carried out; the remaining bound information is used to guide the branching
decision.

3.2.13 Pivoting

We have seen in the introduction to this section that preprocessing is an effective tool to
reduce the size of a given set partitioning problem and that techniques of this sort can help
to solve these IPs faster. There is no reason to believe that this does not also work in the
same way for the subproblems created by a branch-and-bound algorithm. Rather to the
contrary, one would expect iterated preprocessing on subproblems to be even more effective
since subproblems contain additional fixings due to branching decisions and the lower bound is
better. To exploit this information, one would like to preprocess not only the original problem
formulation, but also subproblems repeatedly throughout the branch-and-bound tree.
LP-based methods, on the other hand, live on maintaining dual feasibility of the basis: Instead
of solving an LP from scratch each time a variable has been fixed in a branching decision
or a cutting plane has been added, the dual simplex method is called to reoptimize the LP
starting from the advanced basis obtained in the preceding optimization step.
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These two principles —repeated problem reduction and maintenance of a dual feasible basis—
can get into conflict. Reductions that do not interfere with a dual feasible basis are:

(i) Eliminating nonbasic columns.
(ii) Eliminating basic rows, i.e., rows where the associated slack or artificial variable is basic.

(i) it does obviously neither affect the basis itself nor its dual feasibility. (ii) is possible since
the multiplier (dual variable) associated to a basic row r is zero. But then the reduced costs
' =w—1TA=wl - str msAs. are not affected by removing row r and, moreover, if Ap
denotes the matrix that arises from the basis matrix Ag by deleting row r and column e,,
this reduced basis Ap is dual feasible for the reduced problem.
Rule (ii) can be slightly extended with a pivoting technique to

(iii) Eliminating rows with zero multipliers.

The method is to reduce (iii) to (ii) by performing a primal pivot on a,; = 1, where row r with
7 = 0 is supposed to be eliminated and j the unit column corresponding to its slack/artificial;
“primal pivot” means that the slack/artificial column e, is entering the basis. As m, =w; =0,
this pivot will be dual degenerate. We are interested here in the case where row r is known to
be a (linearly) redundant equation; then, its artificial variable is zero in any feasible solution
and the pivot will also be primal degenerate. This in-pivoting procedure was developed
by Applegate, Bixby, Chvatal & Cook [1994] for the solution of large scale TSPs and is
implemented in CPLEX V2.2 and higher versions.

One possible strategy for iterated preprocessing in a branch-and-cut algorithm is thus the
following. Apply the preprocessor as often as you like and eliminate rows and columns using
(i)—(iii), doing in-pivoting prior to the actual elimination of rows where necessary. If a basic
column was eliminated or fixed to one by the preprocessor, change its bounds, but leave it in
the formulation, and do also not remove rows with nonzero multipliers form the formulation,
even if the preprocessor detected their redundancy. If too much “garbage” accumulates,
eliminate everything, discard the (useless) basis, and optimize from scratch.

One might wonder whether it is at all possible that redundant rows can have nonzero mul-
tipliers. Do not all row elimination rules (except for the column singleton rule P8), after
elimination of certain columns, result in sets of duplicate rows where at most one represen-
tative can have a nonzero multiplier? The following simple example shows that this is not so
and why. Consider the set partitioning problem

min 2zl + =x2 =0
(c1) xl + 22 + yl =1 (3.4)
(c2) xl + y2 =

1
zl, 22 € {0,1}.

Here, the variables y; and y9 denote the artificial variables of the constraints ¢l and 2,
respectively. The first two columns of the constraint matrix correspond to the variables x
and x2 and constitute an optimal basis for (3.4); the corresponding simplex tableau reads

min -yl — y2 = =2
(c1) 2 + yl — y2 = 0
(c2) xl + y2 =1

zl, z2 € {0,1}.

The values of the dual variables are both nonzero: m = 7y = 1.
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Suppose that in this situation a preprocessor investigates formulation (3.4) and finds out that
variable zo can be eliminated. (Consider the example as a part of a bigger problem and
ignore the possibility to solve the problem by fixing also z1 to one.) Eliminating x5 (in the
preprocessing data structures, not in the LP) results in two identical rows ¢l and ¢2. Suppose
the preprocessor finds this out as well and suggests to eliminate one of them. But whether
we try to eliminate cl or ¢2, neither of these suggestions is compatible with dual feasibility
of the basis and we can not eliminate rows and columns that we know are redundant. Since
linear dependent and much less duplicate rows can not be contained in a basis, there must
be some fized variable in the basis. Clearly, there must be alternative optimal bases that do
not contain one, or some, or all fixed variables: We suffer from primal degeneracy.

The degeneracy phenomenon that we have just described does not only appear in theory, but
is a major obstacle to the solution of set partitioning problems by branch-and-cut. Unexpect-
edly, it turns out that for the airline test set often almost half of the basis matrices consist
of fixed variables, “blocking” the same number of rows from possible elimination. It is clear
that a larger number of rows and a larger basis has a negative impact on LP time.

This problem can be overcome by a novel out-pivoting technique that forces fixed variables to
leave the basis. The method is to perform one “dual pivot” with the fixed basic variable leaving
the basis (allowing slacks/artificials to enter). As the leaving variable is fixed, this pivot is
primal degenerate, but the dual solution changes, and the entering variable is determined in
such a way that optimality is re-established, i.e., by a ratio test.

Out-pivoting is available in CPLEX release V5.0 and higher version. Its use to eliminate fixed
variables from the basis allows for significant additional problem reductions while at the same
time maintaining dual feasibility. We remark that although the method is best possible in the
sense that it requires just a single dual pivot for each fixed basic variable, out-pivoting is not
cheap. Table 3.4 shows that 7% of the total running time that our branch-and-cut algorithm
BC needs to solve the airline test set is spent in out-pivoting (column Pvt under Timings).
And the number of out-pivots ezceeds the number of other pivots by a factor of about five!

3.2.14 The Preprocessor

Combining the routines of the previous subsections yields the preprocessor of our set parti-
tioning solver BC. The module consists of 67 kilobytes of source code in 10,000 lines.

The module does not work on the LP itself, but on a (possibly smaller) auxiliary representation
of the problem where reductions can be carried out no matter what the LP basis status is.
The preprocessor is called for the first time prior to the solution of the first LP. All later
invocations involve pivoting to maintain the dual feasibility of the basis. First, the basis is
purged by pivoting out fixed variables (from previous invocations). Preprocessing starts with
reduced cost fixing according to rule P9. Then the main preprocessing loop is entered that
calls, in each pass, all the individual rules. First, a couple of column oriented reductions
are carried out: P2 (row singletons) and P56 (row clique heuristic). Then the matrix is
transposed, and row oriented operations follow: P4’ (duplicate rows), P4 (dominated rows),
P7 (symmetric difference), and P8 (column singletons). The matrix is transposed again for
the next pass. This loop continues as long as some reduction was achieved. When no further
reductions can be achieved, as many of the found ones as possible are transferred to the LP:
Artificials of redundant rows are pivoted in and redundant nonbasic columns and redundant
basic rows are eliminated from the LP. The reader can infer from Table 3.4 that the running
time for this module is not a computational bottleneck for the entire branch-and-cut code.
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3.3 Separation

“Branch-and-cut” — this term lists the two sources of power of the algorithms of this class.
The second of these, the computation of cutting planes, aims at improving the quality of the
current LP relaxation in the sense that the lower bound rises. If this can be achieved, it
helps in fathoming nodes and fixing variables by preprocessing techniques, provides criteria
for intelligent searchtree exploration, and, ideally, “pushes” the fractional solution toward
an integral one. This, in turn, can be exploited for the development of heuristics by trac-
ing histories of fractional variables etc., and there are certainly more of such practitioner’s
arguments in favor of cutting planes that are all based on the many algorithmically useful
degrees of freedom in (as the name says) a generic branch-and-cut method. The theoretical
justification for the use of cutting planes is perhaps even more convincing: By the general
algorithmic results of Grotschel, Lovasz & Schrijver [1988] we know that polynomial time
separation allows for polynomial time optimization, and even if we give here the dual simplex
algorithm’s reoptimization capabilities (not to speak of the availability of suitable implemen-
tations) preference over the ellipsoid method’s theoretical power, there is no reason to believe
that not some of this favorable behaviour will show up in codes of the real world. And in fact,
the number of implementations of this principle with successful computational experience is
legion, see, e.g., Caprara & Fischetti [1997] for a survey.

The separation routines for set partitioning problems are based on the relation
Pr(A) = Pr(A)NQ(A)

between the set partitioning, the set packing, and the set covering polytope: To solve set
partitioning problems, we can resort to cutting planes for the associated packing and covering
polytopes. We have already pointed out in Section 1.2 why the polyhedral study of the latter
two bodies is easier than the study of the first, and we have also listed in the Sections 1.8, 1.9,
2.5, and 2.6 many known types of valid and often even facet defining inequalities that qualify
as candidates for cutting planes in a branch-and-cut code for set partitioning problems.

But not only these classes are available: General cutting planes suggest themselves as well:
Gomory [1960] cuts, lift-and-project cuts, see Balas, Ceria & Cornuéjols [1993], or Martin &
Weismantel [1997]’s feasible set cuts.

We have selected only a small number of them for our implementation: Clique inequalities,
because they give facets, are easy to implement, numerically stable (only 0/1 coefficients), and
sparse, cycle inequalities for the same reasons and because they can be separated exactly, and
the aggregated cycle inequalities from the set packing relaxation of the set covering problem
of Section 2.6 because we wanted to evaluate the computational usefulness of our aggregation
technique. These cuts are all simple, but as the duality gaps in real world set partitioning
problems are usually quite small, there is some justification for a strategy that opts for
“whatever one can get in a short time”.

We discuss in the following subsections the individual routines of our separation module.
All of the procedures work with intersection graphs that we introduce in Subsection 3.3.1.
Separation and lifting routines for inequalities from cliques are treated in Subsection 3.3.2,
for cycles in Subsection 3.3.3, and for aggregated cycles in Subsection 3.3.4. A word on our
strategies to call these routines can be found in the following Section 3.4.
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3.3.1 The Fractional Intersection Graph

All of our separation routines will be combinatorial algorithms that work on intersection
graphs. Namely, we look for our set packing inequalities on subgraphs of G(A), the intersection
graph of the set packing relaxation, and we identify aggregated cycle inequalities on subgraphs
of the conflict graph &(A) that is associated to the aggregation.

A quick calculation is enough to see that it is completely out of the question to set up G(A)
completely, and much less &(A), and even if we could do this it is very unlikely that we could
make any use of these gigabytes of information. But luckily, it follows from the nonnegativity
of all nontrivial facets of set packing polytopes and the 2-connectedness of their support
graphs, is well known, and was mentioned, for example, in Hoffman & Padberg [1993], that
one can restrict attention to the “fractional parts”

GAF]=G(AF) and  B(A)[S] = &(AF)

of these structures for separation purposes. These graphs are the fractional intersection
graph and the aggregated fractional intersection graph, respectively. As there can be at most
as many fractional variables as is the size of the basis as is the number of equations of the
LP relaxation, this reduces, for “typical” real world set partitioning problems like the airline
instances, the number of nodes from ten- to hundred thousands in G(A) to some hundreds in
G(A.r) by two to three orders of magnitude, and the number of edges even more. This is not
so for the graph &(A.r), which is exponential by construction. We cope with this difficulty
in a heuristic way by using only some subgraph of &(A.r). Note that the above mentioned
2-connectedness of the support graphs of facets makes it possible to restrict separation to
individual 2-connected components of G(A.r) and of B(A.p).

Separating on the fractional variables only has the disadvantage that the resulting cutting
planes have a very small support in comparison to the complete set of variables. One way
to counter the stalling effects of “polishing” on a low dimensional face of the set partitioning
polytope is to extend the support of cutting planes by lifting. Our overall separation strategy
will be to reduce the effort to identify a violated inequality as much as possible by working on
fractional intersection graphs, and we enhance the quality of whatever we were able to obtain
in this first step a posteriori by a subsequent lifting step.

We turn now to the algorithmic construction of the fractional intersection graph. We treat
only G(A.r) and do not discuss here how we set up a subgraph of &(A.r), because this is so
intimately related to the separation of aggregated cycle inequalities that it is better discussed
in this context in Subsection 3.3.4.

The procedure that we have implemented in BC sets up a new column intersection graph
G(A.p) after the solution of every single LP, i.e., G(A.r) is constructed “on the fly”, as
Hoffman & Padberg [1993] say. Our routine uses two copies of the matrix A.r, one stored
in column and the other in row major format. A.p can be extracted from the column major
representation of the “global” matrix A in time that is linear in the number of nonzeros of
A.r. Next, we compute the neighbors of each column j € F' by scanning its rows and store
the result in a forward star adjacency list (see, e.g., Ahuja, Magnanti & Orlin [1989]). Under
the assumptions of Subsection 3.2.3 we expect that this will take about O(up|F|?) operations
on average — fast enough to just forget about. We do not use a procedure to decompose
G(A.r) into two connected components.
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3.3.2 Clique Inequalities

We have already mentioned in the introduction of this section why we use clique inequalities
as cutting planes in our branch-and-cut code BC: This class yields facets, it is easy to come up
with separation and lifting heuristics, and such inequalities are sparse and pose no numerical
difficulties. One must admit, however, that these appealing properties are strictly speaking
outmatched by the unsatisfactory theoretical behaviour of these simple cutting planes. Clique
separation is not only NP-hard, see Garey & Johnson [1979], but, even worse, this class is
contained in polynomial separable superclasses like orthogonality inequalities or matrix cuts.
One could argue somewhat around the first difficulty, namely, we have implemented an exact
clique separation routine as well and found that, even without any tuning, our heuristics
already found nearly every violated clique inequality there was, and it is a little thing to tune
the heuristic routines such that containment becomes equality. But we feel nevertheless that
the above arguments show that it is not the right way to compensate the conceptual weakness
in clique inequality separation by additional computational effort.

Our branch-and-cut code BC goes thus to the other extreme and concentrates on the compu-
tational advantages of heuristic clique detection by using only simple separation and lifting
routines. We compute violated inequalities with a row lifting and a greedy heuristic, and a
“semiheuristic” (the meaning of this term will become clear in the description of this method)
recursive smallest last (RSL) procedure, and we lift the cutting planes that they return with
tailor made procedures that fit with the separation routine’s “philosophy” (these statements
have been evaluated in computational experiments). These separation and lifting routines
are described in the next paragraphs.

Row Lifting, Hoffman & Padberg [1993]. The idea of this separation routine is to
exploit the knowledge of those cliques that are already encoded in the rows of the matrix A
to design a very fast procedure. The details are as follows.

One considers each row A,p of the matrix A.p (that consists of the columns of A with
fractional variables in the current solution z*) in turn; note that the sum over the fractionals
in a row is either zero (there are no fractional variables because some variable has a value of
one) or one:

A, pxy € {0,1} Vr=1,...,m.

In the latter case, this row induces a minimal clique ) := supp A, such that the clique
inequality EjeQ xj < 1 is tight for the current LP solution z*. If one additional fractional
variable can be lifted (sequentially) into @, a violated clique inequality is detected. Lifting
more fractional variables increases violation, and one can lift some additional variables with
zero values in the end as well to extend the cut’s support. Hence, the procedure has three
steps: (i) Determining the “core” clique @ = supp A,r, (ii) sequential lifting of fractional
variables into the core, and (iii) supplementary sequential liftings of zero variables.

Here are some implementation issues. While (i) is clear, one can come up with numerous
strategies for the lifting steps (ii) and (iii). The method that we have implemented in BC
opts for speed, because we do not expect to find many additional neighbors of (a part of)
a matrix row clique, that is usually of substantial size — a philosophy that fits with the
idea behind the row lifting method and that is supported by the probabilistic results of the
previous Section 3.2 and by our computational experiments. For each of the steps (ii) and
(iii), we set up a list of candidate variables that we arrange in a fixed lifting order, and this
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candidate sequence is used for every row. In step (ii), the candidate set consists of some
constant number kp of the fractional variables with the largest z*-values (we use krp = 20 in
our implementation) which are tried greedily in order of decreasing z* values, and another
constant number kj, of zero variables (we use k7, = 10) for step (iii) that we simply select at
random.

Turning to the expected running time, we note that one sequential lifting of a variable z; can
be done by checking whether all variables in the current clique ) are neighbors of j. Using a
forward star representation of G(A.r) this takes O(]y(j)|) < O(|F|) steps (where |F| denotes
the number of fractional variables in the current LP solution z*). Doing this kr+kz < O(|F|)
times for m rows results in a total of O(m/|F|?) operations for this routine — which is as fast
as one could possibly hope.

The apparent disadvantage of the method is, however, that the cutting planes that one com-
putes with such a technique do, by construction, resemble much subsets of rows with a small
extension here and there. Generally speaking, the row lifting clique separation routine is
a good starting method in the initial phase of a branch-and-cut run and yields reasonable
results there; it is less useful in later stages of the computation.

Greedy Algorithm. The greedy method is certainly the most obvious and simple to im-
plement separation strategy that one can come up with and our branch-and-cut algorithm BC
also uses a clique detection method of this type.
Our routine is implemented in the following way. The greedy criterion is to go for a most
violated clique inequality and it makes sense to do so by considering the fractional variables
in order of decreasing z* values (where z* denotes the current fractional solution):

Toy 2 gy 2000 2 Ty where {01,...,01p} = F.
Our greedy does now |F| trials, one for each fractional “seed” variable z;. In trial j, we
initialize a clique @ := {o;}, that will (hopefully) be grown into the support of a violated
clique inequality, and try to lift into () all variables z,, ,, ... s Ta of smaller z* value in this
order. The motivation behind this is to give variables with small z* values also a “chance”
to foster a violated clique. We do not restrict the number of fractional lifting candidates this
time, because we expect for familiar reasons that the cliques that we can compute in this
way will not be very large. Note that this is different from row lifting, where we start a
priori with a “large” clique. This inspires the different lifting philosophy that we should “at
least lift such small cliques reasonably”, to put it nonchalantly. But how can we get a large
extension when all our probabilistic analyses and computational experience indicates that we
can not obtain it sequentially? Our idea is to use the large cliques that we already know and
to do a simultaneous lifting with matrix rows, similar to the row lifting separation routine.
Namely, we do the following: Given some fractional clique @), we determine its common
neighbors v(Q) := Njeqgy(j) (note that it is not clever to compute this for a large clique, but
no problem for a small one!) and then we look for the largest intersection (@) N supp A,. of
this set with the support of some row r; this set is added to Q.
Looking at running times, we have again that one sequential lifting of a fractional variable
takes O(|F|) operations. Lifting at most |F| variables in the greedy clique growing phase
results in O(| F'|?) steps. The common neighbors of at most | F'| members of such a clique can be
determined in O(|F'|-mp-np) steps using the matrix A’s row representation (not the complete
intersection graph G(A) which we did not set up!), and the maximum intersection of this set
with a matrix row in O(mp-np) steps, which is smaller. Assuming O(|F|-mp-np) > O(|F|?)
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and doing all of these steps |F| times, once for each of the seed variables, amounts to a
total of O(|F|?>mnp?) expected steps — which does not look very good. But our analysis is
a very conservative estimate, because the expensive simultaneous lifting step is only called
when a violated inequality is found, which (unfortunately!) is not the case for every starting
candidate. The method can be tuned further using obvious break criteria based on the “tail
sums”
:L‘;j—i_“'—i_x;\f*‘\’ j=1...,|F|,

that make the routine bail out whenever there is no more chance of finding a violated clique
inequality. With this and other improvements of this type, one obtains a separation procedure
that displays a reasonable behaviour in computational practice.

Recursive Smallest First. One of the most popular branch-and-bound approaches to the
maximum weight clique problem is based on the recursion

k * * k
o dimn e @ =maAn e ™ Do aidie @ 6
Here, G is some graph with node weights «* and j one of its nodes. The first successful
implementation of (3.5) is, as far as we know, due to Carraghan & Pardalos [1990] and since
then this branching rule has turned into the progenitor of a large family of algorithms that
differ by node selection and clever bounding criteria that try to reuse information that is
computed once as often as possible.

Recursive smallest first (RSF) is one member of this class. It uses the special branching
strategy to select in each step a node 7 that attains the minimum degree in the current graph.
The idea is obviously that one of the two subproblems, namely, the one on the neighbors of 7,
i.e., on the graph G[y(j)], will hopefully be “small” and can be fathomed or solved fast. For
fathoming, we can develop simple criteria in terms of sums of node weights of the current
graph. And the subproblem can surely be solved fast if the number of nodes in the current
graph is small, say, smaller than some constant k. When such circumstances supervene in
every subdivision step, the RSF algorithm solves the maximum weight clique problem to
proven optimality in time that is polynomial of order k. The worst case running time is
exponential, however.

The observations of the previous paragraph suggest a simple way to combine, under favorable
conditions, the advantage of RSF —a certificate of optimality— with a polynomially bounded
running time. The idea is to turn the algorithm dynamically into a heuristic whenever we are
about to walk into the complexity trap. Namely, we pursue the following strategy: We use
in principle the generic RSF algorithm as described above, but whenever the current graph
has more than k£ nodes and our fathoming criteria fail, we solve the associated subproblem
heuristically. We call such a hybrid method with both exact branch-and-bound and heuristic
components a semiheuristic. A scheme of this type has the advantages that it (i) is able
to exploit some structural properties of the graph, namely, to reduce it systematically by
cutting off low degree parts, (ii) it allows to control the tradeoff between exactness and speed
by tuning the parameter k, and (iii) it sometimes even proves optimality of the result.

In our implementation of the RSF method, we set the parameter k£ := 16. When the current
graph has less than this number of nodes, we determine the maximum clique by complete
enumeration. The heuristic that we apply in subproblems that involve graphs with more than
k nodes is the greedy procedure that we have described in the previous paragraph. To find a
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node with smallest degree in each branching step, we store the nodes of the graph in a binary
heap that is sorted with respect to node degrees. For familiar reasons, we do not expect
the RSF algorithm to return a large clique. In this vein, RSF has the flavour of an improved
greedy algorithm. Therefore we apply the same strategies to lift variables that have a value of
zero in the current LP solution. Hoffman & Padberg [1993] describe a similar implementation
of the RSF method.

The running time of RSF is O(|F|¥): The time to compute lower bounds is O(|F|?), the
greedy heuristic takes O(|F|?), enumeration takes O(|F|¥), and the heap updates require
O(|F|*log|F|) operations; finally, lifting results in O(|F|mpnp) steps. This gives a total
running time of O(|F|¥ 4 |F|mnp?), which we assume to be of order O(|F|*).

To evaluate the quality of the RSF method we have implemented an ezact branch-and-bound
algorithm for the maximum clique problem as well. It turned out that, even without any
tuning, RSF almost always produced a largest clique. Our computational experiments showed
that the choice kK = 16 was the optimal tradeoff between speed and quality. In fact, with k =
16, RSF produces always the largest clique on the airline test problems. For this reason, and
because of the arguments mentioned in the introduction of this section, we do not use the exact
branch-and-bound algorithm for clique separation, although this method is implemented.

3.3.3 Cycle Inequalities

Cycle inequalities are the second separation ingredient in our branch-and-cut algorithm. Like
the clique inequalities, cuts of this type have small support, and they tend to have a nice
numerical behaviour (only 0/1 coefficients in unlifted versions). An additional bonus is that
they can be separated in polynomial time with the GLS algorithm of Grotschel, Lovasz &
Schrijver [1988]. We use this cycle detection algorithm in our branch-and-cut algorithm.
The GLS algorithm works on a bipartite auziliary graph B := B(G(A.r)) that is constructed
from the fractional intersection graph G(A.r) = (V, E) as follows. The nodes of B are two
copies V' and V" of V. There is an edge v'v" in B if and only if uv is an edge of G. To each
such edge u'v" we associate the weight wy, =1 — 2} — ¥, where z* is the current fractional
LP solution. Note that 0 < w < 1.

The main steps of the procedure are as follows. One computes for each node u' € V' the
shortest path P, in B to its pendant u”. Each such path P,, interpreted as a set of nodes,
corresponds to an odd cycle C, in G through u, possibly with node repetitions. The weight
of C), is

w(Cu) = w(Pu) = yyrep, (1 —ay — ) = [Puf = 207 (Py) = |Cu| = 22%(Cu).-

w(Cy) <1 = [Cy] —1 < 207(Cy) = (|Cu| = 1)/2 < 2*(C).

Thus, a path P, in B with weight less than one corresponds to a violated odd cycle inequality.
Conversely, a shortest odd cycle through a node u corresponds to the path P,. This proves
that the GLS algorithm solves the separation problem for cycle inequalities in polynomial
time.

Our implementation of the GLS algorithm computes the shortest paths P, using Dijkstra’s
algorithm. When the distance labels of the nodes are kept in a binary heap, this results in a
running time of O(|F|?log |F| + |F||E|) = O(|F|?log|F| + |F|?); here, |E| is the number of
edges in the fractional intersection graph.
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We use a number of implementation tricks to make this method work in practice. First note
that it is not necessary to set up the auxiliary graph explicitly because adjacencies in B can
be read off from the neighbor lists of G(A.r). The only place where the auxiliary graph shows
up explicitly is the heap, where we have to store a distance label for each of the two copies
of a node. Second, one can exploit the special form of the distance function 1 — z} — x;‘ for
computing expressions of the form

dist[v] = min {dist[v],dist[u] + (1 — z} —z})}

that come up in the relabeling step. The three arithmetic operations that are required to
compute the term distf[u] + (1 — z}, — z}) for every neighbor v of u can be reduced to one
by a precomputation of the term dist[u] + 1 — z). A minor speed up can be achieved by
turning double z* values into integers (this saves about 10% of the running time). Third,
Dijkstra’s algorithm is a dynamic program. As we are interested in paths of length smaller
than one only, we can fathom a node as soon as its distance label dist[v] attains a value of
one or more. Fourth, note that the generic GLS algorithm computes the shortest path P, for
every node u € G(A.rp). Once this path P, is computed for a particular node w, this node
can be deleted from the graph without loosing the exactness of the method. This is correct
because a most violated cycle inequality passes through the node w or not. In the first case,
the path P, yields such a most violated inequality. In the second case, u is not relevant and
can therefore be removed. Note that this elimination strategy has the additional advantage
that it tends to produce violated cycle inequalities with disjoint support. It also paves the
way for a fifth implementation trick that is based on a special ordering of the starting nodes
for which we call Dijkstra’s algorithm. We order the nodes with respect to decreasing z*
value

1> ak

g

* *
2 Xgy 2 2wy >0,

- — TOF|

If we denote by G; the graph G(A.r)[{0i,...,0/p}] obtained from G(A.r) by deleting the
nodes {o1,...,0;_1} (the starting nodes for the previous i — 1 calls of Dijkstra’s algorithm),
all edge distances in G; satisfy

Wy =1 — 2y — 2, > 1 -2z

Any odd cycle C in G; must contain at least three such edges and we have for its weight
w(C) = [C| =2 cczy > |C| = 2|Clz},.

The last value in this sequence exceeds 1 if and only if
(1 =1/[C)/2 = 1/2(1 = 1/|C]) = x5,

This will be the case if z; <1 /3, i.e., we can stop computation as soon as the maximum
z*-value drops below 1/3. We compute with the GLS algorithm and these tricks paths P,
that correspond to odd closed walks in G(A.r) and extract from these a cycle without node
repetitions.

Lifting odd cycle inequalities is a bit more complicated than lifting clique inequalities.

Let us first turn to sequential lifting. Note that it is not difficult to lift a constant number of
variables into a cycle. We tried an implementation that does this for the first two variables,
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such that, in each of the two steps, a maximum additional violation of :Jc;‘ times the lifting
coefficient is achieved. More fractional variables were lifted heuristically. This sequential
method turned out to be slow, taking more time than the separation of the pure cycles.
Moreover, it did not produce many nonzero lifting coefficients.

Therefore, a simultaneous lifting method was implemented. This method identifies for each
edge ij in the cycle C' a row r = ry; in the matrix A such that {7, j} C supp A,,;. (breaking
ties arbitrarily). These rows are used to compute a Chvétal-Gomory cut that can be seen as
a lifting of the cycle inequality that corresponds to C: We add up the rows A, ., divide by
two, and round the coefficients down. Exploiting sparsity, this method can be implemented
in O(|C|np) time and exhibits a satisfactory computational behaviour.

One final issue on cycle separation is that it is possible that a violated inequality can result
from a lifting of a pure cycle inequality which is not tight. We exploit this heuristically in our
routine by increasing the “target length” of the paths in the GLS algorithm form one to some
larger value in a dynamic and adaptive fashion depending on the number of cycle inequalities
found in the previous call.

3.3.4 Aggregated Cycle Inequalities

The third class of inequalities that we try to separate are the aggregated cycle inequalities
of Section 2.6. Recall that these inequalities stem from a set packing relaxation of the set
covering problem.

Set packing inequalities tend to have the disadvantage of “smearing” the values of the LP
solution over their support. This tends to increase the number of fractional variables with
small values, which has all kinds of negative impacts on the solution process. To counter
these effects, one would like to use cutting planes for the set covering polytope that gather
some z* value on their support and prevent the LP solution from dilution. Unfortunately,
little algorithmically useful knowledge about such cutting planes is available. This was our
motivation for the development of the aggregated cycle inequalities.

Aggregated cycle inequalities are separated with the implementation of the GLS algorithm
that we have described in the previous subsection. The only difference is that the input graph
is a (small) subgraph &' = (', &) of the aggregated fractional intersection graph &(A.r),
which is of exponential size. The selection is guided by the desire to find a subgraph of “reason-
able” polynomial size and with many edges uo with small weights 1 — m,(2*) — mp(2*) = Wyp.
Such edges make it likely that cycles in & give rise to violated aggregated cycle inequalities.
We do not lift aggregated cycle inequalities.

Our heuristic to generate the subgraph &’ is the following. We generate two nodes I and I
for each row A;r of the matrix A.p. Namely, we subdivide the support of each row A;r into
two “equal sized halves”

supp Aip =1 T U T

with respect to a given fractional LP solution z*, i.e., we split (in some way) such that
Ajroy = Aifgc; and take U as the set of these “halves”:

U:={I,I|i=1,...,m}.

Two such nodes u and v are in conflict if their union contains some row of the matrix A.p.
These conflicts define the edges of the graph &.
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3.4 Computational Results

We report in this section on computational experiences with our branch-and-cut code BC. We
intend to investigate the following questions:

(i) Performance. What is the performance of BC on a standard test set of set partitioning
problems from the literature: The acs test set of Hoffman & Padberg [1993].

(ii) Branching versus Cutting. Do cutting planes make a significant contribution to the
solution of the problems in our test set?

(iii) Aggregated Cycle Inequalities. What is the effect of the aggregated cycle inequalities?

We have chosen the airline crew scheduling problems of Hoffman & Padberg [1993] as our test
set (see this reference for a thorough discussion of these instances) because they are publicly
available? and well known to the community. This makes it possible to compare our results
with those of the literature, see, e.g., Hoffman & Padberg [1993], Atamturk, Nemhauser &
Savelsbergh [1995], and Chu & Beasley [1995].

According to the guidelines of Crowder, Dembo & Mulvey [1979] and Jackson, Boggs, Nash
& Powell [1991] for reporting about computational experiments, we state that all test runs
were made on a Sun Ultra Sparc 2 Model 200E workstation with 512 MB of main memory,
running SunOS 5.5, that our branch-and-cut code BC was written in ANSI C compiled with
the Sun cc compiler and switches -fast -x05, and that we have used the CPLEX [1997]
Callable Library V5.0 as our LP solver.

The results of the following computational experiments are documented in tables that have
the following format. Column 1 gives the name of the problem, columns 2-4 its size in terms of
numbers of rows, columns, and nonzeros. These sizes are reduced by an initial preprocessing
to the numbers that appear in the next three columns. Columns 8 and 9 report solution values.
7 is the value of the best solution that the algorithm has computed. The —s in the succeeding
“Gap” column indicate that all of the problems have been solved to proven optimality. The
following 5 columns give details about the branch-and-cut computation. We list, from left
to right, the number of in- and out-pivots (Pvt) that are performed by the preprocessor, the
number of cutting planes (Cut) added, the number of simplex iterations to solve the LPs
(Itn), the number of LPs solved (LP), and the number of branch-and-bound nodes (B&B).
Running times (as a percentage of the total time) for these routines are contained in columns
15-19: Problem reduction (PP), pivoting (Pvt), separation (Cut), LP-solution (LP), and
primal heuristic (Heu). The last column gives the total running time in CPU seconds.

If not explicitly stated otherwise, all of our computations use the following default parameter
settings and strategies for our code BC. We use a best first search on the branch-and-bound
tree, the branching rule is strong branching (cf. Bixby, personal communication), i.e., we select
a set of fractional candidate variables close to 0.5 (we try 10 candidates), fix them tentatively
to 0 and 1, and perform a couple of dual simplex iterations with these fixings (we do 25
iterations). The variable that yields the largest increase in the smaller of the corresponding
two lower bound values is the branching variable. Our primal heuristic is a plunging method
that iteratively rounds fractional variables to the nearest integer and reoptimizes the linear
program (we round to 1.0 all variables with values above 0.8 or, if no such variable exists,
the one with the largest value, breaking ties arbitrarily). This heuristic is called once after
the solution of the initial LP relaxation and once at each node of the searchtree. The default

2 Anonymous ftp from happy.gmu.edu:/pub/acs
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strategy for separation is to call the row clique lifting routine, the greedy clique detection,
the RSF semiheuristic, and the GLS cycle algorithm. All of these procedures are called after
each individual LP. Among the violated inequalities that we have found, we select the most
violated ones up to a threshold that depends on the size of the LP and the number of cuts
found. In each iteration, cuts with positive slack (of more than 0.1) are removed from the
present LP. To avoid tailing off, we use an early branching strategy that stops the cutting
plane phase if the duality gap does not decrease significantly from one iteration to the next
(to 0.75 within any four successive iterations). Like the separation routines, the preprocessor
is invoked after each solution of an LP. The LPs themselves are solved with the dual simplex
algorithm and steepest edge pricing.

We have performed three computational ezperiments to answer the questions (i)—(iii). Our
Ezperiment 1 applies BC with the default strategy to the acs test set. In Faperiment 2, we
also separate aggregated cycle inequalities, all other parameter settings are identical. For
Ezperiment 3, we turn off the cut generation module of BC completely, i.e., we apply branch-
and-bound with preprocessing. Our results are summarized in Tables 3.4-3.6.

The statistics in these tables have quite some similarities and not only at first glance. We will,
in fact, argue in our analysis that the outcome of the three experiments is essentially the same
except for three “hard instances”, namely, nw04, aa04, and aa01; the other problems fall into
a number of categories of readily solvable instances. Our discussion will try to explain the
differences in the computational behavior of the instances in terms of two measures of problem
difficulty: Response to and/or size after preprocessing and the initial duality gap. Note that
these are a priori criteria, i.e., they are available prior to the solution of the problem and
can be used to predict expected solution efforts. We remark that we found these indicators
satisfactory not only for the acs problems, but also for two sets of “Telebus clustering and
chaining instances” (of different characteristics) from a vehicle scheduling application, confer
Section 4.7 for a discussion of computational results for these instances.

A first similarity is that the initial preprocessing does not depend on the different parameter
settings of the experiments, i.e., the reductions are always the same, see the “Preprocessed”
columns 5-7 in Tables 3.4-3.6. We have already given more detailed statistics on the initial
preprocessing step in Table 3.1. Taking another look at this data, we see that the first
27 instances up to nw31 are reduced to very small problems with less than 30 rows; all of
these simple instances can be solved in well under a second with all strategies.

Many of the remaining 28 problems are also fairly small and/or display minimal initial duality
gaps already after the first invocation of the primal heuristic and without adding any cutting
planes, see column “Gap” in Table 3.1. In fact, all but 9 of the instances 28-55 have a duality
gap of 1.0% or less. One would hope that the solutions of the initial LP relaxations of these
problems are close to integrality, i.e., they have only few fractional variables (one can not see
this from the tables), and this is indeed the case: 11 of the instances 28-55 have integral LP
solutions, the remaining fractional solutions are rounded to optimal ones at the root node
in all but 9 cases by BC’s simple plunging heuristic (this data is also not in the tables). It
is thus not surprising that those 19 of instances 28-55 with gap < 1.0% can be solved in
about 30 seconds with all strategies. Note that the solution statistics for the “hardest” of
these 19 problems, instances aa06, k101, aa05, and aa03, see the “Branch-and-Cut” columns
in Table 3.4, fit with our difficulty indicators in terms of size and gap: The difficulty of the
three aa instances is due to a large number of rows which leads to large bases and a relatively
large number of pivots in the LP solution process, see column “Itn” in Table 3.4, while k101
displays the largest initial duality gap of 1.0%, see column “Gap” in Table 3.1.
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The remaining nine instances nw06, nw18, nw03, nwl7, k102, us01, nw04, aa04, and aa0l are
the ones that require the use of cutting planes, see column “Cut” in Table 3.4, several LPs,
see column “LP”, and some branch-and-bound, see column “B&B”. The first five of these
can again be solved fast in about 30 CPU seconds no matter if many or no cutting planes at
all are used. This behavior is due to the fast decrease of the duality gap in the root section
of the searchtree: In Experiment 1, e.g., the optimum is not found in the first rounding of
the solution of the initial LP relaxation, but it comes up rapidly in trial 4, 2, 2, 4, and 2,
respectively, (recall that the plunging heuristic is called once after the solution of the initial
LP and once at each node, i.e., a 2 means that the optimum is found rounding the second
LP at the root node, while 4 refers to the first LP at node number 3). Comparing these
numbers with the size of the searchtree in column “B&B” reveals that the problems were
solved immediately after this happened.

The analysis of the previous paragraph applies also to problem us01: The optimum is found
at the root node with the second call to the heuristic, and then the problem is essentially
finished in all three experiments. us01 is not a hard problem, but a large one, accounting
for about 35% of both nonzeros and columns of the entire test set, and it just takes some
4 minutes to process all this data: The initial LP alone takes about 2 minutes.

We are thus indeed left with only three instances where the different use of cutting planes
in our experiments can make a difference: nw04, aa04, and aa01. Note that these problems
account for 363 out of a total of 444 branch-and-bound nodes in Experiment 1 (similar
statements hold for the other experiments), for 1,131 out of 1,355 LPs, for 54,307 out of
64,361 dual simplex iterations, for 293,737 out of 312,587 in- and out-pivots, and for 619.99
out of 1006.89 CPU seconds, i.e., the performance of our algorithm BC on these four problems
determines the outcome of our computational experiments completely. We would, however,
like to stress that the hitherto treated “simple instances” are formulations of real world
problems and that the ability to solve airline crew scheduling problems to proven optimality
in such short times is one of the most remarkable successes in operations research. To put it
in a pointed way: It is the computational well-behaviour that makes set partitioning models
so useful. As even the hard problems in the acs test set can be solved in about 5 minutes with
the default strategy, we answer question (i) about the performance of BC on the acs problems
with a confirmation of Hoffman & Padberg [1993]’s conclusion that “it is possible to solve very
large set-partitioning problems to proven optimality” and that “by using the [branch-and-cut]
technology described above and solving larger set-partitioning problems exactly ... than is
done today, the airline industry could see immediate and substantial dollar savings in their
crew costs”.

The three hard instances themselves fall again into two different categories, namely, instance
nw04 on the one and aa04 and aa01l on the other hand. The difference between them is that
nw04 has few rows and many columns, while the aa problems have the opposite property. We
will give now a number of heuristic arguments that suggest that set partitioning problems
with many rows tend to be more difficult for a branch-and-cut algorithm than problems with
many columns. In fact, there are only two occasions where BC examines the complete set of
columns: In the pricing step of the dual simplex algorithm and in the preprocessing. But these
steps take linear or log-linear time only. The more expensive modules work on data structures
whose size depends on the number m of rows: Refactorization works on a matrix of size O(m?)
and has quadratic running time, separation works on a fractional intersection graph of the
same size and has at least the same order of running time, and we expect the primal heuristic
to perform O(m) rounding steps requiring the same number of LP reoptimizations.
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In light of these arguments, it is not surprising that nw04 can be solved five to six times
faster than aa04 and aa0Ol. In fact, the solution time for nw04 is at most 85 seconds with
any strategy such that one could even question the classification of nw04 as a hard instance.
Looking at the solution statistics in the “Branch-and-Cut” columns 11-15 of Tables 3.4-3.6,
however, shows that nw04 has the same complexity as the aa problems: Its solution requires
a number of nodes, LPs, simplex iterations, and cutting planes that is in the same order of
magnitude as the figures for the aa problems. The three hard problems have in common that
the initial LP solution does not immediately reveal the optimum nor a proof of optimality,
and that the solution takes some algorithmic effort. The smaller running time for nw04 is
solely due to the smaller amount of computation at the individual nodes of the searchtree.
Recalling how the “simple instances” nw06, nwl8, nw03, nwl7, k102, and us01 could be
solved easily once the optimal solution was found, one might wonder if the hard problems are
difficult because BC’s simple plunging heuristic is unable to find good solutions? To answer
this question, we have run our code with the optimal solution as an additional input. It
turns out that primal knowledge does not make the problems much easier: For the default
strategy, e.g., we still needed 75/121/101 nodes, 247/392/313 LPs, 3,569/18,780/21,936 dual
simplex iterations, 709/1,333/1,067 cuts, and 38.110/181.900/289.320 CPU seconds to solve
nw04/aa04/aa01, respectively (the decrease in the running times of nw04 and aa04 is mainly
due to a more effective reduced cost fixing, while aa01 takes, in fact, even longer to solve!).
Closing the gap from the dual side thus seems to be what makes instances nw04, aa04, and
aa01 hard. Here is where cutting planes come into play and where the different separation
strategies in Experiments 1-3 make a difference. We first turn to question (ii) about the
significance of cutting planes for the solution process. Comparing the results of Experiment 1
in Table 3.4 with the default strategy to the outcome of the branch-and-bound Experiment 3
in Table 3.6 gives the disappointing result that the negligence of the cuts is not punished
with an increase in running time. There is only a redistribution away from cut generation
and the LP to the other modules of BC. Hence, our timing statistics give no arguments in
favor of cutting planes. The “Branch-and-Cut” parts of Tables 3.4 and 3.6, however, provide
some justification for the use of cutting planes: Cuts reduce the size of the searchtree from
203/441/131 nodes in Experiment 1 to only 85/181/97 in Experiment 3, and similar albeit
smaller reductions apply to the number of LPs, dual simplex iterations, and in- and out-pivots.
These findings do certainly not speak against the use of cutting planes in computational set
partitioning.

Experiment 2 was designed to investigate another step in this direction: Do the aggregated
cycle inequalities of Section 2.6 yield a computational advantage? The answer to question (iii)
is similar to our findings for question (ii). Comparing the results of Experiment 1 in Table 3.4
with the statistics on Experiment 2 in Table 3.5 displays an increase in running time by a
factor of three when aggregated cycle inequalities are used. This outcome is, however, solely
due to the experimental status of our aggregated cycle separation routine: An examination
of the “Cut” column in the “Timings” section of Table 3.5 shows that about 70% of the
running time is spent in this module. The “Branch-and-Cut” statistics show some encouraging
effects of aggregated cycle separation: The searchtrees are reduced from 85/181/97 nodes to
49/133/111 nodes, and similar savings can be observed for the number of LPs and dual simplex
iterations. We feel that these results indicate some potential for aggregated cycle inequalities
and strongly believe that cuts of such aggregation types are valuable for solving hard integer
programming problems (not only set partitioning problems). The separation module itself
leaves ample room for improvement and this is one of the issues of future research.



143

3.4 Computational Results

Original Problem Preprocessed Solutions Branch-and-Cut Timings/% Total

Name Rows Cols NNEs Rows Cols NNEs z  Gap/% Pvt Cut Itn LP B&B PP Pvt Cut LP Heu Time/Sec
nw4l 17 197 740 17 177 672 11307 — 34 0 14 3 1 50 0 0 50 0 0.02
nw32 19 294 1357 17 241 1116 14877 — 74 0 23 6 3 0 33 0 0 0 0.03
nw40 19 404 2069 19 336 1715 10809 — 71 11 19 4 1 0 33 0 0 0 0.03
nw08 24 434 2332 19 349 1844 35894 — 0 0 25 1 1 50 0 0 50 0 0.02
nwlb 31 467 2830 29 465 2820 67743 — 0 0 17 1 1 50 0 0 50 0 0.02
nw2l 25 577 3591 25 426 2591 7408 — 76 6 16 3 1 60 0 20 20 0 0.05
nw22 23 619 3399 23 531 2958 6984 — 46 0 22 3 1 50 0 0 25 25 0.04
nwl2 27 626 3380 25 451 1653 14118 — 0 0 41 1 1 50 0 0 50 0 0.02
nw39 25 677 4494 25 567 3725 10080 — 51 0 15 5 3 20 20 0 20 20 0.05
nw20 22 685 3722 22 566 3112 16812 — 66 0 25 3 1 50 25 0 25 0 0.04
nw23 19 711 3350 12 430 1937 12534 — 37 0 25 3 1 50 17 0 0 0 0.06
nw37 19 770 3778 19 639 3143 10068 — 39 2 19 3 1 17 17 0 0 0 0.06
nw26 23 et 4215 21 514 2722 6796 — 43 3 24 3 1 20 20 0 20 0 0.05
nwl0 24 853 4336 20 643 3153 68271 — 0 0 28 1 1 0 0 0 0 0 0.02
nw34 20 899 5045 20 750 4224 10488 — 40 2 24 3 1 25 0 0 25 0 0.04
nw28 18 1210 8553 18 599 3898 8298 — 31 0 17 3 1 33 0 0 67 0 0.03
nw25 20 1217 7341 20 844 5090 5960 — 60 13 30 4 1 33 0 0 33 11 0.09
nw38 23 1220 9071 20 881 6400 5558 — 40 0 26 3 1 33 0 11 33 0 0.09
nw27 22 1355 9395 22 926 6266 9933 — 44 0 16 3 1 17 17 0 17 0 0.06
nw24 19 1366 8617 19 926 5844 6314 — 60 2 21 4 1 43 43 0 29 14 0.07
nn01 18 1072 4859 17 983 4412 8904 — 68 3 25 3 1 38 12 0 12 12 0.08
nn02 23 1079 6533 19 820 4938 7656 — 38 0 25 3 1 25 0 0 12 0 0.08
nw35 23 1709 10494 23 1403 8718 7216 — 47 2 19 3 1 20 10 0 30 10 0.10
nw36 20 1783 13160 20 1408 10176 7314 — 212 26 103 17 5 16 8 8 22 10 0.49
nw29 18 2540 14193 18 2034 11345 4274 — 178 14 80 11 3 16 14 8 24 5 0.37
nw30 26 2653 20436 26 1884 14603 3942 — 130 7 30 7 3 7 5 4 18 2 0.56
nw3l 26 2662 19977 26 1823 13846 8038 — 52 2 25 3 1 29 0 0 29 0 0.14
nwl9 40 2879 25193 32 2134 14968 10898 — 0 0 48 1 1 31 0 0 38 0 0.13
nw33 23 3068 21704 23 2415 17081 6678 — 60 3 23 4 1 29 0 0 24 6 0.17
nw09 40 3103 20111 33 2296 14065 67760 — 0 0 54 1 1 36 0 0 36 0 0.14
nw07 36 5172 41187 33 3104 23808 5476 — 0 0 42 1 1 35 0 0 40 0 0.20
aa02 531 5198 36359 361 3928 21822 30494 — 0 0 805 1 1 8 0 0 88 0 1.99
nw06 50 6774 61555 37 5936 44730 7810 — 259 5 109 7 3 22 8 2 37 3 1.02
aa06 646 7292 51728 507 6064 36671 27040 — 3902 64 1580 11 3 11 8 2 68 5 8.76
k101 55 7479 56242 47 5957 37709 1086 — 694 32 176 11 3 18 12 2 27 12 1.79
aa05 801 8308 65953 533 6371 37503 53839 — 6997 129 2141 23 7 9 8 3 59 13 13.62
aa03 825 8627 70806 558 6970 43800 49649 — 2741 21 1916 4 1 7 6 0 79 5 12.47
nwll 39 8820 57250 28 5946 34614 116256 — 59 2 50 3 1 34 9 0 25 4 0.56
nwl8 124 10757 91028 81 7934 51304 340160 — 490 12 208 3 1 20 11 4 41 8 2.19
us02 100 13635 192716 44 8946 66594 5965 — 0 0 118 1 1 27 0 0 56 0 1.31
nwl3 51 16043 104541 48 10901 62356 50146 — 98 0 103 5 3 27 8 0 33 5 1.24
us04 163 28016 297538 98 4285 33597 17854 — 198 0 139 3 1 48 3 0 18 4 1.63
nw03 59 43749 363939 53 38956 318977 24492 — 157 5 130 4 1 18 5 0 48 9 7.34
nw01 135 51975 410894 135 50069 396507 114852 — 0 0 131 1 1 23 0 0 46 0 2.70
us03 7 85552 1211929 50 23207 238665 5338 — 0 0 75 1 1 47 0 0 29 0 5.50
nw02 145 87879 721736 145 85258 701959 102903 — 0 0 147 1 1 21 0 0 50 0 5.61
nwl7 61 118607 1010039 54 78173 647646 11115 — 596 21 206 9 3 15 8 1 45 4 29.03
nwl4 73 123409 904910 68 95169 651188 61844 — 0 0 223 1 1 19 0 0 71 0 19.23
nwl6 139 148633 1501820 0 1 0 1181590 — 0 0 0 0 0 81 0 0 0 0 7.11
nw05 71 288507 2063641 58 202482 1404493 132878 — 0 0 172 1 1 24 0 0 62 0 30.72
k102 71 36699 212536 69 16542 95192 219 — 1031 35 289 8 1 19 9 1 44 11 6.05
us01 145 1053137 13636541 86 351018 3161451 1003600 — 1068 31 415 12 3 21 6 0 47 6 228.68
nw04 36 87482 636666 35 46189 331225 16862 — 6209 775 4647 282 85 8 5 5 25 15 57.04
aa04 426 7195 52121 343 6200 38201 26374 — 168936 1677 30049 555 181 8 8 12 29 15 319.19
aal0l 823 8904 72965 616 7625 48627 56137 — 117555 944 19611 294 97 7 9 10 36 14 238.76
55 | 6378 2305749 24174915 | 4736 1105692 __ 8707674 | 3916911 _ — | 312587 _ 3849 _ 64361 __ 1355 144 13 7 7 39 11 1006.89

Table 3.4: Solving Set Partitioning Problems by Branch-and-Cut: Default Strategy.
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Original Problem Preprocessed Solutions Branch-and-Cut Timings/% Total
Name Rows Cols NNEs Rows Cols NNEs z  Gap/% Pvt Cut Itn LP B&B PP Pvt Cut LP Heu Time/Sec
nw4l 17 197 740 17 177 672 11307 — 34 0 14 3 1 0 0 0 0 50 0.02
nw32 19 294 1357 17 241 1116 14877 — 74 0 23 6 3 0 20 40 0 20 0.05
nw40 19 404 2069 19 336 1715 10809 — 57 6 18 3 1 25 0 25 0 0 0.04
nw08 24 434 2332 19 349 1844 35894 — 0 0 25 1 1 100 0 0 0 0 0.01
nwlb 31 467 2830 29 465 2820 67743 — 0 0 17 1 1 100 0 0 0 0 0.01
nw2l 25 577 3591 25 426 2591 7408 — 76 6 16 3 1 40 0 0 20 0 0.05
nw22 23 619 3399 23 531 2958 6984 — 46 0 22 3 1 25 0 0 25 0 0.04
nwl2 27 626 3380 25 451 1653 14118 — 0 0 41 1 1 50 0 0 50 0 0.02
nw39 25 677 4494 25 567 3725 10080 — 51 0 15 5 3 40 0 20 20 0 0.05
nw20 22 685 3722 22 566 3112 16812 — 66 0 25 3 1 33 17 0 17 17 0.06
nw23 19 711 3350 12 430 1937 12534 — 37 0 25 3 1 50 33 0 0 0 0.06
nw37 19 770 3778 19 639 3143 10068 — 39 2 19 3 1 0 0 0 40 0 0.05
nw26 23 et 4215 21 514 2722 6796 — 43 3 24 3 1 40 0 20 20 0 0.05
nwl0 24 853 4336 20 643 3153 68271 — 0 0 28 1 1 0 0 0 50 0 0.02
nw34 20 899 5045 20 750 4224 10488 — 40 2 24 3 1 20 40 0 20 20 0.05
nw28 18 1210 8553 18 599 3898 8298 — 31 0 17 3 1 17 0 17 17 0 0.06
nw25 20 1217 7341 20 844 5090 5960 — 40 7 26 3 1 29 14 14 14 14 0.07
nw38 23 1220 9071 20 881 6400 5558 — 40 0 26 3 1 25 12 12 25 12 0.08
nw27 22 1355 9395 22 926 6266 9933 — 44 0 16 3 1 29 14 0 29 14 0.07
nw24 19 1366 8617 19 926 5844 6314 — 60 2 22 4 1 50 25 0 25 12 0.08
nn01 18 1072 4859 17 983 4412 8904 — 68 3 25 3 1 22 22 11 11 22 0.09
nn02 23 1079 6533 19 820 4938 7656 — 38 0 25 3 1 38 12 0 38 12 0.08
nw35 23 1709 10494 23 1403 8718 7216 — 47 2 19 3 1 40 20 0 20 10 0.10
nw36 20 1783 13160 20 1408 10176 7314 — 179 17 93 15 5 11 8 9 23 8 0.53
nw29 18 2540 14193 18 2034 11345 4274 — 242 24 70 15 5 12 12 15 21 4 0.52
nw30 26 2653 20436 26 1884 14603 3942 — 104 7 29 4 1 17 14 14 17 3 0.29
nw3l 26 2662 19977 26 1823 13846 8038 — 52 2 25 3 1 29 0 7 29 0 0.14
nwl9 40 2879 25193 32 2134 14968 10898 — 0 0 48 1 1 31 0 0 38 0 0.13
nw33 23 3068 21704 23 2415 17081 6678 — 60 3 23 4 1 28 17 0 22 6 0.18
nw09 40 3103 20111 33 2296 14065 67760 — 0 0 54 1 1 36 0 0 36 0 0.14
nw07 36 5172 41187 33 3104 23808 5476 — 0 0 42 1 1 38 0 0 38 0 0.21
aa02 531 5198 36359 361 3928 21822 30494 — 0 0 805 1 1 9 0 0 87 0 1.97
nw06 50 6774 61555 37 5936 44730 7810 — 222 7 101 7 3 21 6 5 34 2 1.08
aa06 646 7292 51728 507 6064 36671 27040 — 3675 52 1569 8 1 9 7 21 57 3 11.13
k101 55 7479 56242 47 5957 37709 1086 — 530 44 166 10 3 17 11 13 24 10 2.05
aa05 801 8308 65953 533 6371 37503 53839 — 6030 115 2045 23 7 7 6 20 49 11 15.94
aa03 825 8627 70806 558 6970 43800 49649 — 2740 20 1902 4 1 7 6 3 T 5 12.77
nwll 39 8820 57250 28 5946 34614 116256 — 59 2 50 3 1 30 9 0 25 5
nwl8 124 10757 91028 81 7934 51304 340160 — 490 12 208 3 1 19 10 7 40 8
us02 100 13635 192716 44 8946 66594 5965 — 0 0 118 1 1 28 0 0 55 0 1
nwl3 51 16043 104541 48 10901 62356 50146 — 98 0 103 5 3 27 6 0 34 5 1.
us04 163 28016 297538 98 4285 33597 17854 — 198 0 139 3 1 48 3 1 18 4 1.61
nw03 59 43749 363939 53 38956 318977 24492 — 157 5 133 4 1 18 6 0 48 9 7.19
nw01 135 51975 410894 135 50069 396507 114852 — 0 0 131 1 1 23 0 0 46 0 2.60
us03 7 85552 1211929 50 23207 238665 5338 — 0 0 75 1 1 47 0 0 30 0 5.38
nw02 145 87879 721736 145 85258 701959 102903 — 0 0 147 1 1 22 0 0 50 0 5.15
nwl7 61 118607 1010039 54 78173 647646 11115 — 678 26 234 9 3 14 8 4 41 4 30.37
nwl4 73 123409 904910 68 95169 651188 61844 — 0 0 223 1 1 17 0 0 74 0 17.90
nwl6 139 148633 1501820 0 1 0 1181590 — 0 0 0 0 0 81 0 0 0 0 7.00
nw05 71 288507 2063641 58 202482 1404493 132878 — 0 0 172 1 1 25 0 0 62 0 29.87
k102 71 36699 212536 69 16542 95192 219 — 1402 67 373 14 3 15 9 8 36 9 8.11
us01 145 1053137 13636541 86 351018 3161451 1003600 — 1523 71 454 18 5 19 6 3 43 6 247.38
nw04 36 87482 636666 35 46189 331225 16862 — 3572 543 3014 164 49 4 3 30 17 10 84.67
aa04 426 7195 52121 343 6200 38201 26374 — 145213 1467 22638 457 133 2 2 81 6 3 1170.24
aal0l 823 8904 72965 616 7625 48627 56137 — 150784 1027 25132 342 111 2 3 70 12 5 1108.96
55 | 6378 2305749 24174915 | 4736 _ 1105692 __ 8707674 | 3916911 _ — | 318939 _ 3544 _ 60828 1192 376 5 3 63 15 1 2780.07

Table 3.5: Solving Set Partitioning Problems by Branch-and-Cut: Separating Aggregated Cycle Inequalities.
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3.4 Computational Results

Original Problem Preprocessed Solutions Branch-and-Cut Timings/% Total

Name Rows Cols NNEs Rows Cols NNEs z  Gap/% Pvt Cut Itn LP B&B PP Pvt Cut LP Heu Time/Sec
nw4l 17 197 740 17 177 672 11307 — 34 0 14 3 1 33 0 0 0 0 0.03
nw32 19 294 1357 17 241 1116 14877 — 74 0 23 6 3 20 0 0 0 40 0.05
nw40 19 404 2069 19 336 1715 10809 — 71 0 19 5 3 0 0 0 0 0 0.04
nw08 24 434 2332 19 349 1844 35894 — 0 0 25 1 1 50 0 0 50 0 0.02
nwlb 31 467 2830 29 465 2820 67743 — 0 0 17 1 1 50 0 0 50 0 0.02
nw2l 25 577 3591 25 426 2591 7408 — 76 0 21 5 3 17 0 0 33 17 0.06
nw22 23 619 3399 23 531 2958 6984 — 46 0 22 3 1 25 0 0 50 0 0.04
nwl2 27 626 3380 25 451 1653 14118 — 0 0 41 1 1 50 0 0 50 0 0.02
nw39 25 677 4494 25 567 3725 10080 — 51 0 15 5 3 25 0 0 50 0 0.04
nw20 22 685 3722 22 566 3112 16812 — 66 0 25 3 1 17 0 0 17 17 0.06
nw23 19 711 3350 12 430 1937 12534 — 37 0 25 3 1 17 33 0 17 0 0.06
nw37 19 770 3778 19 639 3143 10068 — 39 0 19 5 3 50 25 0 25 0 0.04
nw26 23 et 4215 21 514 2722 6796 — 43 0 23 5 3 20 20 0 20 0 0.05
nwl0 24 853 4336 20 643 3153 68271 — 0 0 28 1 1 33 0 0 0 0 0.03
nw34 20 899 5045 20 750 4224 10488 — 40 0 26 5 3 17 33 0 17 17 0.06
nw28 18 1210 8553 18 599 3898 8298 — 31 0 17 3 1 20 0 0 20 0 0.05
nw25 20 1217 7341 20 844 5090 5960 — 80 0 32 5 3 20 10 0 20 20 0.10
nw38 23 1220 9071 20 881 6400 5558 — 40 0 26 3 1 25 12 0 12 12 0.08
nw27 22 1355 9395 22 926 6266 9933 — 44 0 16 3 1 29 0 0 14 14 0.07
nw24 19 1366 8617 19 926 5844 6314 — 76 0 23 6 3 33 33 0 22 11 0.09
nn01 18 1072 4859 17 983 4412 8904 — 101 0 29 5 3 25 17 0 8 17 0.12
nn02 23 1079 6533 19 820 4938 7656 — 38 0 25 3 1 43 0 0 43 14 0.07
nw35 23 1709 10494 23 1403 8718 7216 — 47 0 18 5 3 40 20 0 20 10 0.10
nw36 20 1783 13160 20 1408 10176 7314 — 126 0 91 12 7 10 10 0 22 8 0.40
nw29 18 2540 14193 18 2034 11345 4274 — 235 0 96 18 11 14 11 0 25 11 0.44
nw30 26 2653 20436 26 1884 14603 3942 — 182 0 38 8 5 9 9 0 15 7 0.67
nw3l 26 2662 19977 26 1823 13846 8038 — 52 0 25 3 1 21 7 0 29 7 0.14
nwl9 40 2879 25193 32 2134 14968 10898 — 0 0 48 1 1 38 0 0 31 0 0.13
nw33 23 3068 21704 23 2415 17081 6678 — 60 0 23 6 3 21 0 0 26 5 0.19
nw09 40 3103 20111 33 2296 14065 67760 — 0 0 54 1 1 36 0 0 36 0 0.14
nw07 36 5172 41187 33 3104 23808 5476 — 0 0 42 1 1 35 0 0 30 0 0.20
aa02 531 5198 36359 361 3928 21822 30494 — 0 0 805 1 1 9 0 0 87 0 1.96
nw06 50 6774 61555 37 5936 44730 7810 — 560 0 120 14 9 19 9 0 27 5 1.34
aa06 646 7292 51728 507 6064 36671 27040 — 4378 0 1621 15 9 11 10 0 63 5 9.83
k101 55 7479 56242 47 5957 37709 1086 — 848 0 210 22 13 18 11 0 22 11 2.18

aa05 801 8308 65953 533 6371 37503 53839 — 6761 0 2271 27 15 8 7 0 52 16 15.79
aa03 825 8627 70806 558 6970 43800 49649 — 4709 0 2049 9 5 7 9 0 68 5 14.71
nwll 39 8820 57250 28 5946 34614 116256 — 59 0 49 4 1 32 8 0 24 5 0.59
nwl8 124 10757 91028 81 7934 51304 340160 — 968 0 227 6 3 14 9 0 21 7 4.95
us02 100 13635 192716 44 8946 66594 5965 — 0 0 118 1 1 28 0 0 56 0 1.33

nwl3 51 16043 104541 48 10901 62356 50146 — 98 0 103 5 3 27 7 0 34 5 1.23
us04 163 28016 297538 98 4285 33597 17854 — 198 0 139 3 1 49 2 0 17 4 1.60

nw03 59 43749 363939 53 38956 318977 24492 — 157 0 154 6 3 18 5 0 48 9 7.41
nw01 135 51975 410894 135 50069 396507 114852 — 0 0 131 1 1 23 0 0 46 0 2.70
us03 7 85552 1211929 50 23207 238665 5338 — 0 0 75 1 1 48 0 0 29 0 5.42

nw02 145 87879 721736 145 85258 701959 102903 — 0 0 147 1 1 22 0 0 49 0 5.12
nwl7 61 118607 1010039 54 78173 647646 11115 — 756 0 214 11 5 16 8 0 46 5 25.76
nwl4 73 123409 904910 68 95169 651188 61844 — 0 0 223 1 1 17 0 0 74 0 18.41
nwl6 139 148633 1501820 0 1 0 1181590 — 0 0 0 0 0 81 0 0 0 0 7.13
nw05 71 288507 2063641 58 202482 1404493 132878 — 0 0 172 1 1 24 0 0 63 0 30.89
k102 71 36699 212536 69 16542 95192 219 — 3999 0 773 137 79 13 7 0 28 7 11.87

us01 145 1053137 13636541 86 351018 3161451 1003600 — 1208 0 382 13 7 21 6 0 46 6 230.56

nw04 36 87482 636666 35 46189 331225 16862 — 3909 0 1672 310 203 9 4 0 20 22 32.92
aa04 426 7195 52121 343 6200 38201 26374 — 228717 0 31882 714 441 11 9 0 21 16 341.99
aal0l 823 8904 72965 616 7625 48627 56137 — 85521 0 15780 208 131 7 10 0 33 16 213.51
55 | 6378 2305749 _ 24174915 | 4736 1105692 _ 8707674 | 3916911 _ — | 344535 0 60263 1646 1010 14 7 0 35 12 992.81

Table 3.6: Solving Set Partitioning Problems by Branch-and-Bound.
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Chapter 4

Vehicle Scheduling at Telebus

Summary. This chapter is about set partitioning methods for vehicle scheduling in dial-a-
ride systems. We consider the optimization of Berlin’s Telebus for handicapped people that
services 1,500 requests per day with a fleet of 100 mini buses. Our scheduling system is in
use since June 3, 1995 and resulted in improved service and significant cost savings.
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4.1 Introduction

This chapter is about set partitioning methods for vehicle scheduling in dial-a-ride systems
and their application at Berlin’s Telebus for handicapped people.
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Dial-a-ride systems give rise to challenging optimization problems that involve strategic as
well as operational planning, uncertainty and on-line aspects, decisions in space and time,
complicated feasibility constraints and multiple objectives, “soft” data, “fuzzy” rules, and
applications of large scale. This colorful manifold of topics is matched by the wide variety
of methods that have been developed to solve the planning questions of this area: Dynamic
programming algorithms, network models, set partitioning/set covering and other integer
programming approaches, and all kinds of combinatorial heuristics, single and multi-phased,
cluster-first schedule-second and vice versa, etc. For surveys on dial-a-ride problems and
solution methods we refer the reader to Desrosiers, Dumas, Solomon & Soumis [1995] and
the thesis of Sol [1994, Chapter 1], see also Hamer [1997] for a recent description of a modern
large-scale dial-a-ride system for handicapped people in Toronto and the thesis of Tesch [1994]
(German) for the example of the German city of Passau.

We discuss in this chapter the application of some of these optimization methods to vehicle
scheduling in a specific dial-a-ride system: Berlin’s Telebus for handicapped people. Our
approach is based on a decomposition of this dial-a-ride problem into a “clustering” and a
“chaining” step. Both of these steps lead to set partitioning problems that we attack with
heuristic and branch-and-cut methods. These procedures form an optimization module that
is the heart of a computer system that integrates and automates the complete operation of
the Telebus center. This system is in use since June 3, 1995 and lead to improvements in
service, cost reductions, and increased productivity of the center.

This chapter is organized in seven sections in addition to this introduction. Section 4.2 de-
scribes Berlin’s Telebus transportation system for handicapped people and our project to
optimize the operation of this service. The core of the project was the development of mathe-
matical optimization methods and software to solve the vehicle scheduling problem that comes
up at Telebus; this particular dial-a-ride problem is discussed in Section 4.3. Section 4.4 in-
troduces our two-phase clustering and chaining solution approach and the associated set par-
titioning models. The approach involves cluster and tour generation steps that are discussed
in Sections 4.5 and 4.6. Computational experiences with our vehicle scheduling method are
discussed in Section 4.7 and some possible future perspectives in the final Section 4.8.

Figure 4.1: A Telebus Picks Up a Customer.
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4.2 Telebus

Accessibility of the public transportation system for mobility disabled people has become an
important political goal for many municipalities: They introduce low-floor buses, install lifts
in subway stations, etc. But many handicapped and elderly people still have problems because
they need additional help, the next station is too far away, or the line they want to use is not
yet accessible. Berlin, like many other cities, offers to these people a special transportation
service: The so-called Telebus provides (i) door-to-door transportation and (ii) assistance at
the pick-up and the drop-off point. The system is operated by the Berliner Zentralausschufl
fir Soziale Aufgaben e.V. (BZA), an association of charitable organizations, and financed
by the Berliner Senatsverwaltung fiir Soziales (SenSoz), the city of Berlin’s Department for
Social Affairs. Figure 4.1 on page 158 shows a Telebus that picks up a customer.

Telebus is a dial-a-ride system: Every entitled user (currently about 25,000 people) can order
up to 50 rides per month through the BZA’s telephone center. If the order is placed one
day in advance, Telebus guarantees to service the ride as requested, later “spontaneous”
requests are serviced as possible. The advance orders, about 1,500 during the week and
1,000 on weekends, are collected and scheduled into a fleet of mini-buses that Telebus rents
on demand from service providers like charitable organizations and commercial companies.
These buses pick up the customers at the requested time (modulo a certain tolerance) and
transport him/her to the desired destination; if required, the crew provides assistance to leave
the apartment, enter the vehicle, etc. This service is available every day from 5:00 am in the
morning to 1:00 am in the night. Figures 4.2 and 4.3 illustrate operation and organization of
the Telebus system.

(5' order customer
) telephone center BZA
bus scheduling BZA
bus renting BZA

transportation service provider

financing, goals  SenSoz

Figure 4.2: Operation of the Telebus System.

Telebus was established in 1981 and ever since then the number of customers and requests has
been rapidly increasing. Figure 4.4 on page 161 gives an impression of the dramatic history of
Telebus in this period of time; the numbers for the years up to 1993 are taken from T 336 of
the report of the Rechnungshof von Berlin (Berlin’s audit division) for the year 1994, the other
data was provided by the BZA. We see first that there is a constant growth in the number of
entitled users. But not all registered persons drive: The number of customers, i.e., persons
that order rides, was basically constant and started to increase only after the reunification
of Germany in 1990; the delay until 1992 is due to the initial lack of private telephones in
the East. Costs got out of control in 1988, when a tazi voucher system was introduced that
allowed for a certain number of spontaneous rides with taxis in addition to the bus rides.
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Telebus

. . Fahrdienst fiir Behinderte

=T

sl

Figure 4.3: Organization of the Telebus System.
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When costs topped 30 million DM in 1991, drastic service reductions were taken to stop this
trend: The voucher system was replaced by a taxi account system that limits taxi rides to
300 DM per person and month. But with new demand from East Berlin and a doubled area
of service, costs were almost immediately up at 30 million DM again. What could be done?

Telebus Computer System
Taxi Account System
Taxi Voucher System

0 T T T T T T T Year
82 84 8 88 90 92 94 96

| Costs in Million DM
] Entitled Users in Thousands
o Customers in Thousands

Figure 4.4: Increasing Usage and Costs of Telebus.

The best way to control costs without reducing the service was a better vehicle scheduling to
service more requests for the same amount of money. The scheduling was traditionally done
manually by experienced planners who could work out a feasible bus plot in about 16 man-
hours. Now it became clear that this method was no longer appropriate to cope with rising
demand and cost pressure. The core scheduling problem of the BZA could only be solved
with modern computer hard- and software and the Telebus project, a cooperation involving
the ZIB, the BZA, and the SenSoz (Intranetz joined later, see next paragraph), was started
to develop it. The Telebus dial-a-ride problem, the methods that we use for its solution, and
our computational experiences are what we are going to discuss in the subsequent sections of
this chapter.

The project developed a broader scope. It soon turned out that a mathematical vehicle
scheduling tool alone was not enough and the project evolved quickly into the development
of a comprehensive Telebus computer system, that integrates and automates the complete
operation of the BZA: Reservation, confirmation, and cancellation, vehicle scheduling, radio
telephony, accounting, controlling, and statistics. The system consists of a tool box of software
modules and runs on a network of 20 MacIntosh PCs; it is in operation since June 3, 1995.
Design and installation of the Telebus computer system lead further to a reorganization of
the center and the whole Telebus service with issues that ranged from a new bus renting
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“mix” and “mode” to scheduling training of BZA staff. Fridolin Klostermeier and Christian
Kiuttner, in particular, worked with great personal dedication for more than a year in the
Telebus center, drove on Telebuses, etc. Finally, they even set up their own company, the
Intranetz GmbH, that has scheduling systems for dial-a-ride systems as one of its business
areas. More information on the consulting aspect of the Telebus project can be found in the
articles Borndorfer et al. [1996, 1997a,b], and the thesis of Klostermeier & Kiittner [1993] (all
these publications are in German).

All these measures together —negotiations with vehicle providers, reorganization of center
and service, the new computer system, and improved vehicle scheduling— resulted in

(i) Improvements in service: A reduction of the advance call-in period period from three
days in 1992 to one day and increased punctuality of the schedule in comparison to the
results of manual planning.

(ii) Cost reductions: Today, about 30% more requests can be serviced with the same
resources as in 1992, see Figure 4.5 for a comparison of a month in 1994 before and in
1996 after the Telebus computer system went into operation.

(iii) More productivity in the Telebus center.

Requests Costs in DM
X 2.000.000
1.500.000
1.000.000
500.000
0 0
[ ] Mai 1994

Figure 4.5: Results of the Telebus Project.

4.3 The Vehicle Scheduling Problem

The most important task at Telebus is the daily construction of the wvehicle schedule, which
determines the two most important objectives of the service: Operation costs and customer
satisfaction. This vehicle scheduling problem is a dial-a-ride problem that can be stated in
an informal way as follows:

Given the customer requests, rent a suitable set of available vehicles and schedule
(DARP) all requests into them such that a number of constraints on the feasibility of
vehicle tours are satisfied and operation costs are minimum.

In the remainder of this section, we discuss the Telebus DARP in detail.
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Figure 4.6: Telebus Requests in June 1995.

4.3.1 Pieces of Work

The basis for vehicle scheduling are the wvehicles. Vehicles always come together with a crew
for a possible shift of operation; following the terminology of Desrosiers, Dumas & Soumis
[1988], we call such a part or all of a workday, during which a crew and a vehicle is available
to service requests, a piece of work. The supply of pieces of work is determined by the vehicle
providers who offer about 100 pieces of work of different types. The available pieces of work
are known in advance and Telebus can rent them on a daily, weekly, or monthly basis (long
term renting can be cheaper).
The following data is associated to a piece of work w:
(i) vy vehicle type: Teletaxi, 1-bus/2-bus small/large
(i) c(vy) = (¢ %, ™, el ¢*)(vy) capacity:
total # of customers and wheelchairs

# of non-folding/folding wheelchairs

# of ambulatories
(iii) G(w) group: vehicle type, depot, type of shift

(W)

The wvehicle types are five: Teletazis (taxis that are rented like buses), I-buses (with one
driver), that can be small or large, and 2-buses, also small or large. The vehicle type is
important for deciding whether a request can be serviced by a particular piece of work:
Teletaxis can transport only ambulatories and customers with folding wheelchairs, non-folding
wheelchairs require a bus, and staircase assistance a 2-bus, see Figure 4.6 for statistics on
Telebus requests which show a typical weekly distribution pattern.

Each vehicle has a capacity, that depends on the type: It can transport cf(vw) persons in
folding and ¢"f(v,) persons in non-folding wheelchairs, but at most ¢¥(v,) wheelchairs at
the same time, plus ¢*(v,,) ambulatories, in total at most ¢“(v,,) customers. Teletaxis have
a capacity of c(vy) = (3,1,0,1,3), i.e., they can service up to three customers at the same
time and one of them can have a folding wheelchair. The small buses have a capacity of
c(vy) = (5,2,2,2,3), large buses have c(v,) = (7,3,3,3,4); note that this allows to account
for the (Telebus) rule that persons in folding wheelchairs travel in buses in their wheelchair.
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Finally, the set W of all pieces of work falls into disjoint groups W = [JG. A group G is
a set of pieces of work that are considered to be indistinguishable for the purpose of vehicle
scheduling, i.e., the pieces of work of the same group have vehicles of the same type, which are
stationed at the same depot, and they can be rented for identical shifts of operation; possible
shifts are 8.5 and 10.5 hours fixed length, and early, late, and certain flexible shifts of variable
duration. The groups will become important for the construction of vehicle tours, namely,
we will require group specific parameter settings or even group specific algorithms to come
up with tours that can be serviced by the pieces of a work of a given group.

4.3.2 Requests

The pieces of work will be used to service some number m of transportation requests.

i) v, pick-up and drop-off event
(i)  p(v;"),p(v]) pick-up and drop-off location
(ii)) T(v;") = [t(v;"), E(v;)] pick-up time window
T(v;) = [t(v; ), t(v; )] drop-off time window
(R) (iv) tTH(v1), tT(v;) pick-up and drop-off service time
v) W), W) set of feasible pieces of work
(vi) a(v]") = (a%,a%,a™,a’,a?)(v;]"), total # of customers and wheelchairs
a(v; ) = (a%,a",a™, al, a?) (v;) # of non-folding and folding wheelchairs

# of ambulatories

Associated to each request i is a pick-up node U;" and a drop-off node v;” that corresponds to
the pick-up and drop-off event of a request; these nodes will be part of a space-time transition
network that will be defined in the next section.

The pick-up and the drop-off nodes are mapped to locations or points p(v;") and p(v; ) in a
road network of Berlin (different from the transition network) that is shown in Figure 4.7. We
estimate travelling times and distances by average values that are stored on the 2,510 edges
of this network and use this data to compute shortest routes between the 828 nodes.

In addition to this spatial information, a request bears temporal data that is measured in
units of 5 minutes of Telebus time. The customer communicates a desired pick-up time t*(vzTlr )
(or a desired drop-off time which is treated analogously) that gives rise to a window of feasible
pick-up times T(v;r ). The pick-up time window is computed according to Telebus specific
rules that try to find a compromise between punctual service and more degrees of freedom
for the vehicle scheduling process. Currently, most requests have

T(v)) =t*(v;") +[—3,3] (units of Telebus time),

i.e., the vehicle is allowed to arrive up to 15 minutes early or late. Similar but more complex
rules are used to determine a feasible drop-off time window T (v; ): Here, the shortest possible
travelling time and a maximum detour time play a role. Finally, some service time t‘H'(v;r )
and ¢ (v;") is needed at the pick-up and the drop-off location.

The required assistance, the wheelchair type, etc. determine the set of feasible pieces of
work W (v;") = W (v;) that can or must be used to service the request; this set consists
of all suitable groups.

a(v;) and a(v;") give the total number of customers and wheelchairs, the number of folding
and non-folding wheelchairs, and the number of ambulatories that enter and leave the vehicle
in the pick-up and drop-off event, respectively.
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Figure 4.7: Highways and Major Roads in Berlin.

4.3.3 Constraints

Given the available pieces of work and the requests, a schedule of feasible vehicle tours has to
be determined that satisfies a number of constraints. Following Desrosiers, Dumas & Soumis
[1988], we distinguish the following types of constraints for feasibility:

(i)  wisiting each pick-up and drop-off event has to be serviced exactly once
(ii)  pairing pick-up and drop-off of a request is serviced by the same vehicle
(iii)  precedence each customer must be picked up before dropped off
(iv) time window pick-up and drop-off events must be serviced in time

(F) (v) no stop it is not allowed to stop and wait with a customer on board
(vi) capacity the vehicle capacity must not be exceeded
(vii) depot the vehicle must return to its depot
(viii) shift each piece of work must conform to its type of shift

(ix) awvailability  one can not use more pieces of work or others than available

Shift constraints arise from renting contracts and labour regulations for bus drivers. At
Telebus, pieces of work have to be of certain fixed or maximum lengths and/or have to begin
and end in certain time intervals, the exact parameters depend on the type of shift. Such types
are, for example, 8.5 or 10.5 hour shifts between 5:00 am and 1:00 am and flexible shifts of
variable length. Labour regulations prescribe maximum driving hours and obligatory breaks:
A break of 30 minutes has to be taken between the fourth and sixth hour of a shift.

The meaning of the other constraints is self explanatory.

4.3.4 Objectives

The main objective of the DARP is to minimize operation costs, i.e., the costs for renting
pieces of work from the service providers. Customer satisfaction is another important goal;
it is treated by means of the time windows. Finally, Telebus uses some auxiliary objectives
that reflect security issues. These criteria try to prefer “safe” tours to “risky” or “packed”
ones in an attempt to safeguard against emergency situations and unpredictable events like
cancellations, spontaneous requests, traffic jams, vehicle breakdowns, etc.
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4.4 Solution Approach

In this section, we discuss our solution approach to the Telebus dial-a-ride problem. Starting
from a network formulation of the DARP, we decompose the problem into a clustering and a
chaining step. Both steps lead to set partitioning problems.

4.4.1 Transition Network

The basis for our solution approach is a formulation of the DARP in terms of a transition
network D = (V, A). The transition network is a space-time digraph, see Figure 4.8 for an
illustration of the following construction.

Depot Request 1 Request 2 Request 3 Depot
ey
AN /1: \\ / //
\\\ 2 _____ A /!
e L ITEmss - T __ -7 — Time
@ D @ C @

Figure 4.8: Constructing a Transition Network.

The transition network’s set of nodes V. =Vt UV-uVEtUVE-UV¥ consists of all pick-up
events VT := {v]}, all drop-off events V= := {v7}, tour start nodes VE+ := {v°T} and
tour end nodes VG~ = {th*} for each group G of pieces of work and each possible point of
Telebus time ¢ = 60, ...,300 (60 x5 minutes is 5:00 am and 300 * 5 minutes is 1:00 am on the
next day), and break nodes V¥ := {v{} for all Telebus times. We set”

TS = TEf) =T
tHH (i) =t (wf7) =0 and Tt (vf¥) =6,
a(ft) = a@f):=a(w¥) =0, and
Wit):= W) :=aG and W (v¥) := W.

The arcs of the network are defined to reflect the local feasibility of possible vehicle tours.
We draw an event arc uv between two event nodes u and v if

t(u) + T (u) + tyy < T(v),

that is, if it is possible to arrive at u, service u, drive to v, and arrive there in time. Here,
we denote by t,, the shortest time to get from location p(u) to p(v) in the road network.

5We use here the same symbol ¢ for indices and variables, but we hope the notation is nevertheless clear.
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Analogously, we introduce tour start arcs from the tour start nodes to the event nodes, tour
end arcs from the event nodes to the tour end nodes, and break start arcs and break end arcs
from the event to the break nodes and vice versa. More precisely, we draw a tour start arc
v& v from a tour start node u = v to a pick-up node v if

t+tyy <t(v) and W(v) DG,

where t,, is the time to get from the location of the depot associated to the group G of pieces
of work to the event location p(v). Tour end, break start, and break end arcs are defined in
the same way, only that the break arcs get zero duration ¢, vl = t, ko 1= 0.

With this terminology, we can state the DARP in terms of the tran81t10n network. Feasible
vehicle tours correspond to such dipaths in D that satisfy the constraints (F) (ii)—(viii) as
stated in Subsection 4.3.3 on page 165; we assume here that a break is taken by visiting a
break node. A feasible vehicle schedule is a collection of feasible vehicle tours that satisfies
the remaining constraints (F) (i) and (ix) as well. The DARP is the problem to find a best
possible schedule with respect to some (not yet precisely defined) objective function.

4.4.2 Decomposition

The construction of feasible vehicle tours in the transition network as dipaths subject to
additional constraints is, although simple in principle, difficult in practice because of the
many constraints (F). We use a decomposition approach to cope with this difficulty in a
heuristic way. The method focusses on local feasibility in a first step. When validity of the
local constraints is ensured, we deal with the remaining global restrictions in a second step.

I Collection with Common Drop-off IV Concatenation
I Insertion V  Continued Concatenation
IIT  Collection with Common Pick-up

Figure 4.9: Clusters at Telebus.

The decomposition is based on the concept of a cluster or, as schedulers at the BZA say, a
“Verkniipfung”. A cluster is a dipath in the transition network that qualifies as a segment
of a vehicle tour in the sense that it satisfies the “local” constraints (F) (ii)—(vi): Pairing,
precedence, time windows, no stop, and capacity. Figure 4.9 shows a number of typical
clusters at Telebus: Collections, insertions, simple and continued concatenations.
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We denote a cluster-dipath C' = (v!,...,v*) as a sequence of visited nodes. In doing so, we
want to adopt the convention that a cluster contains only pick-up and drop-off nodes, i.e., no
tour start, tour end, or break nodes. We also stipulate that a cluster contains a node only
once.

A cluster C' satisfies the pairing constraints if it contains for every pick-up node the corre-
sponding drop-off node and vice versa. The precedence constraints hold if every pick-up node
of the cluster precedes its drop-off counterpart. We say that the capacity constraints are valid
for C' if there exists a piece of work w such that the capacity c(v,) of the associated vehicle
type is always at least as large as the load a;(C) at each node v* of the cluster:

c(vw) > ai(C) := Z;-:l a(v)), i=1,...,k.
The time window and the no stop constraints hold if the recursion

T (C)
Ti+1(C)

T (v!)

) . 4.1
(T3(C) + tTH (V") + tyiyin) NT ("), i=1,...,k—1, (4.1)

that computes the feasible time windows at the cluster nodes, terminates with Tj(C) # 0.
(Here, we denote by [a,b] 4 ¢ the interval [a +¢,b+ t].) In this case, it is possible to start the
service of the cluster at the first node v! at a feasible time in T} (C), service v', go immediately
(no stop) to the next node, arrive there at a feasible time 73(C), service v?, and so on until
the vehicle arrives at the last node v* in the feasible time interval Ty (C).

Before we discuss the use of clusters for vehicle scheduling, let us record the data that we
associate with a cluster:

(i) C:=(v',...,v¥) cluster as sequence of visited nodes
(©) (i) ¢t (C) cluster service time

(iii) T(C) cluster start time window

(iv) W(C) set of feasible pieces of work

By the no stop constraints and recursion (4.1), the service time of a cluster is constant:
tHH(0) == 0 () + S i
This results in a cluster start time window of possible times to begin the service of a cluster:

T(C) = [t(0),HC)] == T4 (C) — 7+ (O).

Finally, there is the set
W(C) = {w e W) | ai(C) < clww), i=1,....k}

of pieces of work that can possibly service C.

Clusters are useful for vehicle scheduling, because they can serve as the building blocks of
vehicle tours: We can chain clusters to feasible tours just as we constructed clusters from
the individual requests. As the clusters already satisfy the local constraints (F) (ii)-(vi), the
chaining can concentrate on the remaining global conditions (F) (i) and (vii)—(ix); the only
local constraints that appear again are the time window constraints (F) (iv) that transform
into the cluster start time windows. This largely independent treatment of local and global
constraints is one of the main benefits of request clustering.
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These observations suggest the following two step decomposition approach to the DARP:

(i) Clustering Step: Construct a set of feasible clusters.

(ii) Chaining Step: Chain clusters to a set of tours that constitute a feasible schedule.

This generic clustering/chaining method is the vehicle scheduling procedure that we use for
the solution of the DARP.

4.4.3 Set Partitioning

A refinement of the two steps of the clustering/chaining vehicle scheduling method leads to
clustering and chaining set partitioning problems of identical structure.

The objective of the clustering step is to construct a set of clusters that is “good” in the sense
that it provides a “reasonable” input for the chaining phase. In the best case, the clustering
algorithm would yield a set of clusters that can be chained to an optimal solution of the
DARP. While this is of course a hopeless criterion, one can look for computable necessary
conditions that an optimal set of clusters must satisfy. If such conditions can be found, they
can be used as a measure for the quality of a set of clusters and as a guide to construct it.
One way to derive a necessary condition is to note that any feasible schedule decomposes in
a canonical way: The maximal tour segments such that the vehicle is always loaded form a
set of minimal clusters with respect to set inclusion (interpreting, for the moment, clusters
as sets of nodes) and this minimal cluster decomposition of a schedule is unique. Then, a
necessary condition for the global optimality of a schedule is that its cluster decomposition is
also locally optimal in the sense that the objective can not be improved by rescheduling the
service of individual clusters.

Assuming that a local objective value can be associated to and computed for an individual
cluster, we can approximate the global objective value of the schedule by the sum of the
local cluster objectives. Applying this simplification to the DARP results in the following
optimization problem over clusters:

Given the customer requests, find a set of clusters such that each request
(CLUSTER) is contained in exactly one cluster and the sum of the cluster objectives is
minimal.

We use CLUSTER as our formulation of the clustering step; this model aims at inputs for
the chaining phase that are optimal in a heuristic but well-defined sense.

Popular local optimization criteria for clustering are the internal travelling time (ITT) of a
vehicle in a cluster, the internal travelling distance (ITD), and mixtures of these. Clusters
with small ITT or ITD aim at a good vehicle usage in terms of transported customers per
kilometer or per minute. One would expect that a minimal ITT or ITD clustering makes use
of large vehicle capacities by transporting several customers at once where possible, see again
Figure 4.9 for examples in this direction. In other words: Minimal ITT or ITD clustering
yields “reasonable” results that planners accept in practice.

CLUSTER can be formulated as a set partitioning problem

(SPP) min ¢z Az =1, z € {0,1}",

where A is the m X n incidence matrix of requests versus clusters and ¢ € R" is the vector of
cluster objectives.
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Having decided for a set of clusters, we can treat the chaining step in exactly the same way
as we just did with the clustering step. Approximating (or even expressing) the objective
value of the DARP as a sum of objectives of individual tours, the DARP for fized clusters
simplifies to (becomes) the following optimization problem over tours:

Given a clustering, find a set of vehicle tours such that each cluster is contained
in exactly one tour and the sum of the tour objectives is minimal.

(CHAIN)

We use CHAIN as our formulation for the chaining step; natural objectives associated to
tours are operation costs for vehicles and/or customer satisfaction criteria like accumulated
waiting time.

CHAIN can also be modelled as a set partitioning problem but needs one additional thought.
In the simplest case, the matrix A records the incidences of clusters versus tours, and c is the
vector of tour costs; this model is correct if there are no availability constraints. The presence
of availability constraints leads to additional equations and variables, but the enlarged model
is again of set partitioning type. Namely, availability constraints for a piece of work w
prescribe that one can only choose at most one of the (incidence vectors of) tours A j,,. that
correspond to w:

Zje](w) z; < 1.

Adding a slack variable and appending the new row and column to (SPP) results again in a
set partitioning problem.

4.4.4 A Vehicle Scheduling Algorithm

We are now ready to state the wehicle scheduling algorithm that we propose for the solution
of the DARP. The algorithm is a refinement of the generic clustering/chaining method of
Subsection 4.4.2 in terms of the clustering problem CLUSTER and in terms of a subproblem
of the chaining problem CHAIN:

i) Cluster Generation: Enumerate all possible feasible clusters. Set up its clustering SPP.
ii) Clustering: Solve the clustering SPP.
iii) Tour Generation: — Enumerate a subset of all feasible tours. Set up its chaining SPP.

(
(
(
(iv) Chaining: Solve the chaining SPP.

Here, the term “setting up the clustering SPP for a set of clusters” means to construct the
request-cluster incidence matrix A and to compute the cluster cost vector ¢ to set up a
clustering set partitioning problem for the given set of clusters. The analogous expressions
are used in the chaining case, but here we enumerate only some subset of all feasible tours
to construct only a submatriz of the complete cluster-tour incidence matrix and a subvector
of the complete tour cost vector. The resulting chaining set partitioning problem is hence a
subproblem of the complete chaining SPP. The reason for this simplification is that it is out
of the question to set up the complete chaining SPP: The number of possible tours is in the
zillions (where zillion is an incredibly large number). Restricting the chaining SPP to some
subset of “promising” tours is our heuristic way of dealing with this difficulty.

We use the branch-and-cut algorithm BC, see Chapter 3 of this thesis, to solve the clustering
and chaining set partitioning problems. How we do the cluster and tour generation is described
in the following Sections 4.5 and 4.6.
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4.4.5 Related Literature

Dial-a-ride problems and solution approaches similar to our’s have been discussed in a number
of publications in the literature. In Bodin & Golden [1981]’s vehicle routing and scheduling
classification scheme, the Telebus DARP qualifies as a subscriber dial-a-ride routing and
scheduling problem and our method is a cluster-first schedule-second algorithm, with some of
the clustering transferred to the scheduling-chaining phase. For survey articles on dial-a-ride
and, more general, vehicle routing and scheduling problems we give the classic Assad, Ball,
Bodin & Golden [1983, see Sections 4.8-4.10 for DARPs], the thesis of Sol [1994, Chapter 1],
Desrosiers, Dumas, Solomon & Soumis [1995, see Chapter 6 for DARPs], and the annotated
bibliography of Laporte [1997], and we suggest Barnhart et al. [1994] and the literature
synopsis of Soumis [1997] for references on column generation techniques.

The termini “clustering” and “chaining” stem from Cullen, Jarvis & Ratliff [1981], who de-
velop a set partitioning based two-phase clustering/chaining vehicle routing algorithm. Their
approach differs from the one we give here in the use of column generation techniques and
a possible overlap of clusters in the chaining phase. Ioachim, Desrosiers, Dumas & Solomon
[1991], based on earlier work of Desrosiers, Dumas & Soumis [1988], report about clustering
algorithms for vehicle routing problems in handicapped people’s transport using column gen-
eration and a problem decomposition into time slices. Tesch [1994] develops a set partitioning
method that optimizes over a fixed set of heuristically generated columns to solve dial-a-ride
problems that come up in the German city of Passau. We finally mention Sol [1994] as a recent
reference for the use of column generation techniques for pick-up and delivery problems.

4.5 Cluster Generation

We discuss in this section the algorithm that we suggest for cluster generation: Recursive
enumeration of all dipaths in the transition network D = (V, A) that correspond to feasible
clusters by depth first search.

The procedure works with sequences of nodes that are extended in all possible ways until
they eventually form clusters. Such a sequence S = (v',...,v*) € V* is called a state, where
V* denotes the set of all finite sequences of elements of V. Not every state can be extended
to a cluster; necessary conditions for feasibility of a state S are

(i) event sequence Se(Vtx V) S contains only event nodes

(ii) no loop Vi A v Vi#j S contains each node at most once
(iii) precedence Vol = U;_ ,0) = v, 1 <j pick-ups precede drop-offs

(iv) time windows, no stop T(S) # 0 the state time window is nonempty
(v) capacity, availability W (S) # 0 there is a feasible piece of work

Here, we use the expressions time window of a state and its set of feasible pieces of work in
analogy to the terms for clusters of the same name, see the definitions on page 168. A state
is a cluster or terminal if it is feasible and the constraint for

(vi) pairing Jol = v, Yol = v;{ there is a drop-off for each pick-up

holds. Finally, a new state S’ = (v',...,v*!) is produced from S = (v', ..., v*) by appending
a node v*T1; this transition is denoted by

S =8 « pktl,



172 Vehicle Scheduling at Telebus

To state our depth first search cluster generation algorithm in C-type pseudocode, we intro-
duce predicates infeasible : V* — {0,1} and terminal : V* +— {0,1} for feasibility and
terminality of states. tail : S* — V is a function that returns the terminal node v* of a state,
and the procedure output is supposed to compute the cost and the request-state incidence
vector of its argument and to store the result somewhere.

1 wvoid dfs (state S, digraph D=(V,A))) 9

2 { 10 void cluster (digraph D=(V,A))
3 if (infeasible (S)) return; 11 {

4 if (terminal (S)) output (S); 12 for all Uj eV

5 13 dfs ((Uj'), D);

6 for all u € vt (tail(S)) 14 }

7 dfs (S <+ u, D); 15

8 } 16

Figure 4.10: Enumerating Clusters by Depth First Search.

The complete cluster generation procedure cluster is given in Figure 4.10. Here, y1(v)
denotes the set of endnodes of arcs in D that go out from v.

The running time of cluster can be improved by strengthening the predicate infeasible by
further state elimination criteria. For example, S is infeasible when it contains an unserviced
pick-up v; that can not be dropped off in time regardless how S is extended:

(vii) timeout Fv' = vf : ¢(S) + tykys > t(v,) wv) can not be dropped in time

cluster, with the infeasible predicate strengthened by (vii), is the cluster generation
algorithm that we use for vehicle scheduling at Telebus. To make this method work in
practice, one needs, of course, efficient data structures, recursive updates of the predicates,
and many other ingredients; the reader can find the implementation details in the thesis of
Klostermeier & Kiittner [1993] (German). For a typical Telebus DARP with 1,500 requests,
our depth first search procedure enumerates the complete set of all possible clusters in a
couple of minutes. Depending on the values of the time window, lateness, detour, and some
other BZA parameters for cluster feasibility, this usually results in 100,000, sometimes up to
250,000, feasible clusters for input into the clustering set partitioning model.

We remark that similar results are not reported for comparable clustering problems in the
literature. For instance, Ioachim, Desrosiers, Dumas & Solomon [1991] develop a multilabel
shortest path algorithms for cluster generation problems that come up in the optimization of
Toronto’s Wheel-Trans Service. Although this dynamic program uses elaborate state space
elimination criteria, special initialization strategies and data structures, and sophisticated
preprocessing techniques to reduce the size of the transition network, it is in this case not
possible to enumerate all feasible clusters.

Two Telebus specific factors may be responsible for the different outcome in our case. One
is the combination of average service, driving, and detour times: As a rule of thumb, a
transportation service takes in Berlin 5 minutes for pick-up, 20 minutes of driving, and another
5 minutes for drop-off. When the maximum detour time is 15 minutes, one will already be
happy to pick up a single additional customer en route. Second, not every technically feasible
cluster is accepted by BZA schedulers. To safeguards against accumulating delays etc., they
often impose additional restrictions and forbid continued concatenations above a maximum
length. These two factors limit the number of feasible clusters to a computable quantity.
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4.6 Tour Generation

The topic of this section are tour generation algorithms that chain clusters to feasible vehicle
tours. Starting from a simplified network formulation of the chaining problem, we develop
a recursive depth first search tour enumeration algorithm and a number of tour generation
heuristics. Some of these heuristics can also be used as stand-alone vehicle scheduling tools.

4.6.1 Chaining Network

The tour generation algorithms of this section work on a chaining (transition) network D =
(V, A) that one obtains from the transition network D = (V, A) by a contraction of clusters.
To give a more precise description of this construction, let [1JC? = VUV~ be a clustering of
requests. D is set up from the transition network D in two steps. We (i) delete for each cluster
C = (v',...,v*) all entering and leaving arcs except the ones that enter the first node v' and
the ones that leave the last node v*, i.e., we delete all arcs from §(C) \ (6 (v') U o7 (vF)).
When this has been done, we (ii) contract each cluster into a single (super)node that we
denote with the same symbol C. Note that we inherit in this way the definitions for the
service time of a cluster(-node) ¢t*1(C), its start time interval T'(C), and its set W (C) of
feasible pieces of work.

4.6.2 Tour Enumeration

Feasible vehicle tours correspond to dipaths in the chaining network that satisfy the con-
straints (F'). Such dipaths can be enumerated in much the same way as the cluster-dipaths
in the transition network by a depth first search procedure. Using identical terminology and
analogous definitions as for the cluster generation, a state S = (T',...,7"*) € V" is feasible
when the following conditions hold:

(i) tour start 3G,t: 7" = vt start at a tour start node
(ii) no loop T AT Vi#j S contains each node at most once
(iii) time windows T(S) # 0 the state time window is nonempty
(iv) availability ~ W(S) # 0 there is a feasible piece of work
(v) shift ot = it € (') +[48,66]  break during 4th-6th hour of shift
t(T*) — t(@") < (G) maximum shift length respected
etc.

Here, we denote by #(G) the maximum duration of a piece of work of group G. The only
difference to cluster generation is the update of the time window, that must allow for waiting
(stops) between the service of two clusters:

Ti+1(S) := (T3(S) + t7H(S) + tyiis + R ) NT (@), i=1,...,k— 1

A state is a tour or terminal if it is feasible and the

(vi) depot 3G, t+,t~ T = vﬁﬂﬁ’“ = vfi* tour start and end at the same depot

constraint holds. Continuing with the dipath enumeration exactly as we did for the cluster
generation in Section 4.5, we arrive at a very similar depth first search tour enumeration
routine chain, see Figure 4.11 on the next page for a C-type pseudocode listing.
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1 void dfs (state S, digraph D=(V,1)) 9

2 | 10 void chain (digraph D=(V,A))
3 if (infeasible (S)) return; 11 {

4 if (terminal (S)) output (S); 12 for all v&t eV

5 13 dfs ((fh), D);

6 for all u € vy (tail(s)) 14 }

7 dfs (S + u, D); 15

8 } 16

Figure 4.11: Enumerating Tours by Depth First Search.

Computational practice, however, turns out to be completely different. While there were only
some hundred thousand feasible clusters, the number of tours is zillions! The reason for this
change is not the additional tour start, tour end, and break nodes (there are many, but not
too many of these), but the possibility to wait between the service of two clusters. This degree
of freedom, that is not available for cluster generation, leads to an enormous increase in the
number of eligible clusters to extend a state: Looking one hour in the future, any cluster
qualifies as a possible follow-on. Unlike in clustering, tour state extension does not have a
local character and, although the chain routine works as fast as the cluster generator, there
is no point in attempting a complete enumeration of all feasible tours.

The way that we deal with this difficulty is by reducing the number of arcs in the chaining
network heuristically. One of our strategies is, for example, to keep only a constant number of
outgoing arcs at each cluster node that are selected by local criteria, the “k best successors”.
While such methods are likely to produce individual efficient tours in some number, there is
no reason other than pure luck to believe that the right set of unavoidable “garbage collection
tours”, that complete a good schedule, will also be produced in this way. We are aware of this
fact and mention this unsatisfactory arc selection as a weak point in our vehicle scheduling
algorithm. What we can do, however, is to produce, in some minutes of computation time,
several hundred thousands of tours as input for the chaining set partitioning problem, see
again Klostermeier & Kiittner [1993] for more implementation aspects.

Lobel [1997] has dealt in his thesis with a similar arc selection problem in the context of
multiple depot vehicle scheduling. He has developed a Lagrangean pricing technique that
resolves this issue for his extremely large scale problems completely. It is perhaps possible
to use this technique, based on a suitable multi commodity flow relazation of the DARP, to
obtain better chaining results and we have in fact performed some preliminary computational
experiments in this direction. These computations indicated, in our opinion, a significant
potential for this approach. We remark that a multi commodity flow relaxation gives also
rise to lower bounds for the complete chaining problem (CHAIN).

4.6.3 Heuristics

The chaining transition network D can also serve as a basis for all kinds of combinatorial
vehicle scheduling heuristics to produce individual tours or to produce complete schedules.
Heuristic scheduling is a particularly attractive method of tour generation because it provides
not only “reasonable” input for the chaining set partitioning problem, but also primal solu-
tions and upper bounds. We give here a list of heuristics that we have developed for Telebus,
a more detailed description can be found in Klostermeier & Kiittner [1993].
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Our first method is designed for the construction of individual tours.

K Best Neighbors. We have already mentioned the idea of the k best neighbors heuristic:
Applying the depth first search algorithm chain to a reduced version of the chaining network
where at most & arcs have been selected from each set §* () of arcs that go out from a node.
We use in our implementation local criteria like proximity to select the arcs that lead to a
node’s “k best neighbors”.

The following heuristics produce complete vehicle schedules.

Tour-by-Tour Greedy. This heuristic produces the tours of a complete vehicle schedule
iteratively one by one. Starting from some tour start node, the tour is extended by “best
fitting” follow-on clusters (including breaks) in a greedy way until a tour end node is reached.
The serviced clusters are removed from the chaining network, the next tour is started, and
so on. The tour-by-tour greedy heuristic tends to produce “good” tours in the beginning and
worse later when only far-out or otherwise unattractive clusters are left.

Time Sweep. This method uses some linear order on the clusters, the “time”. The planning
process constructs all tours of a complete schedule simultaneously. In each step of the time
sweep, the next cluster with respect to the given order is assigned to the best tour with respect
to some local criterion, until all clusters are scheduled into tours. The orders that we use are
the natural ones from morning to evening and vice versa, and a “peaks first” variant that
tries to smooth the morning and afternoon demand peak by scheduling this demand first.

Hybrid. The tour-by-tour and the time sweep heuristic can be seen as the extreme represen-
tatives of a class of vehicle scheduling heuristics that vary from the construction of individual
tours to a simultaneous construction of all tours by assigning clusters to tours in some order.
Hybrid belongs to such a class of mixtures of these two procedures: It does a time sweep, but
it adds not only one follow-on cluster to a tour, but some sequence of several clusters.

Assignment. This method belongs to the same class as the hybrid heuristic, but it aims
at some global overview. The assignment heuristic subdivides the planning horizon into time
slices (we use a length of 30 minutes) that are considered in the natural order. In each step,
a best assignment (with respect to some local criterion) of all clusters in the next time slice
to the current set of partial tours is computed, starting new tours if necessary.

BZA. A set of other methods imitates the traditional hand-planning methods of the BZA.
First, the request clusters are grouped according to time and space such that the clusters in
one group start in the same hour and city district (or similar criteria). Doing a time sweep
from morning to evening, one constructs tours with an eye on the distribution of clusters and
vehicles in the city districts. In the starting phase of the Telebus project, these methods were
particularly important to build up confidence in computerized scheduling, because they can
be used to produce vehicle schedules of “familiar” type.

The heuristic vehicle scheduling methods that we have just described already produce, in
a few minutes, schedules that have significantly lower operation costs than the results of a
manual planning. And they do not use “a posteriori changes of scheduling rules” (that is,
they do not produce infeasible tours!), which lead to a quantum leap in punctuality of the
schedule. Klostermeier & Kittner [1993] give a detailed account of these improvements.

We use the heuristic methods of this subsection as a stand-alone scheduling tool and, in
combination with the enumeration routine chain of the previous subsection, to set up chaining
set partitioning problems with up to 100,000 columns.
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4.7 Computational Results

We report in this section on computational experiences with our vehicle scheduling system:
The cluster and tour generation modules and the heuristics of Sections 4.5 and 4.6 and
the branch-and-cut solver BC, that is described in Chapter 3 of this thesis. Our aim is to
investigate two complexes of questions:

(i) Performance. What is the performance of our vehicle scheduling system on Telebus
instances? Can we solve the clustering and chaining set partitioning instances?

(ii) Vehicle Scheduling. Does our system result in a better vehicle scheduling? Does cluster-
ing reduce the internal travelling time (ITT)/internal travelling distance (ITD)? Does
the chaining set partitioning model yield better results than the heuristics?

Our test set consists of 14 typical Telebus DARPs: 7 from the week of April 15-21, 1996 (in-
stances v0415-v04217 (clustering) and t0415-t04217 (chaining)) and another 7 for the week of
September 16-22, 1996 (instances v1616-v16227 (clustering) and t1716-t17227 (chaining)).
April 20/September 21 and April 21/September 22 were Saturdays and Sundays, respec-
tively. The two weeks differ in the adjustment of feasibility parameters for clusters and
tours. Generally speaking, the April instances represent a restrictive scenario with continued
concatenations limited to a maximum length of only three, small detour times, etc. The
September problems were produced in a liberal setting with more degrees of freedom; the
maximum concatenation length was, e.g., doubled to six.

We have run our vehicle scheduling system on these problems and report in the following three
subsections about the results. We give statistics on solving the clustering and chaining set
partitioning problems, and we investigate the relevance of our integer programming approach
for vehicle scheduling at Telebus. We do not give detailed statistics for cluster and tour
generation, because these steps are not a computational bottleneck; the interested reader can
find such data in Klostermeier & Kiittner [1993].

Following the guidelines of Crowder, Dembo & Mulvey [1979] and Jackson, Boggs, Nash &
Powell [1991] for reporting about computational experiments, we state that all test runs were
made on a Sun Ultra Sparc 1 Model 170E workstation with 448 MB of main memory, running
SunOS 5.5, that our branch-and-cut code BC was written in ANSI C compiled with the Sun
cc compiler and switches -fast -x05, and that we have used the CPLEX [1995] Callable
Library V4.0 as our LP solver.

Our computational results are listed in tables that have the following format. Column 1 gives
the name of the problem, columns 2—4 its size in terms of numbers of rows, columns, and
nonzeros, and columns 5-7 the size after an initial preprocessing. The next two columns give
solution values. Z reports the value of the best solution that could be found. This number is
a proven optimum when the duality gap is zero, which is indicated by a —. Otherwise, we are
left with a nonzero duality gap (z — z)/z, where z is the value of the global lower bound. The
following five columns give statistics on the branch-and-cut algorithm. There are, from left
to right, the number of in- and out-pivots (Pvt)®, cutting planes (Cut), simplex iterations to
solve the LPs (Itn), LPs solved (LP), and the number of branch-and-bound nodes (B&B). The
next five columns give timings: The percentage of the total running time spent in problem
reduction (PP), pivoting (Pvt), separation (Cut), LP-solution (LP), and the heuristic (Heu).
The last column gives the total running time in CPU seconds.

"Available at URL http://www.zib.de/borndoerfer
8Confer Chapter 3 for an explanation of this concept.
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4.7.1 Clustering

Table 4.1 lists our clustering results. The first seven rows of this table correspond to the April
instances, the next fourteen to the September instances which were solved twice: We used a
time limit of 7,200 seconds to produce the results in rows 8-14 and 120 seconds in rows 15-21.
We can see from column 2 of the table that the DARP instances that we are considering here
involve 1,500 or more requests during the week (Tuesday is usually a peak), and significantly
less requests on weekends. These numbers were typical for Telebus in 1996. The requests were
clustered in all possible ways and this resulted in the number of clusters that is reported in
column 3. The restrictive parameter settings for April lead to a rather small number of feasible
clusters, only about four times the number of requests (v0417 is an exceptional instance that
contains extraordinary large collective requests). More planning freedom in September lead
to a b-fold increase in the number of feasible clusters. We note that the average April cluster
contains three requests, while the number for September is four.

As the number of feasible clusters for April is very small, one would expect that clusters do
not overlap much and that there are often not many choices to assign requests to clusters.
The statistics on preprocessing in columns 5-7 of rows 1-7 show that this is indeed so. The
extremely large reduction in the number of rows indicates that, in particular, many requests
can only be assigned in a single way to a cluster (either to a single possible cluster or in
exactly the same way as some other request). The results for September are different, see
rows 8-15. We observe also significant and encouraging problem reductions, but not to the
same extreme extent as for the April problems.

The trends that we observed in the preprocessing step continue in the branch-and-cut phase.
Largely orthogonal columns and few rows in the April instances translate into simple LPs with
more or less integral solutions. The problems could be solved with a few LPs, cutting planes,
and branch-and-bound nodes, two even at the root of the searchtree, see columns 11-15 in
rows 1-7. Iterated preprocessing played a major role in these computations, as can be seen
from the large number of pivots in column Pvt (this is a measure for successful preprocess-
ing, see Subsection 3.2.13); note that the code spent about half of the total running time in
problem reduction (sums of Timing columns PP and Pvt). All in all, about three minutes of
CPU time were always sufficient to solve the easy April problems to proven optimality. The
situation is different for the September data. The problems are larger, and substantial overlap
in the clusters results in highly fractional LPs. Significant computational effort and extensive
branching is required to solve the September problems, see columns 11-15 of rows 8-14; in
fact, three instances could not be solved completely within 7,200 seconds. But the remaining
duality gaps are so small that any practitioner at the BZA is perfectly happy with the so-
lutions. And these results can even be obtained much faster: Setting the time limit to only
120 seconds yields already solutions of very good quality, see column Gap in rows 15-21.
The objective that we used in the April and September clustering set partitioning problems
was a mixture of I'TD and a penalty that discourages the clustering of taxi requests; servicing
all but the most “clusterable” taxi requests with individual taxi rides was BZA policy at
that time. Figure 4.12 compares on its left side the number of requests and the number of
clusters that were obtained by optimizing this mixed criterion for the September data. Note
that the number of taxi clusters (that contain only taxi requests) is largely identical to the
original number of taxi requests, i.e., the taxi requests were essentially left unclustered. The
observed reductions are thus solely due to the clustering of bus requests. The right side gives
an impression of the reduction of ITD that can be achieved with a clustering of this type.
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Original Problem Preprocessed Solutions Branch-and-Cut Timings/ % Total
Name | Rows Cols NNEs|Rows Cols NNEs z Gap/% Pvt  Cut Itn LP B&B|PP Pvt Cut LP Heu Time®
v0415| 1518 7684  20668| 598 4536 10988 | 2429415 — 12774 70 755 36 9| 32 32 4 12 3 5.68
v0416| 1771 19020 58453| 812 11225 33991| 2725602 —| 325151 1305 4677 1970 643| 19 28 4 15 3| 120.53
v0417| 1765 143317 531820| 715 55769 206131| 2611518 — 61309 294 1360 171 41| 35 21 8 10 3| 174.07
v0418| 1765 8306 20748 | 742 4957  11177| 2845425 — 12203 81 941 25 7129 31 6 15 3 5.72
v0419| 1626 15709  52867| 650 7852  25052| 2590326 — 4106 95 801 4 1129 17 11 17 b} 3.99
v0420| 958 4099  10240| 417 2593 6124 | 1696889 — 2538 47 511 4 1128 23 8 18 5 1.31
v0421| 952 1814 3119 286 1134 1437 1853951 — 2304 34 317 9 3| 32 18 4 18 3 0.72
v1616| 1439 67441 244727| 1230 52926 199724 | 1006460 —| 1295605 11123 177084 4811 1605 6 30 8 41 8| 4219.41
v1617| 1619 113655 432278| 1409 85457 336147| 1102586 0.02|15257970 16169 67051 15661 3571| 22 46 6 10 3| 7200.61°
v1618| 1603 146715 545337| 1396 90973 349947| 1154458 0.13| 2418105 5549 70533 1461 296| 11 27 16 21 9| 7222.28°
v1619| 1612 105822 401097| 1424 85696 336068| 1156338 0.02| 5774346 9040 124824 4203 880| 15 40 15 12 10| 7205.74°
v1620| 1560 115729 444445| 1365 89512 353689| 1140604 —| 7460098 20801 111073 19230 8161| 19 29 14 11 2| 5526.43
v1621| 938 24772 76971 807 16683 54208 825563 — 12214 130 1415 13 5123 20 16 22 3 13.79
v1622| 859 13773  41656| 736 11059 35304 793445 — 13325 99 1147 14 3127 29 10 18 3 9.69
v1616| 1439 67441 244727| 1230 52926 199724| 1006460 0.02 83501 828 6193 70 11119 26 17 22 4| 125.06°
v1617| 1619 113655 432278| 1409 85457 336147| 1103036 0.11 48690 426 2972 20 4114 22 27 20 3| 137.51°
v1618| 1603 146715 545337| 1396 90973 349947 1156417 0.37 38494 436 2976 15 3112 18 32 22 2| 130.19°
v1619| 1612 105822 401097| 1424 85696 336068| 1157851 0.22 48584 528 3228 15 3113 17 35 21 3| 146.06°
v1620| 1560 115729 444445| 1365 89512 353689| 1142159 0.17 35910 377 2940 15 3112 20 24 29 3| 133.33
v1621| 938 24772 76971 807 16683 54208 825563 — 12214 130 1415 13 5122 20 17 22 3 13.82
v1622| 859 13773 41656| 736 11059 35304 793445 — 13325 99 1147 14 3126 29 10 19 3 9.40
| 21]20615 1375763 5070937]20954 952678 3625074[31117511 —|32032766 67621 583360 47774 15258| 15 34 12 18  6]32405.34 |

“Time in CPU seconds on a Sun Ultra Sparc 1 Model 170E.
*Total time exceeds time limit because the last LP is solved before stopping.

Table 4.1: Solving Clustering Set Partitioning Problems.
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Figure 4.12: Reducing Internal Travelling Distance by Clustering.

4.7.2 Chaining

We have used the best clusterings that we computed in the tests of the previous subsection to
set up two sets of chaining problems. Table 4.2 lists our results for these problems: Rows 1-7
correspond to the April instances, rows 814 are for the September chaining problems.

The instances for April contain redundant data, namely, identical rows for every request in
a cluster, i.e., tours are stored by requests (not by clusters); thus, these problems have the
same number of rows as their clustering relatives. This is not so for the September instances
which are stored by clusters. In addition, we have also already removed from these instances
all clusters that correspond to individual taxi rides: These clusters have to be serviced exactly
in this way (with an individual taxi ride) and would give rise to row singletons. The number
of rows in the September instances is thus exactly the sum of the heights of the columns for
2-bus and 1-bus clusters in Figure 4.12.

The picture for tour optimization has the same flavour as the clustering: A small number
of tours was produced for April, more potential is present in the September data, where the
average tour services between four and five clusters. Thinking about the possible success of
preprocessing, one would guess that tours, which extend over a long period of time and a large
area of service, have a significantly larger overlap than clusters, which have a local character
in space and time. Hence, it is potentially much more difficult to find out about possible
reductions. The real situation is even worse. Mostly only duplicate tours are eliminated in
the preprocessing step. The chaining problems contain these duplicates in large numbers,
because our tour generation procedures tend to produce, unfortunately, the same “locally
promising” tours many times. The large reduction in the number of rows for the April
instances is solely due to the removal of the duplicates that represent each cluster several
times and to the detection of row singletons that correspond to individual taxi rides. These
redundancies were already eliminated during the generation of the September problems, and
not a single further row could be removed there.

Small reductions in preprocessing are a good indicator for the computational hardness of a set
partitioning problem, and the chaining instances turn out to be very hard indeed. Although
the problems are at best medium scale, we can solve none of them to proven optimality
with our branch-and-cut code, and the duality gaps are disappointingly large in comparison
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b= Original Problem Preprocessed Solutions Branch-and-Cut Timings/% Total
P
- Name | Rows  Cols NNEs|Rows Cols NNEs z Gap/% Pvt Cut Itn LP B&B|PP Pvt Cut LP Heu Time*
=
M t0415| 1518 7254  48867| 870 3312 20592| 5590096 7.63| 1291268 2029 93675 724 167| 5 11 14 17 53| 7218.94°
o t0416| 1771 9345 62703 974 3298 19692| 6130217 4.05| 1334745 2163 92796 641 144| 5 11 14 17 54| 7207.46°
(]
M t0417| 1765 7894  54885| 897 3774 24186| 6043157 6.39| 1614510 994 51439 316 71| 6 17 6 11 60| 7310.58°
2 t0418| 1765 8676 66604 999 4071 29368| 6550898 5.58| 629332 1066 67551 399 87| 3 9 12 21 56| 7239.54°
t0419| 1626 9362 64745 904 3287 19990| 5916956 3.85| 1891101 1235 57831 429 100| 6 16 9 11 59| 7251.57°
t0420| 958 4583  27781| 562 1872 10271| 4276444 5.61| 3989264 4440 135766 1507 362| 10 16 11 11 52| 7208.44°
t0421| 952 4016 24214 557 1691 9015 4354411 5.54| 4238861 4581 134126 1594 375 10 16 12 11 51 7213.44°
t1716| 467 56865 249149| 467 11952 61110 161636 24.27| 1230592 886 39379 296 69| 2 7 3 11 76| 7212.95
t1717| 551 73885 325689| 551 16428 85108| 184692 26.61| 1021307 592 27888 183 41| 2 7 2 10 77| 7331.93
t1718| 523 67796 305064| 523 16310 83984| 162992 22.06| 982755 606 28048 203 44| 2 6 3 10 78| 7238.72°
t1719| 556 72520 317391| 556 15846 83893 | 187677 25.76| 992993 404 22565 169 37| 2 6 2 8 80| 7281.77
t1720| 538 69134 310512 538 16195 84194| 172752 26.35| 899591 688 30360 187 38| 2 6 3 11 77| 7349.28°
t1721| 357 36039 148848| 357 9043 44106| 127424 17.83| 1965867 1921 69853 765 174| 3 9 5 12 69| 7243.42°
t1722| 338 36630 133096 338 6581 33691| 122472 17.96| 1880505 2133 82286 856 188 3 9 6 13 68| 7223.21°
14113685 463999 2139548| 9093 113660 609200 |39981824  —{23962691 23738 933563 8269 1897 4 10 7 12 65|101531.25
“Time in CPU seconds on a Sun Ultra Sparc 1 Model 170E.
*Total time exceeds time limit because the last LP is solved before stopping.
Table 4.2: Solving Chaining Set Partitioning Problems.
o
o
i
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to results for similar applications, most notably airline crew scheduling. For the September
problems, we do not even get close to optimality. Looking at the pivoting column Pvt, we see
that substantial reductions are achieved in the tree search, but this does obviously not suffice.
In fact, the LPs do not only have completely fractional solutions, they are also difficult to
solve: The average number of simplex pivots is well above 100, and, what one can not see
from the table, the basis factorizations fill up more and more the longer the algorithm runs.
Another problem is the primal LP plunging heuristic, that does not work well: An integral
solution has about 100 variables at value one for 100 tours in a schedule, and if the LP solution
is not strongly biased to an integral one or decomposes after a few decisions (as in clustering),
it is not a good idea to search for such a solution by iteratively fixing variables.

As these results are as they are, we must unfortunately speculate now why this is so. We see
three points. (i) Our current column generation process produces a set of vehicle schedules
plus some variations of tours using greedy criteria. This works well as a heuristic, but it
does not result in a large combinatorial variety of tours and there is no reason to believe that
such tours can be combined in many ways to complete schedules. Rather the contrary seems
to be the case: One can observe that the heuristics in BC nearly always fail in the chaining
problems. If the set partitioning problems that we produce have by construction only few
feasible solutions, it is not surprising that a branch-and-cut algorithm gets into trouble. We
remark that one can not compensate this flaw with simple minded tricks like, e.g., adding
tripper tours (unit columns), because these invariably lead to schedules of unacceptable costs.
(ii) There are some reasons why Telebus DARPs might result in set partitioning problems that
are difficult per se. In comparison to the Hoffman & Padberg [1993] airline test set, where our
algorithm BC works well, see Chapter 3, the Telebus chaining SPPs have more rows, and the
solutions have a much larger support. (iii) And maybe there is a structural difference between
airline crew and bus scheduling: Marsten & Shepardson [1981] also report the computational
hardness of set partitioning problems from bus (driver) scheduling applications in Helsinki.

4.7.3 Vehicle Scheduling

We can not solve the chaining SPPs of Telebus DARPs to optimality, but the approximate
solutions that we can obtain are still valuable for vehicle scheduling.

Table 4.3 on the following page gives a comparison of different vehicle scheduling methods
for the September DARPs. Column 1 lists the name of the instance, column 2 the day of the
week, and column 3 the number of requests. The next three columns show the results of a
heuristic vehicle scheduling that used the cluster and tour generators of Sections 4.5 and 4.6
as stand-alone optimization modules: There are, from left to right, the number of clusters
in a heuristic clustering, its ITD, and the costs of a heuristic vehicle schedule computed
from this clustering. We compare these numbers with the results of two set partitioning
approaches. Skipping column 7 for the moment, we see in columns 8 and 9 the clustering
results of Figure 4.12. Using this optimized clustering as input for the chaining heuristics
results in vehicle schedules with costs that are reported in column 7. The final column 10
lists the costs of the vehicle schedules that we computed in Subsection 4.7.2.

These results indicate substantial potential savings. In our tests, the set partitioning clustering
yields 10% less clusters than a heuristic clustering and about the same improvement in ITD.
Heuristic vehicle scheduling based on such a clustering can save 5,000 DM of operation costs
per day in comparison to the purely heuristic approach. Set partitioning based chaining can
reduce costs by another 5,000 DM per day.
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Heuristics Set Partitioning
Name | Day | Requests Clusters Tours Clusters Tours
# # | ITD/km DM DM # | ITD/km DM
1616 | Mo 1439 || 1167 10909 66525 | 60831 || 1011 10248 55792
1617 | Tu 1619 || 1266 11870 71450 | 67792 || 1106 11291 62696
1618 | We 1603 || 1253 12701 74851 | 68166 || 1107 11813 61119
1619 | Th 1612 || 1276 12697 74059 | 68271 || 1121 11821 64863
1620 Fr 1560 || 1242 12630 71944 | 63345 || 1080 11757 61532
1621 Sa 938 748 9413 45842 | 47736%| 676 8561 41638
1622 | Su 859 703 8850 42782 | 44486°|| 620 8243 38803
> 7 9630 || 7655 79070 || 447453 | 420627 || 6721 73734 || 386443

“Scheduling anomaly due to heuristic chaining.

Table 4.3: Comparing Vehicle Schedules.
4.8 Perspectives

Telebus is an example that mathematical programming techniques can make a significant
contribution to the solution of large-scale transportation problems of the real world. We
mention here three further perspectives and refer the reader to Borndorfer, Grétschel & Lobel
[1998] and the references therein for a broader treatment of optimization and transportation.

Telebus. We have pointed out in Section 4.2 that mathematical vehicle scheduling methods,
as one factor, have translated into cost reductions and improvements in service at Telebus.
And the optimization potential at Telebus is not yet depleted: At present, the BZA utilizes
only the heuristic modules of our scheduling system. We have seen in Subsection 4.7.3 that
integer programming allows for further cost reductions that have to be put into practice.

Computer Aided Scheduling. Automatic scheduling paves the way for a systematic sce-
nario analysis not only at the BZA. The scheduler of the future will use software planning
tools based on advanced mathematical methods to simulate, analyze, and anticipate the impli-
cations of changing operation conditions and variations in contractual obligations. Computer
aided design (CAD) has replaced the drawing board, computer aided manufacturing (CAM)
controls the factories — computer aided scheduling (CAS) for logistic systems is just another
step in this direction.

Paratransit. Berlin’s Telebus system of today is only a remainder of a comprehensive
paratransit concept that was developed as a part of the seventies’ efforts to revitalize the
public transportation sector. The idea to reduce costs and simultaneously improve and extend
service in times and areas of low traffic with demand responsive systems was convincing
and immediately tested in a number of pilot schemes, in Germany in Friedrichshafen, in
Wunstorf near Hannover, and, with a slightly different scope, in Berlin, see Figure 4.13 for
the dimensions that were initially projected for Telebus. But some years later, most of these
systems had either disappeared or turned into special purpose systems. And there can be no
doubt that, for instance, the handicapped only used a system with advance call-in periods of
initially three days because there was no other choice. The main reason for the lack of success
of dial-a-ride systems seems to have been scheduling problems: After initial enthusiasm in
every single one of these projects, the systems were virtually “killed by their own success”
beyond a critical size.
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Zeitplan
Forschungsvorhaben

‘ ab Anfang 1982
Arlfang 1981 8000 Pers./Tag und mehr
Mitte 1979 bis Ende 1981
Anfang 1979 bis Ende 1980 4000-8000 Pers./Tag
bis M itte 1979 800-1200 Pers.fTag Weitere Informationen:
200~ 800 Pers./Tag It:;l::r::zz]'l;rra;m i
1000 Berlin 15

Telefon: (030) 88 27 427

Figure 4.13: From a Telebus Project Flyer.

But right now the situation is changing and old reasons have kindled new interest in para-
transit, see, e.g., Siidmersen [1997] (German) for some examples of ongoing projects. Why?
The driving force behind renewed popularity of demand responsive systems and many other
developments is the upcoming deregularization of the European public transportation sector
according to Article 90 of the Maastricht II treaty of the European Union, see Meyer [1997]
(German) for some background information and a survey of the current situation of public
transport in the EU. This law gives a new chance to dial-a-ride type systems. The future will
show if mathematical programming techniques can help to take it.
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