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Chapter 1

Introduction

A mixed integer program (MIP) is an optimization problem where the objective is
to minimize or maximize a function of many variables subject to inequality and
equality constraints and integrality restrictions on some or all of the variables. The
integrality restrictions are the crucial point. On the one hand, they give us the
power to formulate many real-world problems as MIPs, but on the other hand, they
make MIPs hard to solve; MIP-solving is NP-hard.

One technique to solve MIPs is the general cutting plane method. The idea is to
drop the integrality restrictions and to solve the resulting relaxation of the MIP by
efficient methods from linear programming. The dropped integrality restrictions are
then reintroduced by cutting planes. Algorithms that generate cutting planes are
called cutting plane separators. The actual power of this technique arises when it is
combined with a linear programming based branch-and-bound algorithm, which is
another technique to solve MIPs. Most state-of-the-art MIP solvers are based on this
combination, also known as linear programming based branch-and-cut algorithm.

Scip [1], developed at the Zuse Institute Berlin by T. Achterberg, is such a
framework. It integrates constraint and mixed integer programming. The aim of
this thesis is to find an efficient implementation of different cutting plane separators
which embedded in Scip help to improve the overall performance of the solver.

In [15], it has been shown that cutting plane separators are one of the most
important features of MIP solvers. But of course, their effect depends on the way
they are integrated into the MIP solver, i.e., on the way in which they interact with
other features of the solver. In this thesis, we concentrate on the performance of the
cutting plane separators when they are used basically isolated. We suppose that this
is a good starting point for developing cutting plane separators which are effective
within MIP solvers. At the end of this thesis, we remove the isolated application of
our developed cutting plane separators and present computational results concerning
their impact on the overall performance of Scip.

We deal with six different cutting plane separators. For three of them, namely the
cutting plane separators for the class of GMI inequalities, the node packing problem,
and the class of implied bound inequalities, we give only a brief introduction to the
classes of valid inequalities which are separated and mention some of the algorithmic
aspects.

1



2 Chapter 1. Introduction

The main part of this thesis is dedicated to the other three, namely the cutting
plane separators for

• the class of c-MIR inequalities,

• the 0-1 knapsack problem, and

• the 0-1 single node flow problem.

Different classes of strong valid inequalities for the 0-1 knapsack polytope have
been studied extensively in the literature and the corresponding cutting plane sepa-
rators have been used successively in various MIP solvers. For our implementation,
the following question arises: Which of these classes of valid inequalities do we want
to separate in our cutting plane separator, i.e., which of them lead to the best per-
formance in practice? To answer that question, we perform a computational study
which includes three classes of valid inequalities. Two of them involve sequential up-
and down-lifting and the other one involves superadditive up-lifting. To our knowl-
edge, no paper has been published presenting computational results for separating
the later class. Thus, our computational study also covers this subject.

For the 0-1 single node flow set, a variety of classes of valid inequalities have
been derived in the literature, too. Thus, the same question arises here. It is well
known that different classes of valid inequalities for the 0-1 single node flow problem
can also be obtained as particular c-MIR inequalities for specific mixed knapsack
relaxations of the 0-1 single node flow set (c-MIR flow cover inequalities and c-MIR
flow pack inequalities). The separation heuristic for the class of c-MIR inequalities
of Marchand and Wolsey [42], which we use in our cutting plane separator for the
class of c-MIR inequalities, is designed in such a way that it is able to generate
these inequalities. We decided to separate the class of c-MIR flow cover inequalities
and c-MIR flow pack inequalities directly in our cutting plane separator for the
0-1 single node flow problem. In this thesis, we will investigate whether using this
cutting plane separator in addition to the one for the class of c-MIR inequalities
helps to improve the overall performance of Scip.

For each of the three cutting plane separators, we perform extensive computa-
tional studies where we investigate the effect of different algorithmic and implemen-
tation choices on the performance of the separation algorithms. The study covers
different heuristical choices used by other researchers as well as some modifications
of these heuristics. We will use the results to develop our final cutting plane sep-
arators. One crucial aspect of implementing efficient cutting plane separators is
to reduce the time spent in the separation routines to an acceptable level. In our
computational study we will also go into this subject.

Outline of the Thesis

In Chapter 2, we give a brief introduction to the general cutting plane method
and provide the most important concepts and definitions from mixed integer pro-
gramming used in this thesis. In addition, we show how valid inequalities can be
strengthened by a procedure called lifting. This technique will be used in our cutting
plane separator for the 0-1 knapsack problem. Furthermore, we state general infor-
mation concerning the computational studies which we performed for developing the
individual cutting plane separators.
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Chapter 3, 4, and 5 form the main part of this thesis. Here, we address the
development of the cutting plane separators for the class of c-MIR inequalities, for
the 0-1 knapsack problem, and for the 0-1 single node flow problem. They are all
organized in a similar way. We always start with giving a literature review, then
we introduce the classes of valid inequalities which we want to separate. This is
followed by a discussion of different algorithmic aspects of the corresponding sepa-
ration algorithms. Here, we will also state the heuristics used by other researchers.
Finally, we present the results of our computational study concerning the effect of
the discussed algorithmic and implementation choices. The results will then be used
to develop our final cutting plane separators. At the end of each chapter, we state
some concluding remarks.

In Chapter 6, we briefly introduce three further cutting plane separators, namely
the cutting plane separators for the class of GMI inequalities, for the node packing
problem, and for the class of implied bound inequalities.

In Chapter 7, we present computational results concerning the comparison of our
cutting plane separators to the ones provided by other MIP solvers. Here, the cutting
plane separators are still applied basically isolated. Finally, we remove the isolated
application and evaluate the impact of the individual cutting plane separators on
the overall performance of Scip.
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Chapter 2

Preliminaries

In this chapter, we provide the most important concepts and definitions from mixed
integer programming used in this thesis. Furthermore, we state general informa-
tion concerning the computational studies which we carried out for developing the
individual cutting plane separators.

2.1 General Cutting Plane Method

In this section, we introduce the general cutting plane method and state basic con-
cepts and definitions needed in this connection. The description of the cutting plane
method is taken from [27] and the presentation of the basic concepts and definitions
follows [46, 47].

We start with the formal definition of a MIP and some of its special cases.

Definition 2.1. Let n ∈ Z+\{0}, p ∈ Z+ with p ≤ n, m ∈ Z+\{0}, c ∈ Rn,
A ∈ Rm×n, and b ∈ Rm. Optimization problems of the form

zMIP = min{cTx : Ax ≤ b, x ∈ Zp × Rn−p},

min{cTx : Ax ≤ b, x ∈ {0, 1}p × Rn−p},
min{cTx : Ax ≤ b, x ∈ Zn},

and
min{cTx : Ax ≤ b, x ∈ {0, 1}n}

are called mixed integer program (MIP), mixed 0-1 integer program (BMIP), integer
program (IP), and 0-1 integer program (BIP), respectively.

Note that in later chapters, we will denote the vector of the integer variables of
a MIP by x and the vector of the real variables of a MIP by y. Here, in order to
shorten the presentation we do not use this distinction for the notation.

To solve a MIP by the general cutting plane method we first drop the integrality
restriction and obtain the so-called linear programming relaxation (LP relaxation)
of the MIP

zLP = min{cTx : Ax ≤ b, x ∈ Rn}.
The set P = {x ∈ Rn : Ax ≤ b} is called the feasible region of the LP. In terms

of polyhedral theory, P is a polyhedron.

5



6 Chapter 2. Preliminaries

Definition 2.2 ([46]).

1. A polyhedron P ⊆ Rn is the set of vectors in Rn that satisfy a finite number of
linear inequalities, i.e., P = {x ∈ Rn : Ax ≤ b}, where A ∈ Rm×n and b ∈ Rm.

2. A polyhedron P ⊆ Rn is said to be rational if there exits A
′ ∈ Qm×n and

b
′ ∈ Qm such that P = {x ∈ Rn : A

′
x ≤ b

′}.

3. A polyhedron P ⊆ Rn is bounded if there exists an R ∈ R+ such that P ⊆
{x ∈ Rn : ‖x‖ ≤ R}, where ‖ · ‖ :=

√
xTx is the Euclidean norm. A bounded

polyhedron is called a polytope.

In analogy to P , we call the set X = {x ∈ Zp×Rn−p : Ax ≤ b} the feasible region
of a MIP. It is a subset of the polyhedron P as X = P ∩ (Zp×Rn−p). Because of the
integrality restrictions in a MIP we cannot directly use the concept of a polyhedron
to describe X; we use the concept of a convex hull.

Definition 2.3 ([46]). Let X ⊆ Rn.

1. A vector x ∈ Rn is a convex combination of vectors in X if there exists a
finite set of vectors {x1, . . . , xk} in X and a λ ∈ Rk

+ with
∑k

i=1 λi = 1 and

x =
∑k

i=1 λix
i.

2. The convex hull of X, denoted by conv(X), is the set of all vectors in Rn that
are convex combinations of vectors in X. By convention, conv(∅) = ∅.

3. X is called a convex set if X = conv(X).

The convex hull of X is not always a polyhedron or even a polytope, but in
special cases it is.

Theorem 2.4 ([47]). If P is a rational polyhedron and X = P ∩ (Zp ×Rn−p) 6= ∅,
then conv(X) is a rational polyhedron whose extreme points are a subset of X and
whose extreme rays are the extreme rays of P .

Therefore, throughout this thesis we consider only rational polyhedra and assume
that if P is stated as P = {x ∈ Rn : Ax ≤ b}, then A ∈ Qm×n and b ∈ Qm. Now,
by Theorem 2.4, we can formulate a MIP with X 6= ∅ as the linear program

min{cTx : x ∈ conv(X)} (2.1)

(see [47]). However, this observation, by itself, is not computationally helpful, since
to use it, we would need to know a linear inequality description of conv(X), and
generally the number of inequalities needed to describe conv(X) is extremely large.
The idea of the general cutting plane method is to construct a polyhedron Q with
conv(X) ⊆ Q ⊆ P such that min{cTx : x ∈ Q} gives an optimal solution to the MIP
(see [47]). One part of this construction is to add valid inequalities for X to P .

Definition 2.5 ([46]). Let X ⊆ Rn. The inequality αTx ≤ α0, where α ∈ Rn and
α0 ∈ R, is called a valid inequality for X if it is satisfied by all vectors in X.

Definition 2.6 ([46]). Let X ⊆ Rn
+. Furthermore, let αTx ≤ α0 and γTx ≤ γ0,

where α, γ ∈ Rn and α0, γ0 ∈ R, be valid inequalities for X.
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1. If there exists λ > 0 such that (α, α0) = λ(γ, γ0), we call αTx ≤ α0 and
γTx ≤ γ0 equivalent.

2. If there exists µ > 0 such that γ ≥ µα and γ0 ≤ µα0, then {x ∈ Rn
+ : γTx ≤

γ0} ⊆ {x ∈ Rn
+ : αTx ≤ α0}. In this case, we say that γTx ≤ γ0 is at least as

strong as αTx ≤ α0.

We assume that the MIP has an optimal solution, i.e., that the MIP is neither
infeasible nor unbounded. The general cutting plane method starts by solving the
LP relaxation of the MIP with methods from linear programming (see e.g. [52]).
Obviously, zLP ≤ zMIP holds. Let x∗LP be an optimal solution of the LP relaxation of
the MIP. If x∗LP is in Zp×Rn−p, we are done; x∗LP is an optimal solution of the MIP.
Otherwise, it is a well-known result that there exists a valid inequality for X that is
not satisfied by x∗LP, or ‘cuts off’ x

∗
LP from conv(X) (see [46]). Such an inequality is

called cutting plane and the problem of determining whether x∗LP is in conv(X) and
if not of finding a cutting plane is called separation problem. If we found a cutting
plane, we add it to P and obtain a polyhedron Q with conv(X) ⊆ Q ⊂ P . This
process is iterated until the solution is in Zp ×Rn−p, i.e., an optimal solution of the
MIP is found.

The separation problem can be formulated for different class of valid inequalities
for X. Gomory has shown that a cutting plane method based on iteratively adding
Gomory mixed integer cuts (see Chapter 6) solves a MIP under certain conditions
in a finite number of steps (see [40, 46]).

MIPs can also be solved by the linear programming based branch-and-bound al-
gorithm. The algorithm uses a divide-and-conquer strategy to explore the feasible
region of the MIP and therefore guarantees to find an optimal solution, if one ex-
ists. But, instead of exploring the whole feasible region, it makes use of lower and
upper bounds and therefore avoids touching certain (large) parts of the feasible re-
gion (see [27]). This algorithm can be used in combination with the general cutting
plane method described above. For a MIP in minimization form the cutting plane
method can help to improve the lower bound used in the branch-and-bound algo-
rithm (also called dual bound). The resulting algorithm is called linear programming
based branch-and-cut algorithm. We do not give a detailed description here, but refer
the interested reader to [27, 46].

2.2 Lifting Theory

For implementing efficient cutting plane separators, it seems important to use cutting
planes that are strong in the sense that they define facets of conv(X), where X is the
feasible region of the MIP, or at least faces of conv(X) of reasonably high dimension
(see [46]).

Definition 2.7 ([46]). Let P ⊆ Rn be a polyhedron, and αTx ≤ α0, where α ∈ Rn

and α0 ∈ R, be a valid inequality for P .

1. A set of vectors x1, . . . , xk ∈ Rn is affinely independent if the unique solution
of
∑k

i=1 λix
i = 0,

∑k
i=1 λi = 0 is λi = 0 for i = 1, . . . , k.
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2. P is of dimension k, denoted by dim(P ) = k, if the maximum number of
affinely independent vectors in P is k + 1.

3. P is full-dimensional if dim(P ) = n.

4. If F = {x ∈ P : αTx = α0}, F is called a face of P , and we say that αTx ≤ α0

defines F .

5. A face F of P is a facet of P if dim(F ) = dim(P )− 1.

To derive strong valid inequalities for conv(X) we use the principle of lifting,
where a valid inequality for the restriction of X to some lower-dimensional space
is extended to a strong valid inequality for conv(X). The following description of
the lifting theory for BMIPs is taken from [31]; we only modify the notation. The
theory is given in a very general way and can be used for special cases, such as the
0-1 knapsack problem and the 0-1 single node flow problem.

Definition 2.8 ([46]). Let N = {1, . . . , n} be a finite set. We say that {Ck : k =
0, . . . , t} is a partition of N , if ∪tk=0Ck = N and Ck ∩ Cl = ∅ for k, l = 0, . . . , t with
k 6= l.

Note that if a partition of N consists of only two sets C0 and C1, we also use the
notation (C0, C1).

Consider the feasible region of a BMIP, given in the form

X = {x ∈ R|N | :
t
∑

k=0

∑

j∈Ck

ajxj ≤ a
′

0,

∑

j∈Ck

wjxj ≤ rk for k = 0, . . . , t,

xj ∈ {0, 1} for all j ∈ I},

where {Ck : k = 0, . . . , t} is a partition of N = {1, . . . , n}, I ⊆ N , m ∈ Z+\{0},
aj ∈ Qm for all j ∈ N , a

′

0 ∈ Qm, mk ∈ Z+\{0} for k = 0, . . . , t, wj ∈ Qmk for all
j ∈ Ck and for k = 0, . . . , t, and rk ∈ Qmk for k = 0, . . . , t. We assume that each
variable xj has at least one finite bound given by bj , i.e., xj ≥ bj or xj ≤ bj .

Initially, we consider the subset of X with xj = bj for all j ∈ N\C0 given by

X0 = {x ∈ R|C0| :
∑

j∈C0

ajxj ≤ a0,

∑

j∈C0

wjxj ≤ r0,

xj ∈ {0, 1} for all j ∈ I ∩ C0},

where a0 = a
′

0 −
∑

j∈N\C0
ajbj . Let

0 ≤ α0 −
∑

j∈C0

αjxj (2.2)
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be an arbitrary valid inequality for X0. To construct a valid inequality for X of the
form

0 ≤ α0 −
∑

j∈C0

αjxj −
t
∑

k=1

∑

j∈Ck

αj(xj − bj), (2.3)

we start with inequality (2.2) and lift the variables in N\C0. Without loss of gener-
ality, we assume that the variables with indices in C1, . . . , Ct are lifted sequentially
in that order and that in a given set Ck they are lifted simultaneously. Note that this
contains as special cases simultaneous lifting of all variables (t = 1) and sequential
lifting of all variables (|Ck| = 1 for k = 1, . . . , t).

The intermediate feasible regions X i for i = 1, . . . , t are defined by

Xi = {x ∈ R
∑i

k=0 |Ck| :
∑

j∈C0

ajxj +
i
∑

k=1

∑

j∈Ck

aj(xj − bj) ≤ a0,

∑

j∈Ck

wjxj ≤ rk for k = 0, . . . , i,

xj ∈ {0, 1} for all j ∈ I ∩ (∪ik=0Ck)}.

For i = 1, . . . , t, the lifting problem Li associated with Ci, given a valid inequality

0 ≤ α0 −
∑

j∈C0

αjxj −
i−1
∑

k=1

∑

j∈Ck

αj(xj − bj), (2.4)

for X i−1, is to find αj for all j ∈ Ci such that the inequality

∑

j∈Ci

αj(xj − bj) ≤ α0 −
∑

j∈C0

αjxj −
i−1
∑

k=1

∑

j∈Ck

αj(xj − bj) (2.5)

is valid for X i.

For i = 1, . . . , t, let

Zi = {z ∈ Rm : ∃x ∈ X i :
∑

j∈Ci

aj(xj−bj) = z,
∑

j∈C0

ajxj+

i−1
∑

k=1

∑

j∈Ck

aj(xj−bj) ≤ a0−z}.

Furthermore, for z ∈ Z i, let

hi(z;αj , j ∈ Ci) = max{
∑

j∈Ci

αj(xj − bj) :
∑

j∈Ci

aj(xj − bj) = z,

∑

j∈Ci

wjxj ≤ ri,

xj ∈ {0, 1} for all j ∈ I ∩ Ci},
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and

fi(z) = min{ α0 −
∑

j∈C0

αjxj −
i−1
∑

k=1

∑

j∈Ck

αj(xj − bj) :

∑

j∈C0

ajxj +

i−1
∑

k=1

∑

j∈Ck

aj(xj − bj) ≤ a0 − z,

∑

j∈Ck

wjxj ≤ rk for k = 0, . . . , i− 1,

xj ∈ {0, 1} for all j ∈ I ∩ [∪i−1k=0Ck] }.

Theorem 2.9 ([31]). For i = 1, . . . , t, inequality (2.5) is valid for X i for any choice
of αj for all j ∈ Ci such that hi(z;αj , j ∈ Ci) ≤ fi(z) for all z ∈ Zi.

Let b be the vector of the bounds bj for all j ∈ ∪ik=0Ck. When αj for all j ∈ Ci

are such that

hi(z;αj , j ∈ Ci) = fi(z)

has |Ci| solutions x1, . . . , x|Ci| such that the components in Ci of x
1− b, . . . , x|Ci|− b

are linearly independent, we say that the lifting is maximal.

Theorem 2.10 ([31]). For i = 1, . . . , t, if conv(X i−1) and conv(X i) are full-
dimensional, inequality (2.4) defines a facet of conv(X i−1), and α0 6= 0, then in-
equality (2.5) defines a facet of conv(X i) if and only if the lifting is maximal.

Corollary 2.11 ([31]). Given an arbitrary valid inequality (2.2) for X0, we can
construct a valid inequality (2.3) for X by sequentially lifting sets Ci for i = 1, . . . , t.
At each step i, the lifting coefficients αj for all j ∈ Ci have to be such that hi(z;αj , j ∈
Ci) ≤ fi(z) for all z ∈ Zi. If inequality (2.2) defines a facet of conv(X0), conv(X i)
is full-dimensional for i = 0, . . . , t−1, and at each step i the lifting is maximal, then
inequality (2.3) defines a facet of conv(X).

Lifting coefficients αj for all j ∈ ∪tk=1Ck are, in general, dependent on the lifting
sequence C1, . . . , Ct. Superadditive functions are important for the development of
sequence independent lifting techniques.

Definition 2.12. A function f is superadditive on Z if f is bounded for all z ∈ Z
and f(z1) + f(z2) ≤ f(z1 + z2) for all z1, z2 and z1 + z2 ∈ Z.

Let Z be a bounded convex set such that Z i ⊆ Z for i = 1, . . . , t.

Definition 2.13. The lifting function f with respect to the valid inequality (2.2)
for X0 is defined to be f(z) = f1(z) for all z ∈ Z.

Definition 2.14. If f(z) = fi(z) for all z ∈ Z, for i = 2, . . . , t and all lifting
sequences, then the lifting is said to be sequence independent.

The following result is fundamental to the development of sequence independent
lifting techniques.

Theorem 2.15 ([32]). If f is superadditive on Z, then lifting is sequence indepen-
dent.
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Obviously, a superadditive lifting function significantly reduces the computa-
tional burden of the lifting process. Instead of having to compute functions fi for
each i = 1, . . . , t, we only have to compute the lifting function f . Unfortunately,
most lifting functions are not superadditive. To be able to profit from the computa-
tional advantages of sequence independent lifting, we need a superadditive function
that yields a valid inequality for X.

Corollary 2.16. If g is superadditive, g(z) ≤ f(z) for all z ∈ Z, and if αj for all
j ∈ Ci are such that hi(z;αj , j ∈ Ci) ≤ g(z) for all z ∈ Z i and for i = 1, . . . , t, then
the lifted inequality (2.3) is valid for X.

A function g that satisfies the conditions of Corollary 2.16 is called a superaddi-
tive valid lifting function for f . Next, we adress the problem of choosing a ‘good’
superadditive valid lifting function. A desirable property is that g should not be
dominated by another superadditive valid lifting function g

′
, i.e., there is no super-

additive g
′
with g(z) ≤ g

′
(z) for all z ∈ Z and g(z

′
) < g

′
(z
′
) for some z

′ ∈ Z. A more
interesting property is maximality. Let E = {z ∈ Z : fi(z) = f(z) for i = 1, . . . , t
independent of the coefficients aj for all j ∈ Ck and for k = 1, . . . , t}. Note that if f
is superadditive, then E = Z. We say that g is a maximal superadditive valid lifting
function if g(z) = f(z) for all z ∈ E.

2.3 Computational Study

In this section, we state general information about the computational experiments
which we conducted to develop efficient cutting plane separators for the class of
c-MIR inequalities (Chapter 3), the 0-1 knapsack problem (Chapter 4), and the
0-1 single node flow problem (Chapter 5).

All computational tests described in Chapter 3, 4, and 5 were carried out on a
Sun V40z with a 2.20 GHz AMD Opteron CPU (1024 KB cache) and 32 GB RAM.
In each test, we used a time limit 3,600 seconds of CPU time and a memory limit
of 4 GB for each instance contained in the considered test set.

Our implementations were embedded in Scip 0.81 [1] which is a framework that
integrates constraint and mixed integer programming. As underlying LP solver in
Scip 0.81 we used Cplex 10.01 [21].

The efficiency of the individual cutting plane separators depends on the way
they are integrated into Scip 0.81, i.e., on the way they interact with other features
of the solver including other cutting plane separators. For this thesis, we decided
to concentrate on the performance of the individual cutting plane separators when
they are used basically isolated. A next step would be to improve the way they
are integrated into Scip 0.81. Therefore, in all test runs for developing the cutting
plane separators, we considered only the root node of the branch-and-cut tree and
called up Scip 0.81 with its default settings except the following changes.

Primal heuristics If a primal heuristic is successful, this might cause further dual
propagations, which could lead to the generation of further cuts. Therefore,
we disabled all primal heuristics.

Strong branching Every branching strategy employing strong branching can de-
tect infeasibility of subproblems of a MIP (see [2]) and may therefore cause
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fixing of variables. As this influences the dual bound, we did not use strong
branching, but most infeasible branching (see [2]).

Cutting plane separators We disabled all cutting plane separators except the
tested one.

Restarts This feature may lead to the generation of further cuts and therefore, we
disabled it.

We used the same test set, which we call initial test set, for all three cutting plane
separators, except for the one for the 0-1 knapsack problem. For this separator, we
extended the initial test set in order to get a reasonable number of instances for
which cuts were generated. The initial test set consists of 134 instances, which
were taken from Miplib 2003 [3], Miplib 3.0 [14], and from the MIP collection of
Mittelmann [45]. For each cutting plane separator, we divided the test set into two
sets. One was used to evaluate the effect of different versions of the cutting plane
separators and the other one was used to ensure that the CPU time spent in the
final separator is on an acceptable level for all instances in the test set.

For each cutting plane separator, we present two tables (Table B.1, B.2, B.20,
B.21, B.46, and B.47), where the main characteristics of the instances in these two
sets are summarized. In each table, the column headed Type contains the problem
type and the columns headed Conss and Vars contain the number of constraints and
the number of variables. zLP denotes the optimal objective function value of the LP
relaxation at the root node before cutting planes are added, and zMIP represents the
optimal objective function value of the MIP. The names of some instances are given
in italic face. For these instances, we do not know the optimal objective function
value. For these problems, we set zMIP as the objective function value of the best
known feasible solution, which was generated by Cplex 10.01 running for one hour
of CPU time with default settings.

To evaluate the performance of our cutting plane separators we have chosen four
measures. Gap closed % (β) denotes the percentage of the initial gap (gap between
zLP and zMIP) that is closed by using the separator. It is defined as

β = 100 · db− zLP
zMIP − zLP

,

where db is the dual bound at the root node after adding cutting planes. Note that
zMIP > zLP holds for all instances in our test sets since we only use instances which
are not solved to optimality at the root node when all cutting plane separators
are disabled. Cuts is the number of cutting planes generated by the cutting plane
separator at the root node. Sepa Time is the elapsed CPU time in seconds for the
separation routine at the root node. Sepa Time Average (γ) is the average elapsed
CPU time in seconds for the separation routine per separation round at the root
node. It is defined as

γ =
Sepa Time

number of separation rounds performed at the root node
.

As we will see in Chapter 3, 4, and 5, there are many algorithmic and imple-
mentation choices which have to be made when implementing the cutting plane
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separators. Thus, evaluating the performance of each separator for all possible com-
binations of these choices is practically impossible. Inspired by the work of Gu,
Nemhauser and Savelsbergh [30], we use for each separator the following approach
in our computational study. We give a default algorithm, which represents a set of
choices which are basic, i.e., the set does not contain choices which are modifications
of algorithmic aspects that may lead to an improved performance. Then, we present
computational results which compare the performance of the default algorithm to
the performance of an algorithm in which a single choice has been altered. We only
modify this approach if not using a basic choice for an algorithmic aspect leads to
such a small number of cuts found by the default algorithm that the results for
altering other single choices would not be very meaningful.

The results will be presented in the following way. In the tables containing the re-
sults for the default algorithms (Table B.3, B.22, B.28, B.36, and B.48), we state the
performance measures Gap closed %, Cuts, Sepa Time and Sepa Time Average (there
will be three default algorithms for the cutting plane separator for the 0-1 knapsack
problem, because we consider three classes of valid inequalities). At the bottom of
the tables, in the row labelled Total, we give the sum of the values of each perfor-
mance measure over all instances, and in the row labelled Geom. Mean, we give the
geometric mean of the values of each performance measure over all instances where
individual values smaller than one were replaced by one. In the tables containing
the results for altering a single choice for each cutting plane separator (see e.g. Ta-
ble B.4), we report in addition for each performance measure the difference to the
corresponding default algorithm. Here numbers in blue color indicate that the value
of the performance measure obtained by the altered algorithm is better than the
one obtained by the default algorithm, and numbers in red color indicate that the
value of the performance measure obtained by the altered algorithm is worse than
the one obtained by the default algorithm. Note that for Gap closed % the 4 value
for each instance, for Total and for Geom. Mean is given in percentage points, not
in percentage.
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Chapter 3

Cutting Plane Separator for the

Class of C-MIR Inequalities

In this chapter, we investigate the implementation of an efficient cutting plane sep-
arator which generates general cutting planes for MIPs. More precisely, we separate
the class of complemented mixed integer rounding inequalities (c-MIR inequalities).

3.1 Introduction

Cutting planes which do not require or exploit any knowledge about the underlying
problem are called general cutting planes. Several families of general cutting planes
for MIPs have been proposed in the literature over the last fifty years, including
Gomory mixed integer cuts (GMI cuts) [28], intersection cuts [7], disjunction cuts
[9], split cuts [16], and mixed integer rounding cuts (MIR cuts) [48]. It is well-known
that many of these inequalities, such as GMI inequalities and MIR inequalities, are
equivalent (see [19, 20]).

In contrast to cutting plane separators that are based on the polyhedral analysis
of the problem formulation, for decades, general cutting planes were considered to be
impractical for solving large size instances of MIPs. However, in the 1990s, motivated
by their results for implementing lift-and-project cuts [10] for BMIPs, Balas, Ceria,
Cornuéjols, and Natraj [11] revisited GMI cuts and demonstrated their practical
usefulness within a linear programming based branch-and-cut algorithm (see also
[18]).

Marchand and Wolsey [39, 42] also pursued the idea of using general cutting
planes for MIPs. They investigated the practical usefulness of MIR cuts. However,
their work is based on the idea that even general cuts should be based, if possible,
on problem structure, and that this problem structure is to be found in the original
problem matrix (see [39]). They considered mixed knapsack sets which are obtained
by taking linear combinations of constraints (transformed into equality form) of the
original MIP and by substituting bounds imposed on the real variables. For these
sets, they introduced the class of c-MIR inequalities, which are MIR inequalities
derived for the mixed knapsack sets after scaling the mixed knapsack constraint
and complementing some of the integer variables. This idea was motivated by the
observation that several strong valid inequalities based on specific problem structure,

15
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such as flow cover inequalities (see Chapter 5) can be derived as MIR inequalities
when taking linear combinations of specific types of constraints and using the bounds
imposed on the variables.

Our implementation of the cutting plane separator for the class of c-MIR inequal-
ities follows the separation heuristic given in [39, 42]. See also [29], for experiences
with implementing this separation heuristic. In [42], it was suggested to further
test some of the heuristic choices made in the c-MIR separation heuristic and to
develop more elaborate strategies for creating mixed knapsack sets. To Marchand
and Wolsey it appeared to be especially important to study and understand how
to reduce the number of cuts generated. In this chapter, we partly go into these
subjects.

The structure of the remaining chapter is as follows. In Section 3.2, we give
a brief introduction to the classes of MIR and c-MIR inequalities both defined for
mixed knapsack sets and state a procedure to construct such sets from a MIP. In
Section 3.3, we give an outline of the c-MIR separation heuristic introduced by
Marchand and Wolsey and discuss different algorithmic aspects of this separation
routine. Our computational results for implementing the cutting plane separator for
the class of c-MIR inequalities are reported in Section 3.4. Finally, conclusions are
given in Section 3.5.

3.2 The Class of C-MIR Inequalities

We consider the mixed knapsack inequality
∑

j∈N

ajxj ≤ a0 + s, (3.1)

where a0 and aj are rational numbers for all j ∈ N = {1, . . . , n}, xj are nonnegative
integer variables for all j ∈ N , and s is a nonnegative real variable. The mixed
knapsack set XMK associated with inequality (3.1) is the set of all vectors (x, s) ∈
Zn
+×R+ satisfying inequality (3.1). In addition, we assume that all integer variables

are bounded, i.e.,

XMK = {(x, s) ∈ Zn
+ × R+ :

∑

j∈N

ajxj ≤ a0 + s, xj ≤ bj for all j ∈ N},

where bj are nonnegative rational numbers for all j ∈ N .

Theorem 3.1 ([39, 42]). For d ∈ R, let fd = d − bdc and d+ = max{d, 0}. The
inequality

∑

j∈N

(bajc+
(faj − fa0

)+

1− fa0

)xj ≤ ba0c+
s

1− fa0

(3.2)

is valid for XMK .

Inequality (3.2) is called mixed integer rounding inequality (MIR inequality).

Remark 3.2. The MIR inequality (3.2) can also be written in the form
∑

j∈N

Ffa0
(aj)xj + F̄fa0

(−1)s ≤ Ffa0
(a0),
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Figure 3.1: MIR function Fα for α = 0.5.

where Fα : R→ R for 0 ≤ α < 1 is given by

Fα(d) = bdc+
(fd − α)+

1− α

and F̄α(d) = min{0, d
1−α}. Function Fα is called MIR function and is given in

Figure 3.1 for α equal to 0.5. It is well-known that the MIR function is nondecreasing
and superadditive on R (see [46, 48]).

The MIR inequality (3.2) derived for XMK depends on the formulation of XMK ,
i.e., scaling the mixed knapsack inequality (3.1) and complementing some of the inte-
ger variables may lead to different MIR inequalities valid for XMK . This observation
was used by Marchand and Wolsey [39, 42].

Theorem 3.3 ([39, 42]). If (T,U) is any partition of N and δ ∈ Q+\{0}, then
inequality

∑

j∈T

Ffβ (
aj
δ
)xj +

∑

j∈U

Ffβ (−
aj
δ
)(bj − xj) ≤ bβc+

s

δ(1− fβ)
, (3.3)

is valid for XMK , where β =
a0−

∑

j∈U ajbj

δ
.

Proof. Complementing xj for all j ∈ U , i.e., substituting xj = bj − x̄j with x̄j ∈ Z+

for all j ∈ U , and dividing the mixed knapsack inequality (3.1) by δ, we obtain the
mixed knapsack set

X̄MK = {(x, x̄, s′) ∈ Z|T |+ × Z|U |+ × R+ :
∑

j∈T

aj
δ
xj +

∑

j∈U

−aj
δ
x̄j ≤ β + s

′
,

xj ≤ bj for all j ∈ T,
x̄j ≤ bj for all j ∈ U},
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where s
′
= s

δ
and β =

a0−
∑

j∈U ajbj

δ
. By Theorem 3.1, the MIR inequality

∑

j∈T

Ffβ (
aj
δ
)xj +

∑

j∈U

Ffβ (−
aj
δ
)x̄j ≤ bβc+

s′

1− fβ

is valid for X̄MK . Substitution x̄j = bj − xj for all j ∈ U and s
′
= s

δ
leads to

inequality (3.3) valid for XMK .

Inequality (3.3) is called complemented mixed integer rounding inequality (c-MIR
inequality) associated with (T , U) and δ. Furthermore, the family of all c-MIR in-
equalities associated with some (T , U) and some δ is called class of c-MIR inequal-
ities.

The aim of this chapter is to implement a cutting plane separator which generates
general cutting planes for MIPs. Therefore, we consider the mixed integer set

X = {(x, y) ∈ Zn
+ × Rm

+ :
∑

j∈N

aijxj +
∑

j∈M

cijyj = ai0 for all i ∈ P,

xj ≤ bj for all j ∈ N},
(3.4)

where ai0 and aij are rational numbers for all j ∈ N and i ∈ P = {1, . . . , p}, cij
are rational numbers for all j ∈M = {1, . . . ,m} and i ∈ P , and bj are nonnegative
rational numbers for all j ∈ N . Constraints of the form

∑

j∈N aijxj+
∑

j∈M cijyj = ai0
are called single mixed integer constraints. Note that each row of a MIP can be
transformed into an equality constraint by adding a nonnegative slack variable if
necessary. In addition, let yj be bounded by a simple and variable lower bound and
by a simple and variable upper bound for all j ∈M defined as follows.

Definition 3.4. Let lj ∈ Q+, l̃j ∈ Q+, and xj be a nonnegative integer variable.
Further, let yj be a nonnegative real variable with lj ≤ yj and l̃jxj ≤ yj . Then lj
is called simple lower bound imposed on yj and l̃jxj is called variable lower bound
imposed on yj .

Definition 3.5. Let uj ∈ Q+ ∪ {∞}, ũj ∈ Q+ ∪ {∞}, and xj be a nonnegative
integer variable. Furthermore, let yj be a nonnegative real variable with yj ≤ uj
and yj ≤ ũjxj . Then uj is called simple upper bound imposed on yj and ũjxj is
called variable upper bound imposed on yj .

Remark 3.6. Note that in Definition 3.5, ũj = ∞ is only allowed to simplify the
notation for the variable upper bounds. If ũj =∞, then ũjx

∗
j =∞ for all x∗j ∈ [0, 1].

Furthermore, without loss generality, we assume throughout this chapter that
n = m holds.

To derive valid inequalities for X, we relax X to a mixed knapsack set XMK

and generate c-MIR inequalities valid for XMK . The relaxation XMK of X is also
called mixed knapsack relaxation of X. It can be constructed the following way.

Aggregation: Choose ωi ∈ Q for all i ∈ P and relax X to obtain the set

X
′
= {(x, y) ∈ Zn

+ × Rm
+ :

∑

j∈N

αjxj +
∑

j∈M

γjyj = α0,

xj ≤ bj for all j ∈ N},
(3.5)
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where αj =
∑

i∈P ωiaij for all j ∈ N , γj =
∑

i∈P ωicij for all j ∈ M , and α0 =
∑

i∈P ωiai0.

Bound substitution: Now, choose for each real variable yj , j ∈ M one of the
following substitutions

yj = uj − ȳj , yj = ũjxj − ȳj , yj = lj + ȳj , or yj = l̃jxj + ȳj

where ȳj is a nonnegative real variable. Note that the first and the second substitu-
tion are only allowed to be chosen if uj <∞ and ũj <∞, respectively. Then, X

′
is

equivalent to the set

X
′′
= {(x, ȳ) ∈ Zn

+ × Rm
+ :

∑

j∈N

α
′

jxj +
∑

j∈M,γ
′
j≥0

γ
′

j ȳj = α
′

0 −
∑

j∈M,γ
′
j<0

γ
′

j ȳj ,

xj ≤ bj for all j ∈ N},
(3.6)

for appropriate rational numbers α
′

j for all j ∈ N , γ
′

j for all j ∈M and α
′

0. Finally,

relax X
′′
to obtain the mixed knapsack set

XMK = {(x, s) ∈ Zn
+ × R+ :

∑

j∈N

α
′

jxj ≤ α
′

0 + s,

xj ≤ bj for all j ∈ N},
(3.7)

where s = −∑
j∈M,γ

′
j<0

γ
′

j ȳj .

3.3 Algorithmic Aspects

In the last section, we introduced the class of c-MIR inequalities valid for a mixed
knapsack set. Furthermore, we stated a procedure which constructs mixed knapsack
relaxations of a mixed integer set. In this section, we investigate algorithmic aspects
of a separation algorithm for the class of c-MIR inequalities.

Let (x∗, y∗) ∈ (Rn
+\Zn

+)×Rm
+ be a fractional vector and let X be a mixed integer

set given in the form (3.4). We want to solve the following separation problem.

Separation problem for the class of c-MIR inequalities

Find a mixed knapsack relaxation

XMK = {(x, s) ∈ Zn
+ × R+ :

∑

j∈N

α
′

jxj ≤ α
′

0 + s, xj ≤ bj for all j ∈ N},

ofX and let (x∗, s∗) ∈ (Rn
+\Zn

+)×R+ be the corresponding fractional vector.
Find a partition (T,U) of N and a constant δ ∈ Q+\{0} such that

∑

j∈T

Ffβ (
α
′

j

δ
)x∗j +

∑

j∈U

Ffβ (−
α
′

j

δ
)(bj − x∗j ) > bβc+

s∗

δ(1− fβ)
,

where β =
α
′

0−
∑

j∈U α
′

jbj

δ
, or show that no inequality in the class of c-MIR

inequalities for any mixed knapsack relaxation of X is violated by the cor-
responding fractional vector (x∗, s∗).



20 Chapter 3. Cutting Plane Separator for the Class of C-MIR Inequalities

We solve the separation problem for the class of c-MIR inequalities heuristi-
cally using the separation algorithm introduced by Marchand and Wolsey [39, 42].
The algorithm uses the procedure given in the last section to construct different
mixed knapsack relaxations of X and tries to generate c-MIR inequalities for these
relaxations. It consists of three steps, each of them heuristic.

Step 1 Aggregation heuristic. A single mixed integer constraint is generated by
taking a linear combination of constraints defining X (see (3.5)).

Step 2 Bound substitution heuristic. A mixed knapsack relaxation of X is derived
from the single mixed integer constraint generated in Step 1 using bounds
imposed on the real variables (see (3.7)).

Step 3 Cut generation heuristic. For the mixed knapsack relaxation derived in
Step 2, a violated c-MIR inequality is generated if possible.

Determining useful linear combinations of constraints defining X in Step 1 plays
a crucial role in the separation algorithm. Marchand andWolsey [39, 42] suggested to
loop through the set P of constraints definingX. For each constraint i ∈ P , which we
call starting constraint, the separation algorithm first takes the linear combination
with scalar equal to one for this constraint and scalar equal to zero for all other
constraints. If no violated c-MIR inequality for a mixed knapsack set based on
this linear combination is found, the algorithm selects, in the aggregation heuristic,
another constraint r ∈ P\{i} in order to eliminate a real variable appearing in the
starting constraint. In the new linear combination, only the scalar of the selected
constraint r changes. The process is repeated until a violated c-MIR inequality for a
mixed knapsack set based on the current linear combination is found or a maximum
number of constraints added to the starting constraint, denoted by the parameter
MAXAGGR, is reached. The number of constraints added to each starting constraint
is limited in order to reduce the time spent in the separation algorithm.

The complete separation algorithm for the class of c-MIR inequalities using
MAXAGGR = 6 is given in Algorithm 3.1. Note that the cuts derived by the sepa-
ration algorithm have to be restated in terms of the original real variables yj , j ∈M
before they are added to the MIP.

In [39], Marchand used MAXAGGR = 6. Marchand and Wolsey [42] and Gonçalves
and Ladanyi [29] tested different values of MAXAGGR. Note that in [42] and [29],
MAXAGGR denotes the maximum number of single mixed integer constraints defining
X which are allowed to be combined to form the aggregated constraint.

We decided to state the complete separation algorithm already here in order to
give an idea of the management of the three steps. In the next sections, we give a
detailed description of the three steps and discuss different algorithmic aspects of
each heuristic.

3.3.1 Aggregation Heuristic

The aggregation heuristic is the first part of the procedure to construct a mixed
knapsack relaxation of X.

This heuristic adds in each iteration of the while-loop in Algorithm 3.1 (Line 10)
another single mixed integer constraint from the formulation of X to the current
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Input : Mixed integer set X defined as in (3.4), simple and variable lower
bounds and simple and variable upper bounds imposed on yj for
all j ∈M defined as in Definition 3.4 and 3.5, and
(x∗, y∗) ∈ (Rn

+\Zn
+)× Rm

+ fractional vector.
Output: Set of violated (with respect to the fractional vectors

(x∗, s∗) ∈ (Rn
+\Zn

+)× R+ which correspond to the constructed
mixed knapsack relaxations of X) inequalities from the class of
c-MIR inequalities. (This set can be empty.)

1 MAXAGGR ← 6
2 C ← ∅
3 for i ← 1 to p do

/* Use starting constraint. */

4 Step 1. Aggrcons ← ∑

j∈N aijxj +
∑

j∈M cijyj = ai0 and Q ← {i}
5 Step 2. Call Algorithm 3.3 for X, simple and variable lower and upper

bounds imposed on yj for all j ∈M , (x∗, y∗) and Aggrcons. (Let XMK

be the constructed mixed knapsack set and (x∗, s∗) be the corresponding
fractional vector.)

6 Step 3. Call Algorithm 3.4 for XMK and (x∗, s∗). (If a c-MIR
inequality valid for XMK is found, let

∑

j∈N ωjxj ≤ ω0 + ωs be the
found inequality.)

7 if Inequality was found and
∑

j∈N ωjx
∗
j > ω0 + ωs∗ then

8 C ← C ∪ {∑j∈N ωjxj ≤ ω0 + ωs}
9 continue

/* Use aggregated constraints. */

10 while |Q| ≤ MAXAGGR do
11 Step 1. Call Algorithm 3.2 for X, simple and variable lower and

upper bounds imposed on yj for all j ∈M , (x∗, y∗), Aggrcons and Q.
12 if No aggregation took place then

break
14 Step 2. Call Algorithm 3.3 for X, simple and variable lower and

upper bounds imposed on yj for all j ∈M , (x∗, y∗) and Aggrcons.
(Let XMK be the constructed mixed knapsack set and (x∗, s∗) be
the corresponding fractional vector.)

15 Step 3. Call Algorithm 3.4 for XMK and (x∗, s∗). (If a c-MIR
inequality valid for XMK is found, let

∑

j∈N ωjxj ≤ ω0 + ωs be the
found inequality.)

16 if Inequality was found and
∑

j∈N ωjx
∗
j > ω0 + ωs∗ then

17 C ← C ∪ {∑j∈N ωjxj ≤ ω0 + ωs}
18 break

19 return C

Algorithm 3.1: Separation algorithm for the class of c-MIR inequalities. Use MAXAGGR = 6.
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aggregated constraint. Let Q ⊆ P be the set of single mixed integer constraints in
the formulation of X which have been aggregated to form the current aggregated
constraint

∑

j∈N

αjxj +
∑

j∈M

γjyj = α0. (3.8)

The aggregation heuristic selects a single mixed integer constraint r ∈ P\Q in order
to eliminate a real variable appearing in the aggregated constraint (3.8). This idea of
refining progressively the structure on which to generate valid inequalities by adding
to an initial constraint other ones was first used by Van Roy and Wolsey [55], where
they created paths in fixed charge networks.

For j ∈ M , let dj = min{y∗j − lb∗j , ub
∗
j − y∗j } be the bound distance of the real

variable yj , where lb∗j = max{lj , l̃jx∗j} and ub∗j = min{uj , ũjx∗j}. Let

M∗ = {j ∈M : γj 6= 0, dj > 0 and ∃i ∈ P\Q : cij 6= 0}

be the set of real variables which are candidates to be eliminated. If M ∗ is empty,
we stop the aggregation heuristic; Algorithm 3.1 now continues with a new starting
constraint. Otherwise, we choose a real variable yk with k ∈ M∗ and a constraint
r ∈ P\Q where this variable appears. For this selection we take into account the
bound distances of the real variables in M ∗ and values AGGRSCOREi

j ∈ R for all j ∈M∗

and i ∈ P\Q. Note that AGGRSCOREi
j ∈ R, j ∈ M∗ and i ∈ P\Q may depend on the

iteration of the for-loop and while-loop in Algorithm 3.1 (Line 3 and 10). We select
the real variable yk with k ∈ M∗ which has the greatest bound distance and then
the constraint r ∈ P\Q with crk 6= 0 which has the greatest value of AGGRSCOREr

k. The
current aggregated constraint (3.8) and the selected constraint r are now aggregated
in such a way that the coefficient of yk becomes zero. The corresponding scalar
ωr = −γk

cr
k
of constraint r in the new linear combination is called aggregation factor.

The following types of scores can be used to select the constraint.

Score Type 1 Use AGGRSCOREi
j = −i for all j ∈ M∗ and i ∈ P\Q, i.e., for k ∈ M ∗

select r ∈ P\Q with ckr 6= 0 such that r is the index of the constraint found
first.

Score Type 2 Use AGGRSCOREi
j = random number for all j ∈ M ∗ and i ∈ P\Q,

i.e., for k ∈M∗ select r ∈ P\Q with ckr 6= 0 randomly.

Score Type 3 For i ∈ P , let dbi be the LP solution value of the dual variable
corresponding to the original MIP row, i.e., of the row of the MIP before
introducing the nonnegative slack variables, which corresponds to constraint
i. See [52], for the definition of the dual LP. Let

densi =
|{j ∈ N : aij 6= 0}|+ |{j ∈ M̃ : cij 6= 0}|

|N |+ |M̃ |
,

where M̃ is the index set of the real variables in the original MIP, be the
density of the original MIP row corresponding to constraint i. Furthermore,
let si ∈ M be the index of the nonnegative slack variable introduced in the
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original MIP row corresponding to constraint i. Use

AGGRSCOREi
j = 0.9l (max{ dbi

max{‖(c,d)‖,1.0} , 0.0001} +
0.0001(1− densi) +

0.001(1− y∗
si

max{‖(ai,ci)‖,0.1}))

for all j ∈ M∗ and i ∈ P\Q, where l is the number of times constraint i has

already been involved in an aggregation in Algorithm 3.1, (c, d) ∈ Qn × Q|M̃ |
is the vector of the coefficients of all variables in the objective function of the
original MIP, (ai, ci) ∈ Qn×Q|M̃ | is the vector of the coefficients of all variables
in the original MIP row corresponding to constraint i and ‖ ·‖ is the Euclidean
norm. That means, for k ∈ M ∗, prefer constraints r ∈ P\Q (with ckr 6= 0)
for which the dual variable corresponding to the original MIP row has a great
LP solution value, for which the corresponding original MIP row has a small
density, which are tight and which have not been involved in an aggregation
in the separation algorithm yet.

Score Type 4 Use AGGRSCOREi
j = − (number of real variables with nonzero co-

efficient in the new aggregated constraint when the real variable yj and the
constraint i are selected) for all j ∈M ∗ and i ∈ P\Q.

The complete aggregation heuristic for using Score Type 1 is given in Algo-
rithm 3.2. This algorithm can be extended straightforward for using one of the
other types of scores.

Marchand and Wolsey [39, 42] did not go into details about how they choose the
constraint r ∈ P\Q with crk 6= 0.

Gonçalves and Ladanyi [29] tested Score Type 1 and Score Type 2. In addition,
they suggested to use all possible constraints r ∈ P\Q with crk 6= 0 for the selected
real variable yk with k ∈ M∗ for the aggregation. The version of their code using
this strategy turned out to be too slow since the number of aggregated constraints
can become very large. However, they tested this version for some instances for
MAXAGGR = 2 and the performance with respect to the dual bound did not seem to
be much better than using Score Type 1 or Score Type 2.

3.3.2 Bound Substitution Heuristic

The bound substitution heuristic is the second part of the procedure to construct a
mixed knapsack relaxation of X.

Let
∑

j∈N

αjxj +
∑

j∈M

γjyj = α0 (3.9)

be the single mixed integer constraint generated in the aggregation heuristic. The
bound substitution heuristic performs for each real variable yj , j ∈ M one of the
following substitutions

yj = uj − ȳj , yj = ũjxj − ȳj , yj = lj + ȳj , or yj = l̃jxj + ȳj ,

where ȳj is a nonnegative real variable. Note that the first and the second substitu-
tion are only performed if uj <∞ and ũj <∞, respectively. The set defined by the
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Input : Mixed integer set X defined as in (3.4), simple and variable lower
bounds and simple and variable upper bounds imposed on yj for
all j ∈M defined as in Definition 3.4 and 3.5,
(x∗, y∗) ∈ (Rn

+\Zn
+)× Rm

+ fractional vector, aggregated constraint
∑

j∈N αjxj +
∑

j∈M γjyj = α0, and Q ⊆ P set of single mixed
integer constraints in the formulation of X which have been
combined to form the aggregated constraint.

Output: Updates aggregated constraint and updates the set Q ⊆ P , or
returns notification that no aggregation took place.

1 for j ← 1 to m do

2 lb∗j ← max{lj , l̃jx∗j}
3 ub∗j ← min{uj , ũjx∗j}
4 dj ← min{y∗j − lb∗j , ub

∗
j − y∗j }

5 M∗ ← {j ∈M : γj 6= 0, dj > 0 and ∃i ∈ P\Q : cij 6= 0}
6 if M∗ = ∅ then

return No aggregation took place

8 bestaggrscore ← −∞
9 bestbounddist ← 0

10 foreach j ∈M∗ do
11 if dj < bestbounddist then continue
12 foreach i ∈ P\Q with cij 6= 0 do
13 AGGRSCOREi

j ← −i
14 if dj > bestbounddist or AGGRSCOREi

j > bestaggrscore then
15 bestaggrscore ← AGGRSCOREi

j

16 bestbounddist ← dj
17 k ← j
18 r ← i

19 ωr ← −γk
cr
k

20 for j ← 1 to n do αj ← αj + ωrarj
21 for j ← 1 to m do γj ← γj + ωrcrj
22 α0 ← α0 + ωrar0
23 Q ← Q ∪ {r}

Algorithm 3.2: Aggregation heuristic. Use Score Type 1.
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resulting single mixed integer constraint and by the bounds imposed on the integer
variables is than relaxed to obtain the mixed knapsack relaxation XMK of X, as
explained in Section 3.2.

We want to comprehend the strategies suggested by Marchand and Wolsey [39,
42] for the selection of the substitutions, and we also want to develop new strategies.
Furthermore, in [39, 42], a real variable is either bounded by a simple upper bound
or by a variable upper bound. The same hold for the lower bounds: a real variable
is either bounded by a simple lower bound or by a variable lower bound. Thus, we
have to extend the bound substitution heuristic given in [39, 42] to the more general
situation considered here.

Therefore, let the MIR inequality for XMK be given in the form

∑

j∈N

Ff
α
′
0

(α
′

j)xj +
∑

j∈M

F̄f
α
′
0

(γ
′

j)ȳj ≤ bα
′

0c. (3.10)

Note that for d ≥ 0 and 0 ≤ α < 1, F̄α(d) = 0. Furthermore, let k ∈M be the index
of a real variable with γk not equal to zero in (3.9), uk <∞, and ũk <∞.

To understand the effect of the different bound substitutions performable for yk,
we analyze the effect on the MIR inequality (3.10) when we use one of the different
bounds imposed on yk for the substitution of yk in comparison to the case where no
bound substitution is performed.

Using a simple bound for the substitution of yk has a different effect than using a
variable bound. On the one hand, among other changes, using a simple bound may
change the value of α

′

0 and therefore, may change the value of f
α
′
0

, which would lead

to different values of the coefficients of all variables in the MIR inequality (3.10).
On the other hand, among other changes, using a variable bound does not change
the value of α

′

0, whereas the value of α
′

k for the integer variable xk involved in
the variable bound used may change, which would lead to a different value of the
coefficient of xk in the MIR inequality (3.10).

In addition, using a lower bound for the substitution of yk has a different effect
than using an upper bound. On the one hand, using a lower bound does not change
the value of γ

′

k. On the other hand, using an upper bound changes the value of
γ
′

k, i.e., if γk ≥ 0 in (3.9), γ
′

k becomes negative when using an upper bound for the
substitution of yk, and the other way around. Thus, the decision of using a lower
bound or an upper bound influences the value of γ

′

k and therefore, also the coefficient
of ȳk in the MIR inequality (3.10). If γk is nonnegative in (3.9), we assume that
in practice using a lower bound performs better than using an upper bound. If γk
is negative in (3.9), we can not decide in advance whether using a lower bound or
using an upper bound leads to a better performance.

We suggest to use a two step procedure for deciding which bound is used for the
substitution for each real variable. In the first step, we decide whether a simple or
variable bound is used, i.e., we select a lower bound lbj (simple or variable bound)
and an upper bound ubj (simple or variable). And, in the second step we decide
whether a lower or upper bound is used, i.e., we decide which of the two bounds
selected in the first step we will actually use for the substitution. From our analysis
the question arises, which of the following three criteria for the first step does lead
to the best performance of the separation algorithm in practice.
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Criterium F1 Use only simple bounds if possible. For each j ∈ M , we define the
lower bound lbj = lj with value lb∗j = lj .

Furthermore, for each j ∈M , we define the upper bound ubj = ũjxj if uj =∞
and ubj = uj otherwise and ub∗j to be the corresponding bound value.

Criterium F2 Use only variable bounds if possible. For each j ∈M , we define the
lower bound lbj = l̃jxj with value lb∗j = l̃jx

∗
j .

Furthermore, for each j ∈ M , we define the upper bound ubj = uj if ũj = ∞
and ubj = ũjxj otherwise and ub∗j to be the corresponding bound value.

Criterium F3 Use for each real variable yj, j ∈M the simple bound if it is closer
to y∗j than the variable bound and the variable bound otherwise. For each

j ∈M , we define the lower bound lbj = lj if lj > l̃jx
∗
j and lbj = l̃jxj otherwise

and lb∗j to be the corresponding bound value.

Furthermore, for each j ∈M , we define the upper bound ubj = uj if uj < ũjx
∗
j

and ubj = ũjxj otherwise and ub∗j to be the corresponding bound value.

For some special cases, we select the following bounds in the second step. If ub∗j =∞
or y∗j = lb∗j , we substitute yj = lbj+ ȳj . If y

∗
j = ub∗j , we substitute yj = ubj− ȳj . For

the remaining cases, from our analysis the question arises, which of the following
four criteria for the second step does lead to the best performance of the separation
algorithm in practice.

Criterium S1 Minimize the value of s∗ = −∑
j∈M,γ

′
j<0

γ
′

j ȳ
∗
j , i.e., try to obtain a

single mixed integer constraint where all real variables ȳj have a nonnegative
coefficient. Substitute

yj =

{

lbj + ȳj : γj > 0,
ubj − ȳj : γj < 0.

Criterium S2 Opposite of Criterium S1: Minimize the value of
∑

j∈M,γ
′
j>0

γ
′

j ȳ
∗
j ,

i.e., try to obtain a single mixed integer constraint where all real variables ȳj
have a negative coefficient. Substitute

yj =

{

lbj + ȳj : γj < 0,
ubj − ȳj : γj > 0.

Criterium S3 Use for each real variable yj, j ∈ M the lower bound if it is closer
to y∗j than the upper bound and the upper bound otherwise. Substitute

yj =

{

lbj + ȳj : y∗j − lb∗j ≤ ub∗j − y∗j ,

ubj − ȳj : y∗j − lb∗j > ub∗j − y∗j .

Criterium S4 Mixture of Criterium S1 and Criterium S3: Try to obtain a single
mixed integer constraint where all real variables ȳj, j ∈M have a nonnegative
coefficient if γj is nonnegative in (3.9). For the remaining variables yj, j ∈M
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use the lower bound if it is closer to y∗j than the upper bound and the upper
bound otherwise. Substitute

yj =

{

lbj + ȳj : γj > 0 or ( γj < 0 and y∗j − lb∗j ≤ ub∗j − y∗j ),

ubj − ȳj : γj < 0 and y∗j − lb∗j > ub∗j − y∗j .

Gonçalves and Ladanyi [29] suggested to perform the bound substitution heuris-
tic in addition to the current aggregated constraint (3.9) multiplied by minus one.
This modification was used because their bound substitution heuristic frequently
failed to return mixed knapsack constraints. They concluded that that happened
when the real variable s = −∑

j∈M,γ
′
j<0

γ
′

j ȳj was zero due to the in-existence of

coefficients γ
′

j < 0 after bound substitution.

The complete bound substitution heuristic for using Criterium F3 in the first step
and Criterium S3 in the second step and for not multiplying the current aggregated
constraint (3.9) by minus one in addition is given in Algorithm 3.3. This algorithm
can be extended straightforward for using one of the other criteria in the first and
second step and for multiplying the current aggregated constraint (3.9) by minus
one in addition.

Marchand and Wolsey [39, 42] suggested to use Criterium S1, Criterium S2
or Criterium S3 in the second step of the bound substitution heuristic. As already
mentioned, they did not have to perform the first step, since they considered only one
lower bound (simple or variable) and one upper bound (simple or variable) imposed
on each real variable. Neither in [39], nor in [42] the modification of multiplying the
current aggregated constraint (3.9) by minus one in addition has been mentioned.

Gonçalves and Ladanyi [29] tested the three criteria suggested by Marchand
and Wolsey for the second step. The first step was also not performed because the
considered the same bounds as in [39, 42].

Note that the bound substitution heuristic presented here can easily be extended
to the more general case where the real variables are not restricted to be nonnegative.
Furthermore, it can be extended to the case where the variable bounds are given in
the form l̃jxj + dlj and ũjxj + duj , where dlj , d

u
j ∈ Q. These extensions are used in

Scip 0.81.

3.3.3 Cut Generation Heuristic

The cut generation heuristic tries to generate a c-MIR inequality which is valid
for the mixed knapsack set constructed in the aggregation heuristic and the bound
substitution heuristic and which is violated by the fractional vector corresponding
to the constructed mixed knapsack set.

Let

XMK = {(x, s) ∈ Zn
+ × R+ :

∑

j∈N

α
′

jxj ≤ α
′

0 + s, xj ≤ bj for all j ∈ N}

be the constructed mixed knapsack relaxation of X and (x∗, s∗) ∈ (Rn
+\Zn

+)×R+ be
the corresponding fractional vector. The main aspect of the cut generation heuristic
is to choose a useful partition (T,U) of N and a useful constant δ ∈ Q+\{0}.
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Input : Mixed integer set X defined as in (3.4), simple and variable lower
bounds and simple and variable upper bounds imposed on yj for
all j ∈M defined as in Definition 3.4 and 3.5,
(x∗, y∗) ∈ (Rn

+\Zn
+)× Rm

+ fractional vector, and aggregated
constraint

∑

j∈N αjxj +
∑

j∈M γjyj = α0.

Output: Mixed knapsack relaxation XMK of X and (x∗, s∗) corresponding
fractional vector.

1 for j ← 1 to n do α
′

j ← αj

2 α
′

0 ← α0

3 for j ← 1 to m do

/* First step: Select simple or variable bound. */

4 if lj > l̃jx
∗
j then lbj ← lj and lb∗j ← lj

5 else lbj ← l̃jxj and lb∗j ← l̃jx
∗
j

6 if uj < ũjx
∗
j then ubj ← uj and ub∗j ← uj

7 else ubj ← ũjxj and ub∗j ← ũjx
∗
j

/* Second step: Select lower or upper bound. */

8 if y∗j − lb∗j ≤ ub∗j − y∗j then /* Substitute yj = lbj + ȳj. */

9 if lbj = l̃jxj then

10 γ
′

j ← γj and α
′

j ← α
′

j + γj l̃j

11 else

12 γ
′

j ← γj and α
′

0 ← α
′

0 − γjlj

13 ȳ∗j ← y∗j − lb∗j

14 else /* Substitute yj = ubj − ȳj. */

15 if ubj = ũjxj then

16 γ
′

j ← −γj and α
′

j ← α
′

j + γj ũj

17 else

18 γ
′

j ← −γj and α
′

0 ← α
′

0 − γjuj

19 ȳ∗j ← ub∗j − y∗j

21 s ← −∑
j∈M,γ

′
j<0

γ
′

j ȳj and s∗ ← −∑
j∈M,γ

′
j<0

γ
′

j ȳ
∗
j

22 XMK ← {(x, s) ∈ Zn
+ × R+ :

∑

j∈N

α
′

jxj ≤ α
′

0 + s, xj ≤ bj for all j ∈ N}

23 return XMK and (x∗, s∗)

Algorithm 3.3: Bound substitution heuristic. Use Criterium F3 in the first step and
Criterium S3 in the second step. Do not multiply the given single mixed integer constraint
by minus one in addition.
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As for the bound substitution heuristic, we want to comprehend the strategy
suggested by Marchand and Wolsey [39, 42] for choosing the partition, and we also
want to develop new strategies. Therefore, for (T,U) partition of N and δ = 1, let
the c-MIR inequality for XMK be given in the form

∑

j∈T

Ffβ (α
′

j)xj +
∑

j∈U

Ffβ (−α
′

j)(bj − xj) +
∑

j∈M

F̄fβ (γ
′

j)ȳj ≤ bβc. (3.11)

Note that for d ≥ 0 and 0 ≤ α < 1, F̄α(d) = 0. Furthermore, let k ∈ N be the
index of an integer variable with α

′

k not equal to zero in XMK . To understand the
effect of complementing xk, we analyze the effect on the violation of (3.11) when we
complement only xk, in comparison to the case where none of the integer variables
is complemented.

The effect of complementing xk depends on the value of α
′

k in XMK . If α
′

k is
negative in XMK , complementing xk leads, among other changes, to a greater or
equal value of β in (3.11). In addition, the value of Ffβ (−α

′

k)(bk−x∗k) (≥ 0) in (3.11)

when complementing xk is greater than or equal to the value of Ffβ (α
′

k)x
∗
k (≤ 0) in

(3.11) when not complementing xk.
If α

′

k is nonnegative in XMK , complementing xk leads, among other changes, to
a smaller or equal value of β in (3.11). In addition, the value of Ffβ (−α

′

k)(bk − x∗k)
(≤ 0) in (3.11) when complementing xk is smaller than or equal to the value of
Ffβ (α

′

k)x
∗
k (≥ 0) in (3.11) when not complementing xk.

This raises the question, whether complementing all integer variables xj , j ∈ N

• with α
′

j < 0 in XMK ,

• with α
′

j > 0 in XMK , or

• for which x∗j is closer to bj than to the lower bound zero

leads to a better performance of the separation algorithm in practice. The following
cut generation procedure suggested by Marchand [39] uses the last strategy for
choosing the partition (T,U) of N .

Procedure 1 Take the initial partition (T,U) of N with

U = {j ∈ N : x∗j ≥
bj
2
}.

Select
δ ∈ N∗ = {|α′j | : j ∈ N,α

′

j 6= 0 and 0 < x∗j < bj}
such that the resulting c-MIR inequality for XMK has the greatest violation,
i.e., such that

∑

j∈T

Ffβ (
α
′

j

δ
)x∗j +

∑

j∈U

Ffβ (−
α
′

j

δ
)(bj − x∗j )− bβc −

s∗

δ(1− fβ)

is maximized, where β =
α
′

0−
∑

j∈U α
′

jbj

δ
. If fβ = 0 for all δ ∈ N∗, some

additional integer variables xj , j ∈ T lying strictly between their bounds are

complemented, ordered by nonincreasing value of x∗j −
bj
2 .

Try to improve the violation of the c-MIR inequality by
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a) modifying δ dividing it by 2, 4 and 8 and

b) successively complementing each integer variable xj , j ∈ T lying strictly

between its bounds, ordered by nonincreasing value of x∗j −
bj
2 .

We suggest to test in addition the following two procedures, which differ from
Procedure 1 by the chosen initial partition (T,U) of N .

Procedure 2 Like Procedure 1 but take the initial partition (T,U) of N with

U = {j ∈ N : α
′

j < 0 and x∗j > 0} ∪ {j ∈ N : x∗j = bj}.

Procedure 3 Like Procedure 1 but take the initial partition (T,U) of N with

U = {j ∈ N : α
′

j > 0, and x∗j > 0} ∪ {j ∈ N : x∗j = bj}.

To understand the strategy used by Marchand and Wolsey [39, 42] in Procedure 1
for choosing the constant δ, note that for d ∈ Q and 0 < α < 1,

{

bdc ≤ Fα(d) < d
Fα(d) = d

}

if

{

d− bdc > 0
d− bdc = 0

}

.

This is, the maximum value of Fα(d) is d, and Fα(d) is equal to d if d is integral.
Furthermore, for 0 < d − bdc ≤ α, the value of d − Fα(d) is the smaller the

smaller the value of d− bdc is, since Fα(d) = bdc. For α < d− bdc < 1, the value of
d− Fα(d) is the smaller the larger the value of d− bdc is.

Therefore, choosing δ ∈ Q+\{0} such that
α
′

j

δ
−bα

′

j

δ
c for j ∈ T and −α

′

j

δ
−b−α

′

j

δ
c

for j ∈ U are very small (at best equal to zero) or very large, may improve the
chance of finding a violated c-MIR inequality valid for XMK .

In Procedure 1, the candidate set for the value of δ is defined in such a way that

for at least one integer variable xj , j ∈ N ,
α
′

j

δ
and −α

′

j

δ
, respectively is integral. We

suggest to extend the candidate set for the value of δ to the set

N∗ ∪ {1 + max{|α′j | : j ∈ N}}.

The additional candidate for the value of δ is chosen such that for some of the integer

variables xj , j ∈ N ,
α
′

j

δ
− bα

′

j

δ
c and −α

′

j

δ
− b−α

′

j

δ
c, respectively may be very small or

very large.
The complete cut generation heuristic for using Procedure 1 and not using the

extended candidate set for the value of δ is given in Algorithm 3.4. This algorithm
can be extended straightforward for using one of the other procedures and the ex-
tended candidate set for the value of δ. Note that the violation of a c-MIR inequality
with small value of fβ is probably very small. Therefore, in Scip 0.81, we do not
further use c-MIR inequalities generated within the cut generation heuristic with
fβ < MINFRAC for MINFRAC = 0.05.

Marchand and Wolsey [39, 42] and Gonçalves and Ladanyi [29] use Procedure 1,
but with N∗ = {α′j : j ∈ N and 0 < x∗j < bj} as candidate set for the value of δ. We
changed the definition of N ∗ in Procedure 1 because in Theorem 3.3, δ is restricted
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Input : Mixed knapsack set XMK given in the form (3.7) and
(x∗, s∗) ∈ (Rn

+\Zn
+)× R+ fractional vector.

Output: Valid c-MIR inequality for XMK or notification that no such
inequality was found.

/* Use initial partition and initial value of δ. */

1 U ← {j ∈ N : x∗j ≥
bj
2 }, T ← N\U and t ← |T |

2 Sort T by nonincreasing value of x∗j −
bj
2 . (Let {j1, . . . , jt} be the ordered

set.)
3 N∗ ← {|α′j | : j ∈ N,α

′

j 6= 0 and 0 < x∗j < bj}
4 δfound ← FALSE, vbest ← −∞, and l ← 0
5 repeat

/* Complement an additional variable. */

6 if l > 0 and x∗jl > 0 then U ← U ∪ {jl} and T ← T\{jl}
7 else if l > 0 then l ← l + 1 and continue
8 foreach δ ∈ N∗ do

9 β ← α
′

0−
∑

j∈U α
′

jbj

δ

10 if β ∈ Z then continue
11 else
12 δfound ← TRUE

13 v ← ∑

j∈T Ffβ (
α
′

j

δ
)x∗j +

∑

j∈U Ffβ (−
α
′

j

δ
)(bj − x∗j )− bβc − s∗

δ(1−fβ)

14 if v > vbest then δbest ← δ and vbest ← v

15 l ← l + 1
until δfound = TRUE or l = t

17 if δfound = FALSE then return No inequality found
/* Improve violation by modifying δ. */

18 δ̄ ← δbest
19 foreach δ ∈ { δ̄2 , δ̄4 , δ̄8} do
20 β ← α

′

0−
∑

j∈U α
′

jbj

δ

21 v ← ∑

j∈T Ffβ (
α
′

j

δ
)x∗j +

∑

j∈U Ffβ (−
α
′

j

δ
)(bj − x∗j )− bβc − s∗

δ(1−fβ)

22 if v > vbest then δbest ← δ and vbest ← v
23 δ ← δbest

/* Improve violation by complementing additional variables. */

24 Ubest ← U , Tbest ← T and t ← |T |
25 Sort T by nonincreasing value of x∗j −

bj
2 . (Let {j1, . . . , jt} be the ordered

set.)
26 for l ← 1 to t do

if x∗jl > 0 then
28 U ← U ∪ {jl} and T ← T\{jl}
29 β ← α

′

0−
∑

j∈U α
′

jbj

δ

30 v ← ∑

j∈T Ffβ (
α
′

j

δ
)x∗j +

∑

j∈U Ffβ (−
α
′

j

δ
)(bj − x∗j )− bβc − s∗

δ(1−fβ)

31 if v > vbest then Ubest ← U , Tbest ← T and vbest ← v

32 U ← Ubest and T ← Tbest

33 return
∑

j∈T Ffβ (
α
′

j

δ
)xj +

∑

j∈U Ffβ (−
α
′

j

δ
)(bj − xj) ≤ bβc+ s

δ(1−fβ)

Algorithm 3.4: Cut generation heuristic. Use Procedure 1 and do not use the extended
candidate set for the value of δ.
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to be in Q+\{0}. Note that in [42], as well as in [29] complementing of additional
integer variables if fβ = 0 for all δ ∈ N∗ in Procedure 1 has not been mentioned.

Note that if we complement an nonnegative integer variable, we actually perform
a bound substitution using the upper bound imposed on the variable. And analog,
if we do not complement a nonnegative integer variable, we perform a bound substi-
tution using the lower bound imposed on the variable. If we use this interpretation,
the cut generation heuristic can easily be extended to the more general case where
the integer variables are not restricted to be nonnegative. This extension is used in
Scip 0.81.

3.3.4 Numerical Issues

Numerical difficulties may occur in floating point computing. To avoid numerical
troubles for our separation algorithm, we take the following measures.

The first measure concerns the aggregation heuristic. Let

∑

j∈N

αjxj +
∑

j∈M

γjyj = α0

be the current aggregated constraint. Let k ∈ M be the index of a real variable
which is candidate to be eliminated and r ∈ P\Q be a constraint where this variable
appears. Let ωi for all i ∈ Q be the aggregation factors of the constraints which
have been aggregated to form the current aggregated constraint. We only allow
constraint r to be added to the current aggregated constraint if

max{|ωi|:i∈Q}
|ωr| ≤ 10, 000 and |ωr |

min{|ωi|:i∈Q} ≤ 10, 000,

where ωr is the aggregation factor of constraint r if this constraint is used in the
aggregation heuristic. Thus, we guarantee

max{|ωi| : i ∈ Q}
min{|ωi| : i ∈ Q} ≤ 10, 000

for all aggregated constraints generated by the aggregation heuristic. This is done to
avoid the summation of numbers with extremely different values, i.e., the summation
of very small and very large numbers.

The second measure concerns the cut generation heuristic. Let

∑

j∈T

Ffβ (
α
′

j

δ
)xj +

∑

j∈U

Ffβ (−
α
′

j

δ
)(bj − xj) ≤ bβc+

s

δ(1− fβ)

be a c-MIR inequality found within the cut generation heuristic. We do not further
use this c-MIR inequality if fβ > MAXFRAC for MAXFRAC = 0.95. This is done to avoid
large coefficients of the integer and real variables in the generated c-MIR cuts.

3.4 Computational Study

In Section 3.3, we gave an outline of the separation algorithm for the class of c-MIR
inequalities and discussed different algorithmic and implementation choices which
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have to be made when implementing this separation algorithm. In this section, we
describe our computational experience with these choices.

We divided the initial test set (see Section 2.3) into two sets; the main test set
and the remaining test set.

Main test set Contains all instances of the initial test set for which the default
algorithm or at least one of the different versions of the default algorithm
where a single aspect is altered leads to an initial gap closed of more than zero
percent.

Remaining test set Contains the remaining instances of the initial test set.

We use the main test set to evaluate the effect of using the different versions of our
default separation algorithm and to develop the final efficient separation algorithm.
This set consists of 78 MIPs, 31 are various instances from Miplib 2003 [3], 23
are instances from Miplib 3.0 [14] and 24 are members of the MIP collection of
Mittelmann [45]. Table B.1 summarizes the main characteristics of the instances
in the main test set. The remaining test set will only be used to ensure that the
CPU time spent in our final separation algorithm is on an acceptable level for all
instances in the initial test set. Table B.2 summarizes the main characteristics of
the instances in the remaining test set.

See Section 2.3, for information about the workstation on which we performed our
computational experiments, about the implementation environment of the cutting
plane separator and about the representation of our test sets and our computational
results.

Default Algorithm

Our default algorithm for separating the class of c-MIR inequalities is given in Algo-
rithm 3.1, which calls Algorithm 3.2 (aggregation heuristic), Algorithm 3.3 (bound
substitution heuristic) and Algorithm 3.4 (cut generation heuristic) as subroutines,
i.e., in Section 3.3 we have already stated the four algorithms using the procedures,
criteria and parameters of the default algorithm.

For our main test set, the results for applying our default algorithm are given
in Table B.3 and a summary of the results is contained in Table 3.1. By using our
default algorithm for the main test set, we are able to close 16.29 percent of the
initial gap in geometric mean. The CPU time spent in the separation routine is
8259.5 seconds in total. For 11 instances in the main test set, the separation time is
greater than 60 seconds of CPU time, for 4 instances, namely atlanta-ip, momentum2,
msc98-ip and net12, the separation time is even greater than 600 seconds of CPU
time. Thus, the separation time is unacceptable high.

As we will see, the large amount of time spent in the separation routine for some
of the instances in our test set is caused by the large number of starting constraints
used in each separation round. We have decided, to test first the different algorithmic
and implementation choices discussed in Section 3.3 in order to obtain a separation
algorithm which uses the best choices with respect to the effect of the separation
algorithm, i.e., with respect to the initial gap closed ignoring the separation time.
We will refer to this algorithm as resulting algorithm (slow version). Afterwards we
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Gap Closed % Sepa Time sec Sepa Time > 60 sec Sepa Time > 600 sec
(Geom. Mean) (Total) (Number) (Number)
Value 4 Value 4 Value 4 Value 4

Default algorithm 16.29 0.00 8259.5 0.0 11 0 4 0
Aggr. heur. - 1. modification1 21.46 5.17 12210.5 3951.0 15 4 7 3
Aggr. heur. - 2. modification2 14.69 -1.60 8960.3 700.8 10 -1 5 1
B. subst. heur. - 1. modification3 11.52 -4.77 5191.8 -3067.7 6 -5 2 -2
B. subst. heur. - 2. modification4 16.27 -0.02 8327.8 68.3 11 0 4 0
B. subst. heur. - 3. modification5 11.40 -4.89 6669.4 -1590.1 8 -3 2 -2
B. subst. heur. - 4. modification6 13.27 -3.02 6490.2 -1769.3 8 -3 4 0
B. subst. heur. - 5. modification7 15.23 -1.06 6985.2 -1274.3 8 -3 3 -1
B. subst. heur. - 6. modification8 15.10 -1.19 13902.3 5642.8 14 3 7 3
Cut gen. heur. - 1. modification9 13.01 -3.28 5677.0 -2582.5 11 0 4 0
Cut gen. heur. - 2. modification10 15.65 -0.64 6290.1 -1969.4 10 -1 3 -1
Cut gen. heur. - 3. modification11 17.22 0.93 9255.2 995.7 12 1 4 0
Cut gen. heur. - 4. modification12 15.56 -0.73 5886.7 -2372.8 11 0 2 -2
Cut gen. heur. - 5. modification13 15.49 -0.80 8279.5 20.0 11 0 4 0
Resulting algo. (slow v.)1 11 14 22.78 6.49 11995.6 3736.1 14 3 5 1

Table 3.1: Summary of the computational results for the cutting plane separator for the class
of c-MIR inequalities on the main test set. Default algorithm, default algorithm where a single
algorithmic aspect is altered and resulting algorithm (slow version). (4 with respect to the default
algorithm)

describe methods for reducing the separation time of the obtained algorithm and
state the resulting fast and effective separation algorithm.

Parameter MAXAGGR

In the default algorithm, we use MAXAGGR = 6, i.e., we allow not more than six
constraints to be added to a starting constraint when generating mixed knapsack
relaxations of X. Marchand [39] used MAXAGGR = 6 and Marchand and Wolsey [42]
set MAXAGGR to 5, because they had not observed a significant increase in the efficacy
of their separation heuristic with MAXAGGR greater than 5.

In our computational study, we tested the effect of using differ values of the
parameter MAXAGGR for our main test set. In Figure 3.2, the initial gap closed in
geometric mean achieved and the separation time in CPU seconds in geometric
mean required when setting MAXAGGR = 0, i.e., not performing any aggregation, to
MAXAGGR = 10 are given. As one can see, using aggregation leads to a significantly

1Use Score Type 3.
2Use Score Type 4.
3Use Criterium F1 in the first step.
4Use Criterium F2 in the first step.
5Use Criterium S1 in the second step.
6Use Criterium S2 in the second step.
7Use Criterium S4 in the second step.
8Multiply the given single mixed integer constraint by minus one in addition.
9Use Procedure 2.

10Use Procedure 3.
11Use the extended candidate set for the value of δ
12If fβ = 0 for all δ ∈ N∗, do not complement additional integer variables xj , j ∈ T lying strictly

between their bounds.
13Do not try to improve the violation of the c-MIR inequality by successively complementing each

integer variable xj , j ∈ T lying strictly between its bounds.
14Use MAXAGGR = 5.
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Figure 3.2: Computational results for the cutting plane separator for the class of c-MIR inequali-
ties. Parameter MAXAGGR. Use MAXAGGR = 0, . . . , 10.

improved performance of the separation algorithm. The initial gap closed in geo-
metric mean increases by 8.80 percentage points from 4.68 percent to 13.48 percent
when allowing one constraint to be added to a starting constraint. The results also
confirm Marchand’s and Wolsey’s observation that there is no significant increase
in the efficacy with MAXAGGR greater than 5. Thus, in our resulting algorithm (slow
version) we use MAXAGGR = 5.

Aggregation Heuristic

In Section 3.3.1, we stated an algorithm which adds a single mixed integer constraint
from the formulation of X to the current aggregated constraint in order to eliminate
a real variable appearing in the current aggregated constraint. This algorithm is the
first part of the construction of a mixed knapsack relaxation ofX. The crucial aspect
of the aggregation heuristic is the selection of the real variable to be eliminated and
the constraint added. In Section 3.3.1, we stated four types of scores which can
be used to select the constraint used to eliminate a selected real variable. In the
default algorithm we use Score Type 1, i.e., we select the constraint found first. This
criterium is very simple, since it does not take into account any information about
the constraints which are candidates to be added.

In our computational study, we tested Score Type 3 and Score Type 4, but not
Score Type 2, since we want to obtain a deterministic separation algorithm. The
results for using Score Type 3 obtained on our main test set are given in Table B.4
and a summary of the results is contained in Table 3.1. The initial gap closed in
geometric mean increases by 5.17 percentage points. Thus, by taking into account
the LP solution of the dual variable corresponding to the original MIP row, the
density of the original MIP row, the slack value of the constraint and the number
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of times the constraint has already been involved in an aggregation for the selection
of the constraint to be added, we significantly improve the efficacy of the separation
algorithm.

The results for using Score Type 4 obtained on the main test set are given in
Table B.5 and a summary of the results is contained in Table 3.1. Using this type
of score, i.e., minimizing the number of real variables with a nonzero coefficient in
the new aggregated constraint when eliminating a selected real variable, does not
lead to an improved performance of the separation algorithm. The initial gap closed
reduces by 1.60 percentage points. Thus, in our resulting algorithm (slow version)
we use Score Type 3.

Bound Substitution Heuristic

In Section 3.3.2, we have explained why it is reasonable to use a two step procedure
for deciding which bound is used for the substitution of each real variable appearing
in the single mixed integer constraint constructed in the aggregation heuristic. In
our default algorithm, we use Criterium F3 in the first step, i.e., we use for each real
variable yj , j ∈ M the simple bound if it is closer to y∗j than the variable bound
and the variable bound otherwise, and Criterium S3 in the second step, i.e., we use
for each real variable yj , j ∈M the lower bound if it is closer to y∗j than the upper
bound and the upper bound otherwise.

For the first step of the bound substitution heuristic, we have tested to use
Criterium F1 and Criterium F2. The results obtained on the main test set for
using Criterium F1 are given in Table B.6 (see also Table 3.1, for a summary of the
results). Using Criterium F1, i.e., using only simple bounds if possible, reduces the
initial gap closed in geometric mean by 4.77 percentage points. Using Criterium F2
(see Table 3.1, for a summary of the results obtained on the main test set), i.e., using
only variable bounds if possible, leads for all instances in our main test set except
vpm2 to the same value of the initial gap closed and the same number of cuts. This
suggests that for our main test set by applying Criterium F3 and Criterium S3 (as it
is done in the default algorithm), variable bounds are mostly selected for the bound
substitution of each real variable yj , j ∈M if possible.

For the second step of the bound substitution heuristic, we have tested to use
Criterium S1, Criterium S2 and Criterium S4. The results obtained on the main
test set for using the first two criteria are given in Table B.7 and Table B.8 and
a summary of the results is contained in Table 3.1. As one can see, neither using
Criterium S1, i.e., trying to obtain a single mixed integer constraint where all real
variables have a nonnegative coefficient, nor using Criterium S2, i.e., trying to obtain
a single mixed integer constraint where all real variables have a negative coefficient,
leads to an improved performance of the separation algorithm. For the main test
set, using Criterium S4 (see Table B.9 and the summary contained in Table 3.1),
which is a mixture of Criterium S1 and Criterium S3, leads to a greater value of the
initial gap closed in geometric mean than using Criterium S1 or Criterium S2, but
the initial gap closed in geometric mean is smaller than the one achieved by using
Criterium S3.

We conclude that using the closest bound for the substitution for each real vari-
able leads to the best performance of the separation algorithm. As we will see, this
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is also the case for substituting the integer variables in the cut generation heuristic.
Thus, in our resulting algorithm (slow version) we use the same criteria for selecting
the bounds for the substitution as in the default algorithm, i.e., Criterium F3 and
Criterium S3.

We also tested the modification to perform the bound substitution heuristic
in addition to the current aggregated constraint multiplied by minus one, which
Gonçalves and Ladanyi suggested in [29]. The results for our main test set are given
in Table B.10 and a summary of the results is contained in Table 3.1. For some of
the instances in our main test set, the modification leads to a greater value of the
initial gap closed while for others it leads to a smaller value. The initial gap closed
in geometric mean reduces by 1.19 percentage points. In addition, the time spent in
the separation algorithm in total increases by 5642.8 seconds of CPU time. Thus, we
have decided not to use this modification in our resulting algorithm (slow version).

Cut Generation Heuristic

In Section 3.3.3, we introduced the cut generation heuristic suggested by Marchand
and Wolsey [39, 42], which we denoted by Procedure 1. This procedure is used in
our default algorithm.

We tested it against Procedure 2 and Procedure 3, which differ from Procedure 1
by the chosen initial partition (T,U) of N . The results for our main test set are
given in Table B.11 and Table B.12 (see also Table 3.1, for a summary of the results).
Neither of them leads to an improved performance of the separation algorithm.
The initial gap closed in geometric mean reduces by 3.28 percentage points when
using Procedure 2, i.e., when complementing initially all integer variables xj , j ∈
N with a negative coefficient in the constructed mixed knapsack set, and by 0.64
percentage points when using Procedure 3, i.e., when complementing initially all
integer variables xj , j ∈ N with a nonnegative coefficient in the constructed mixed
knapsack set. We conclude that, analogue to the bound substitution heuristic, in
practice complementing all integer variables xj , j ∈ N for which x∗j is closer to
the upper bound than to the lower bound leads to the best performance of the
separation algorithm. Thus, in our resulting algorithm (slow version) we use the
same procedure for the cut generation heuristic as in the default algorithm, i.e., we
use Procedure 1.

In addition, we tested to use the extended candidate set for the value of δ. The
results for our main test set given in Table B.13 show that this modification improves
the performance of the separation algorithm (see also Table 3.1, for a summary of
the results). The initial gap closed in geometric mean increases by 0.93 percentage
points. Thus, we will use the extended candidate set for the value of δ in our
resulting algorithm (slow version).

In Procedure 1, we complement additional integer variables if fβ = 0 for all δ ∈
N∗. Since this step is not mentioned in [42] and [29], we have investigated the effect
of this step on the performance of the separation algorithm, by testing Procedure 1
without this step. The results for our main test set are given in Table B.14 and a
summary of the results is contained in Table 3.1. The initial gap closed in geometric
mean reduces by 0.73 percentage points. We conclude that the step is useful for
an efficient cutting plane separator and will therefore not leave it in our resulting
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Gap Closed % Sepa Time sec Sepa Time > 60 sec Sepa Time > 600 sec
(Geom. Mean) (Total) (Number) (Number)
Value 4 Value 4 Value 4 Value 4

Resulting algo. (slow v.) 22.78 0.00 11995.6 0.0 14 0 5 0
Resulting algo. (fast v.)15 20.90 -1.88 675.4 -11320.2 2 -12 0 -5

Table 3.2: Summary of the computational results for the cutting plane separator for the class of
c-MIR inequalities on the main test set. Resulting algorithm (slow version) and resulting algorithm
(fast version). (4 with respect to the resulting algorithm (slow version))

Gap Closed % Sepa Time sec Sepa Time > 60 sec Sepa Time > 600 sec
(Geom. Mean) (Total) (Number) (Number)
Value 4 Value 4 Value 4 Value 4

Resulting algo. (slow v.) 1.09 0.00 3778.1 0.0 8 0 1 0
Resulting algo. (fast v.)15 1.09 0.00 310.8 -3467.3 2 -6 0 -1

Table 3.3: Summary of the computational results for the cutting plane separator for the class
of c-MIR inequalities on the remaining test set. Resulting algorithm (slow version) and resulting
algorithm (fast version). (4 with respect to the resulting algorithm (slow version))

algorithm (slow version).
In Procedure 1, we try to improve the violation of the found c-MIR inequality by

successively complementing each integer variable xj , j ∈ T lying strictly between its
bounds. As this might by very time consuming, we have tested the effect of this step
on the performance of the separation algorithm, by using Procedure 1 without this
step. The results for our main test set are given in Table B.15 and a summary of the
results is contained in Table 3.1. The initial gap closed in geometric mean reduces by
0.80 percentage points. Since furthermore the time spent in the separation routine
in total is nearly the same as for the default algorithm, we conclude that the step is
also useful for an efficient cutting plane separator and we will therefore not leave it
in the resulting algorithm (slow version).

In summary, in our resulting algorithm (slow version), we perform Procedure 1
with the extended candidate set for the value of δ.

Resulting Algorithm

From the results of our computational study, we obtain the following best algorithmic
and implementation choices for the separation algorithm for the class of c-MIR
inequalities.

Parameter MAXAGGR Use MAXAGGR = 5.

Aggregation heuristic Use Score Type 3 for selecting the constraint to be added
to the current aggregated constraint.

Bound substitution heuristic As is the default algorithm, use Criterium F3 in
the first step and Criterium S3 in the second step for selecting the bound used
for substituting each real variable and do not perform the bound substitution
heuristic in addition for the current aggregated constraint multiplied by minus
one.

15Use MAXTESTDELTA = 10. Select starting constraints i ∈ P by nonincreasing value of CONSSCOREi.
Use MAXFAILS = 150, MAXCONTS = 20, MAXCUTS = 100 and MAXROUNDS = 15.
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Cut generation heuristic Perform Procedure 1, but use the extended candidate
set for the value of δ.

We call the corresponding separation algorithm resulting algorithm (slow ver-
sion). For our main test set, the results for our resulting algorithm (slow version)
are given in Table B.16 and a summary of the results is contained in Table 3.1
and Table 3.2. By using this version of the separation algorithm we close 22.78
percent of the initial gap in geometric mean in contrast to 16.29 percent for using
our default algorithm. Thus, we have significantly improved the performance of our
default separation algorithm with respect to the initial gap closed. But, as for the
default algorithm, the CPU time spent the separation routine is on an unacceptable
level. It even increases to 11,995.6 seconds of CPU time in total. For 14 instances
in the main test set the separation time is greater than 60 seconds of CPU time
and for 5 instances, namely a1c1s1, atlanta-ip, momentum2, msc98-ip and net12, it
is even greater than 600 seconds of CPU time. For 8 of the 14 instances, the initial
gap closed is smaller than 5 percent, including atlanta-ip, momentum2, msc98-ip and
net12, i.e., the separation algorithm is time consuming but not very effective for
them.

For our remaining test set, the results for using our resulting algorithm (slow
version) are given in Table B.17 and a summary of the results is contained in Ta-
ble 3.3. The initial gap closed is zero percent for all instances in the remaining test
set except for swath1 (5.91 percent), swath2 (5.20 percent) and swath3 (4.16 per-
cent). That means, for these instances, where neither using the default algorithm
nor using the default algorithm with a single aspect altered leads to an initial gap
closed of more than zero percent, the combination of the best aspects improves the
performance of the cutting plane separator. The separation time is 3,778.1 seconds
of CPU time in total. For 8 instances in the remaining test set, the separation time
is greater than 60 seconds of CPU time and for one instance, namely neos19, it is
even greater than 600 seconds of CPU time. Thus, as for the main test set, the
separation time is on an unacceptable level. Since we want to implement an efficient
cutting plane separator for the class of c-MIR inequalities, we have to find methods
for reducing the separation time without loosing too much of the initial gap closed.

The resulting algorithm (slow version), as well as the default algorithm, uses
each constraint i ∈ P as a starting constraint, i.e., it tries for each constraint i ∈ P
to generate violated c-MIR inequalities for mixed knapsack relaxations of X based
on linear combinations of constraints defining X including constraint i. We suppose
that the large amount of time spent in the separation routine is cause by a large
number of starting constraints. Therefore, we do not want to use all possible starting
constraints, but only those which may lead to cuts with a great violation. From our
computational study, we know that using Score Type 3 for selecting the constraint
to be added to the current aggregated constraint in the aggregation heuristic is very
useful. Therefore, we use the same type of score for each possible starting constraint.
For i ∈ P , let

CONSSCOREi = 0.9l(max{ dbi
max{‖(c,d)‖,1.0} , 0.0001}+ 0.0001(1− densi)+

0.001(1− y∗
si

max{‖(ai,ci)‖,0.1})),
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where l, dbi, (c, d), densi, s
i and (ai, ci) are defined as in Section 3.3.1. We select

starting constraints i ∈ P by nonincreasing value of CONSSCOREi and limit the number
of starting constraints by the following parameters.

MAXFAILS The parameter denotes the maximum number of starting constraints per
separation round for which we consecutively did not obtain a violated c-MIR
inequality (including the aggregation). Note that in early separation rounds
we increase this value up to the double value, i.e., we allow up to MAXFAILS +
(MAXFAILS−2k)+ consecutive fails, where k is the number of separation rounds
which have already been performed at the current branch-and-bound node.

MAXCONTS The parameter denotes the maximum number of real variables in a start-
ing constraint which have a coefficient not equal to zero and lie strictly between
their bounds. Constraints i ∈ P for which the value is exceeded are not used
as starting constraints.

We will also use the parameter MAXCONTS in addition to the parameter MAXAGGR

to further limit the number of constraints added to a starting constraint. We stop
adding constraints to a starting constraint if the number of real variables in the
new aggregated constraint which have a coefficient not equal to zero and lie strictly
between their bounds is greater than MAXCONTS.

If the separation algorithm generates violated c-MIR inequalities for nearly every
starting constraint, the parameter MAXFAILS does not help to reduce the separation
time. Therefore, we suggest to use in addition the following parameters.

MAXCUTS The parameter denotes the maximum number of violated c-MIR inequali-
ties generated per separation round.

MAXROUNDS The parameter denotes the maximum number of separation rounds per-
formed at the current branch-and-bound node.

Another point which may cause a large separation time for our separation algo-
rithm is the fact that we test all candidates for the value of δ contained in the set
N∗. If a MIP has a large number of variables, the cardinality of N ∗ can be very
large. We suggest to limit the time spent in the cut generation heuristic by the
following parameter.

MAXTESTDELTA The parameter denotes the maximum number of different values of
δ from the candidate set N ∗ for which we generate c-MIR inequalities in the
cut generation heuristic.

Note that the additional candidate for the value of δ in the extended candidate set
is not counted, i.e., the c-MIR inequality for this value of δ is generated in any case.

In order to find useful values of the five parameters introduced above, we se-
lected all instances of our main test set and of our remaining test set for which the
separation time in the last test was greater than 60 seconds of CPU time and some
instances of the main test set with small separation time. We applied our result-
ing algorithm (slow version) with the modification to select the starting constraints
by nonincreasing value of CONSSCOREi, i ∈ P to theses instances and analyzed the
behavior of the separation algorithm with respect to the five parameters.
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For our main test set, the results for using MAXFAILS = 150, MAXCONTS = 20,
MAXCUTS = 100, MAXROUNDS = 15 and MAXTESTDELTA = 10 are given in Table B.18
and a summary of the results is contained in Table 3.2. Here the 4 values are given
with respect to the resulting algorithm (slow version). The initial gap closed in
geometric mean reduces only by 1.88 percentage points and the time spent in the
separation routine is now 675.4 seconds of CPU time. For none of the instances in
our main test set, the separation time is greater than 600 seconds of CPU time, but
for two instances it is greater than 60 seconds of CPU time (neos3 (72.5 seconds)
and net12 (92.2 seconds)). For our remaining test set, the results for the same test
are given in Table B.19 and a summary is contained in Table 3.3. Here the 4 values
are also given with respect to the resulting algorithm (slow version). The initial gap
closed does not change for any instance in the remaining test set and the separation
time in total reduces to 310.8 seconds of CPU time, but for two instances in the
remaining test set, the separation time is still greater than 60 seconds of CPU time
(ds (74.4 seconds) and neos12 (85.7 seconds)). Thus, for both test sets, we were able
to reduce the separation time to an acceptable level without loosing too much of the
initial gap closed. However, the results also show that the cutting plane separator for
the class of c-MIR inequalities is one of the most time consuming ones implemented
in Scip 0.81 (see also Chapter 7).

To give a little insight into the effect of the parameters MAXROUNDS and
MAXTESTDELTA, we present some further results. Figure 3.3 summarizes the re-
sults obtained on our main test set for using MAXTESTDELTA = ∞, MAXFAILS = 150,
MAXCONTS = 20, MAXCUTS = 100 and MAXROUNDS = 5, 10, . . . , 50. Note that the sep-
aration time in total is 317.9 seconds of CPU time for using MAXROUNDS = 5 (here
only one instance in the main test set has separation time greater than 60 seconds of
CPU time) and 1,670.3 seconds of CPU time for using MAXROUNDS = 50 (here seven
instances in the main test set have separation time greater than 60 seconds of CPU
time). From these results we conclude that for our main test, the most efficient cuts
are generated in early separation rounds. Furthermore, one can see that limiting the
number of separation rounds does help to reduce the time spent in the separation
routine. As stated above, we decided to use MAXROUNDS = 15.

The following table summarizes the results obtained on our main test set for
using MAXFAILS = 150, MAXCONTS = 20, MAXCUTS = 100 and MAXROUNDS = 15,
MAXTESTDELTA = 5, 10, 50, 100 and MAXTESTDELTA =∞.

MAXTESTDELTA Gap Closed % Sepa Time sec
(Geom. Mean) (Total)

∞ 20.90 717.2
100 20.90 713.2
50 20.90 712.6
10 20.90 675.4
5 20.80 611.8

As one can see on, on our main test set, allowing the generation of c-MIR in-
equalities in the cut generation heuristic only for a small number of different values
of δ from the set N ∗ does not causes a significant change in the performance of the
separation algorithm with respect to the initial gap closed, but a small reduction of
the separation time. Note that the results may also indicate that for most of the
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Figure 3.3: Computational results for the separation algorithm for the class of c-MIR inequalities.
Resulting algorithm (different fast versions). Use MAXTESTDELTA = ∞. Select starting constraints
i ∈ P by nonincreasing value of CONSSCOREi. Use MAXFAILS = 150, MAXCONTS = 20, MAXCUTS = 100 and
MAXROUNDS = 5, 10, . . . , 50.

instances in the main test set, the number of different values in the candidate set for
the value of δ is small. Nevertheless, we decided to use MAXTESTDELTA = 10, since we
suppose that if this cutting plane separator is combined with others, using a small
value of MAXTESTDELTA may be important to keep the time spent in the cutting plane
separator for the class of c-MIR inequalities on an acceptable level.

3.5 Conclusion

The results of our computational study suggest that the strategy used for con-
structing mixed knapsack sets strongly affects the performance of the cutting plane
separator. This includes the selection of the starting constraints, the number of
constraints added to the starting constraints, the selection these constraints and
the selection of the bounds used for the substitution of the real variables in the
aggregated constraints.

The first aspect strongly influences the time spent in the separation algorithm,
which was unacceptable high for some of the instances in our test set when using all
possible starting constraints. The other aspect influence the effect of the separation
algorithm.

Marchand and Wolsey [39, 42] take all possible constraints and did not go into
details about the selection of the constraints to be added to a starting constraint.
We suppose that in our resulting cutting plane separator we use a more elaborated
strategy for creating mixed knapsack sets.



Chapter 4

Cutting Plane Separator for the

0-1 Knapsack Problem

In this chapter, we investigate the implementation of an efficient cutting plane sepa-
rator for the 0-1 knapsack problem. The algorithm generates strong valid inequalities
for the polytope associated with the 0-1 knapsack problem, the so-called 0-1 knap-
sack polytope. This polytope is the convex hull of all 0-1 vectors satisfying a given
linear inequality whose coefficients and right-hand side are integers. The cutting
plane separator can be applied to each MIP row which represents such a linear in-
equality. The cuts generated for the corresponding 0-1 knapsack polytope are valid
for the feasible region of the MIP, and can therefore be used in a branch-and-cut
algorithm.

4.1 Introduction

Strong valid inequalities for the 0-1 knapsack polytope have been studied extensively
in the literature, and many researches have investigated their usefulness to solve IPs
and MIPs.

The study of the polyhedral structure of the 0-1 knapsack problem dates back to
the 1970s, where Balas [8], Hammer, Johnson and Peled [33] and Wolsey [59] gave a
complete characterization of the class of facets of the 0-1 knapsack polytope defined
by so-called canonical inequalities. These inequalities are based on a structure called
strong cover. Building on these results, Balas and Zemel [12] have investigated facets
of the 0-1 knapsack polytope associated with minimal covers. The corresponding
inequalities are called minimal cover inequalities. In the 1980s and 1990s, more
general classes of valid inequalities were explored. Padberg [51] has introduced
the class of (1,k)-configuration inequalities, which includes the class of minimal
cover inequalities, and Weismantel [58] has introduced the class of extended weight
inequalities, which includes the class of (1,k)-configuration inequalities.

In all these studies, the concept of lifting was used to extend inequalities which
are valid for the restriction of the 0-1 knapsack polytope to some lower-dimensional
space to inequalities which are valid for the original polytope. One type of lifting
is called up-lifting, where variables fixed at their lower bounds are lifted. Padberg’s
sequential up-lifting procedure, which has been introduced in [50], was used in [8,

43
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33, 12, 51, 58]. This procedure involves the solution of a knapsack problem in every
lifting step. Zemel [61] has introduced a polynomial algorithm which uses dynamic
programming to solve these knapsack problems. Another type of lifting is called
down-lifting, where variables fixed at their upper bounds are lifted. The idea of
sequential down-lifting has been introduced in [59], where it was used to strengthen
canonical inequalities.

The inequalities derived by sequential lifting, in general, depend on the sequence
in which the variables are lifted. A simultaneous up-lifting procedure to strengthen
minimal cover inequalities was studied by Balas and Zemel [12], but its computa-
tional burden prevents it from being applied in practice. In [60], the property of
superadditivity of the lifting function has been explored which leads to sequence
independent lifting. Building on the results of [60], Gu, Nemhauser and Savelsbergh
[32] and Atamturk [5] have investigated the concept of superadditive up-lifting to
strengthen minimal cover inequalities. Here, the lifting function which, in general, is
not superadditive is approximated by a so-called superadditive valid lifting function
to obtain sequence independent lifting (see Section 2.2).

The results of the theoretical study of the 0-1 knapsack polytope have been used
in linear programming based branch-and-cut algorithms to solve IPs and MIPs.
Crowder, Johnson and Padberg [22] pioneered the use of lifted inequalities and
successfully solved several instances of IPs which were, at the time, considered to
be unsolvable. They separated the class of lifted minimal cover inequalities using
sequential up-lifting and the class of lifted (1,k)-configuration inequalities using se-
quential up-lifting. Since then, there have been several other successful applications
of lifted valid inequalities for the 0-1 knapsack polytope. Van Roy and Wolsey [55]
separated the class of lifted cover inequalities using sequential up- and down-lifting.
Hoffman and Padberg [35] and Gu, Nemhauser and Savelsbergh [30] implemented
a cutting plane separator which separates the class of lifted minimal cover inequali-
ties using sequential up- and down-lifting (LMCI1). In [30], a computational study
was presented in which many of the algorithmic and implementation choices were
evaluated which have to be made when implementing this cutting plane separator.
Especially, it turned out that using both up-lifting and down-lifting instead of using
only up-lifting leads to a better performance of the cutting plane separator. Martin
[44] separated the class of lifted extended weight inequalities using sequential up-
and down-lifting (LEWI).

For our cutting plane separator, we have to decide which of the above mentioned
classes of valid inequalities we want to separate. To our knowledge, no paper has
been published presenting computational results for separating the class of lifted
minimal cover inequalities using superadditive up-lifting (LMCI2). Besides, we know
of no paper in which the performance of a separation algorithm for the class of
LMCI1 has been compared to that of a separation algorithm for the class of LEWI.
Thus, it is not clear, which of these three classes of valid inequalities leads to a best
performing cutting plane separator. Therefore, we investigate separation algorithms
for all three classes of valid inequalities in this chapter.

In Section 4.2, we give a brief introduction to these classes of valid inequalities,
and in Section 4.3, we discuss different algorithmic aspects of the corresponding sep-
aration algorithms. In Section 4.4, we present a computational study. It evaluates
the effect of using the different algorithmic and implementation choices described
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in Section 4.3 on the performance of the three separation algorithms. We use the
computational results to design three resulting separation algorithms. Finally, we
investigate the effectiveness of using different combinations of our resulting separa-
tion algorithms and conclude with an efficient cutting plane separator for the 0-1
knapsack problem. In Section 4.5, we give some concluding remarks.

4.2 Strong Valid Inequalities for the 0-1 Knapsack Poly-

tope

We consider the inequality
∑

j∈N

ajxj ≤ a0, (4.1)

where a0 and aj are integers for all j ∈ N = {1, . . . , n} and xj ∈ {0, 1} for all j ∈ N .
We assume, without loss of generality, that aj > 0 for all j ∈ N (since 0-1 variables
can be complemented) and aj ≤ a0 for all j ∈ N (since aj > a0 implies xj = 0). The
0-1 knapsack polytope P associated with (4.1) is the convex hull of all 0-1 vectors
satisfying (4.1), i.e., P = conv(XBK), where

XBK = {x ∈ {0, 1}n :
∑

j∈N

ajxj ≤ a0}. (4.2)

By the above assumptions, P is full-dimensional (see [8]).
The main idea for generating strong valid inequalities for P is to start with an

inequality which is valid for the restriction of XBK to some lower-dimensional space
and to use the concept of lifting to obtain a valid inequality for XBK . In Section 2.2,
we introduced the lifting theory for BMIPs. It can be used for the special case of
the 0-1 knapsack problem. Let M ⊆ N and (j1, . . . , jt) be the lifting sequence of
the variables in N\M . Let

0 ≤ α0 −
∑

j∈M

αjxj (4.3)

be a valid inequality for the restriction of XBK obtained by fixing xj = bj with
bj ∈ {0, 1} for all j ∈ N\M , which is given by X0 = {x ∈ {0, 1}|M | :∑j∈M ajxj ≤
a0 −

∑t
k=1 ajkbjk}. To construct a valid inequality

0 ≤ α0 −
∑

j∈M

αjxj −
t
∑

k=1

αjk(xjk − bjk) (4.4)

for XBK , we start with (4.3) and lift the variables in N\M in the given lifting se-
quence. The intermediate restrictions of XBK are defined by X i = {x ∈ {0, 1}|M |+i :
∑

j∈M ajxj +
∑i

k=1 ajk(xjk − bjk) ≤ a0 −
∑t

k=1 ajkbjk} for i = 1, . . . , t. Note that

Xt = XBK .
For i = 1, . . . , t, the lifting problem Li associated with ji, given a valid inequality

0 ≤ α0 −
∑

j∈M

αjxj −
i−1
∑

k=1

αjk(xjk − bjk) (4.5)
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for X i−1, is to find αji such that the inequality

αji(xji − bji) ≤ α0 −
∑

j∈M

αjxj −
i−1
∑

k=1

αjk(xjk − bjk) (4.6)

is valid for X i.

For i = 1, . . . , t, let

Zi = {z ∈ R : ∃x ∈ X i : aji(xji − bji) = z and

∑

j∈M

ajxj +
i−1
∑

k=1

ajk(xjk − bjk) ≤ a0 −
t
∑

k=1

ajkbjk − z}.

Furthermore, for z ∈ Z i, let

hi(z, αji) = max{ αji(xji − bji) :
aji(xji − bji) = z,
xji ∈ {0, 1} },

and

fi(z) = min{ α0 −
∑

j∈M

αjxj −
i−1
∑

k=1

αjk(xjk − bjk) :

∑

j∈M

ajxj +
i−1
∑

k=1

ajk(xjk − bjk) ≤ a0 −
t
∑

k=1

ajkbjk − z,

xj ∈ {0, 1} for all j ∈M ∪ {j1, . . . , ji−1} }.

If bji = 0, observe that Z i = {0, aji} or Zi = {0} (the last case may arise
because we consider also down-lifting). Furthermore, observe that hi(0, αji) = 0
and hi(aji , αji) = αji .

Consider Zi = {0, aji}. Then the lifting is maximal (see the definition in Sec-
tion 2.2) if and only if the lifting coefficient αji is equal to fi(aji), since this is the
unique value of αji such that

hi(z, αji) = fi(z)

has one solution x ∈ {0, 1}|M |+i such that the component xji − bji of x − b is
linear independent (for z = aji , hi(z, αji) = fi(z) has solution x with xji = 1).
Therefore, if conv(X i−1) and conv(X i) are full-dimensional and (4.5) defines a facet
of conv(X i−1), to obtain a facet defining inequality (4.6) for conv(X i), the lifting
coefficient αji has to be equal to fi(aji) (see Theorem 2.10).

Now consider Zi = {0}. Since for z = 0, hi(z, αji) ≤ fi(z) holds for any value
of αji , inequality (4.6) is valid for X i for any value of the lifting coefficient αji (see
Theorem 2.9).

See [32], for the special case of sequential up-lifting for minimal cover inequalities
and [30], for the special case of sequential up- and down-lifting for minimal cover
inequalities.
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If bji = 1, observe that Z i = {−aji , 0}, and that hi(−aji , αji) = −αji and
hi(0, αji) = 0. Thus, the lifting is maximal if and only if the lifting coefficient αji is
equal to −fi(−aji), since this is the unique value of αji such that

hi(z, αji) = fi(z)

has one solution x ∈ {0, 1}|M |+i such that the component xji − bji of x− b is linear
independent (for z = −aji , hi(z, αji) = fi(z) has solution x with xji = 0).

Therefore, if conv(X i−1) and conv(X i) are full-dimensional and (4.5) defines a
facet of conv(X i−1), to obtain a facet defining inequality (4.6) for conv(X i), the
lifting coefficient αji has to be equal to −fi(−aji) (see Theorem 2.10).

See [30], for the special case of sequential up- and down-lifting for minimal cover
inequalities.

These observations lead to the following Theorem.

Theorem 4.1. For each i = 1, . . . , t, consider the knapsack problem Kαji
defined

recursively as follows

zji = max{
∑

j∈M

αjxj +
i−1
∑

k=1

αjkxjk :

∑

j∈M

ajxj +
i−1
∑

k=1

ajkxjk ≤ a0 −
t
∑

k=i

ajkbjk − z,

xj ∈ {0, 1} for all j ∈M ∪ {j1, . . . , ji−1} },

with

z =

{

aji : bji = 0,
−aji : bji = 1.

For each i = 1, . . . , t, let

αji =











(α0 +
∑i−1

k=1 αjkbjk)− zji : bji = 0 and Kαji
is feasible,

(α0 +
∑i−1

k=1 αjkbjk) : bji = 0 and Kαji
is infeasible,

zji − (α0 +
∑i−1

k=1 αjkbjk) : bji = 1.

Then, for i = 1, . . . , t, each inequality (4.6) is valid for X i, in particular, (4.4) is
valid for XBK . For i = 1, . . . , t, if conv(X i−1) and conv(X i) are full-dimensional,
(4.5) defines a facet of conv(X i−1), and Kαji

is feasible, then inequality (4.6) defines

a facet of conv(X i). In particular, if (4.3) defines a facet of conv(X0), conv(X i)
is full-dimensional for i = 0, . . . , t − 1, and Kαj1

, . . . ,Kαjt
are feasible, then (4.4)

defines a facet of P .

In [50], Theorem 4.1 was given for the special case of using only up-lifting. In
[46], a theorem similar to Theorem 4.1 can be found, but there the case of Kαji
infeasible is not handled.

In the following, we introduce two classes of strong valid inequalities for the
0-1 knapsack polytope which use the above described idea; the class of LMCI1 and
the class of LEWI. In addition, we introduce the class of LMCI2, where the lifting
function, which, in general, is not superadditive, is approximated by a superadditive
valid lifting function to obtain sequence independent lifting.



48 Chapter 4. Cutting Plane Separator for the 0-1 Knapsack Problem

Class of LMCI1

A set C ⊆ N is called a cover for XBK if
∑

j∈C aj > a0, and is called a minimal
cover if, in addition,

∑

j∈C\{i} aj ≤ a0 holds for all i ∈ C. For any cover C ⊆ N for

XBK , inequality
∑

j∈C

xj ≤ |C| − 1 (4.7)

is called cover inequality, and it is valid for XBK . If C is a minimal cover, inequality
(4.7) is called minimal cover inequality, and it defines a facet of the convex hull of
the restriction of XBK to some lower-dimensional space.

Theorem 4.2 ([46]). If C is a minimal cover for XBK and (C1, C2) is any partition
of C, with C1 6= ∅, then

∑

j∈C1

xj ≤ |C1| − 1 (4.8)

defines a facet of

conv(XBK ∩ {x ∈ {0, 1}n : xj = 0 for all j ∈ N\C, xj = 1 for all j ∈ C2}).

Theorem 4.2 generalizes the result of [8, 33, 59], where it was given for C2 = ∅.
To obtain a strong valid inequality for P , we sequentially lift back the fixed

variables. Let (j1, . . . , jt) be the lifting sequence of the variables in N\C1. For
i = 1, . . . , t, let bji ∈ {0, 1} be the bound variable xji is fixed to, i.e., bji = 0 for all
ji ∈ N\C and bji = 1 for all ji ∈ C2. Using Theorem 4.1 for inequality (4.8), we get
the following corollary.

Corollary 4.3. For each i = 1, . . . , t, consider the knapsack problem Kαji
defined

recursively as follows

zji = max{
∑

j∈C1

xj +
i−1
∑

k=1

αjkxjk :

∑

j∈C1

ajxj +
i−1
∑

k=1

ajkxjk ≤ a0 −
t
∑

k=i

ajkbjk − z,

xj ∈ {0, 1} for all j ∈ C1 ∪ {j1, . . . , ji−1} },

with

z =

{

aji : bji = 0,
−aji : bji = 1.

For each i = 1, . . . , t, let

αji =











(|C1| − 1 +
∑i−1

k=1 αjkbjk)− zji : bji = 0 and Kαji
is feasible,

(|C1| − 1 +
∑i−1

k=1 αjkbjk) : bji = 0 and Kαji
is infeasible,

zji − (|C1| − 1 +
∑i−1

k=1 αjkbjk) : bji = 1.

Then
∑

j∈C1

xj +
∑

j∈N\C

αjxj +
∑

j∈C2

αjxj ≤ |C1| − 1 +
∑

j∈C2

αj (4.9)
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is valid for XBK . If conv(X i), where X i = {x ∈ {0, 1}|C1|+i :
∑

j∈C1
ajxj +

∑i
k=1 ajkxjk ≤ a0 −

∑t
k=i+1 ajkbjk} is full-dimensional for i = 0, . . . , t − 1 and

Kαj1
, . . . ,Kαjt

are feasible, then (4.9) defines a facet of P .

We call inequality (4.9) lifted minimal cover inequality using sequential up- and
down-lifting (LMCI).

Example 4.4. Consider the 0-1 knapsack polytope P = conv(XBK) with

XBK = {x ∈ {0, 1}5 : x1 + x2 + 6x3 + 2x4 + 2x5 ≤ 8}.

Then C = {3, 4, 5} is a minimal cover for XBK . For the partition (C1, C2) of C with
C2 = {5}, by Theorem 4.2, the inequality x3 + x4 ≤ 1 defines a facet of

conv(XBK ∩ {x ∈ {0, 1}5 : x1 = x2 = 0, x5 = 1}).

Choosing the lifting sequence (1, 2, 5), by Corollary 4.3, we obtain the lifting coeffi-
cients α1 = 0, α2 = 0 and α3 = 1. The resulting inequality

x3 + x4 + x5 ≤ 2 (4.10)

defines a facet of P . For the partition (C1, C2) of C with C2 = {3}, by Theorem 4.2
the inequality x4 + x5 ≤ 1 defines a facet of

conv(XBK ∩ {x ∈ {0, 1}5 : x1 = x2 = 0, x3 = 1}).

Choosing the lifting sequence (1, 2, 3), by Corollary 4.3 we obtain the lifting coeffi-
cients α1 = 1, α2 = 0 and α3 = 2. The resulting inequality

x1 + 2x3 + x4 + x5 ≤ 3 (4.11)

defines a facet of P .

Class of LEWI

In [58], the class of extended weight inequalities has been introduced. The definition
of an extended weight inequality given in [58] is based on mutually disjoint subsets
T , I and {z} of N . Here, we give the definition for I = ∅.

Definition 4.5. Let T ⊆ N and z ∈ N\T satisfying
∑

j∈T aj ≤ a0 and
∑

j∈T aj +
az > a0. Setting r = a0−

∑

j∈T aj , the extended weight inequality defined for T ∪{z}
is of the form

∑

j∈T

xj + czxz ≤ |T |, (4.12)

with cz = min{∑j∈T xj :
∑

j∈T ajxj ≥ az − r, xj ∈ {0, 1} for all j ∈ T}.

We call the set T in Definition 4.5 feasible set for XBK .

Proposition 4.6 ([58]). The extended weight inequality defined for T ∪ {z} intro-
duced in Definition 4.5 is valid for

XBK ∩ {x ∈ {0, 1}n : xj = 0 for all j ∈ N\(T ∪ {z})}.
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Weismantel [58] used sequential up-lifting for the inequality (4.12) to obtain a
valid inequality for XBK . In [44], it has been pointed out that the coefficient cz of
xz in inequality (4.12) can be obtained by starting with inequality

∑

j∈T xj ≤ |T |,
which is valid for XBK ∩{x ∈ {0, 1}n : xj = 0 for all j ∈ N\T}, and lifting first xz.
Using Theorem 4.1, the corresponding lifting coefficient αz calculates as

αz = |T | −max{
∑

j∈T

xj :
∑

j∈T

ajxj ≤ a0 − az, xj ∈ {0, 1} for all j ∈ T}

= min{
∑

j∈T

(1− xj) :
∑

j∈T

aj(xj − 1) ≤ r − az, xj ∈ {0, 1} for all j ∈ T}.

By complementing xj , i.e., substituting x̄j = 1− xj , for all j ∈ T , we get

αz = min{
∑

j∈T

x̄j :
∑

j∈T

aj x̄j ≥ az − r, x̄j ∈ {0, 1} for all j ∈ T},

which is exactly the definition of cz in Definition 4.5. Thus, the extended weight
inequality defined for T ∪{z} coincides with the inequality associated with T where
xz is lifted first. Therefore, instead of speaking of an extended weight inequality
defined for T ∪ {z}, we speak in the sequel of an extended weight inequality defined
for T and view z as the index of the variable lifted first.

Martin [44] fixed some variables to their upper bound in addition and used
sequential up- and down-lifting to obtain a valid inequality for XBK . Let T ⊆ N be
a feasible set for XBK and (T1, T2) be any partition of T , then trivially, inequality

∑

j∈T1

xj ≤ |T1| (4.13)

is valid for XBK ∩ {x ∈ {0, 1}n : xj = 0 for all j ∈ N\T, xj = 1 for all j ∈ T2}.
Furthermore, let (j1, . . . , jt) with j1 = z be the lifting sequence of the variables in
N\T1, and for i = 1, . . . , t, let bji ∈ {0, 1} be the bound variable xji is fixed to, i.e.,
bji = 0 for all ji ∈ N\T and bji = 1 for all ji ∈ T2. Using Theorem 4.1 for inequality
(4.13), we get the following corollary.

Corollary 4.7. For each i = 1, . . . , t, consider the knapsack problem Kαji
defined

recursively as follows

zji = max{
∑

j∈T1

xj +
i−1
∑

k=1

αjkxjk :

∑

j∈T1

ajxj +
i−1
∑

k=1

ajkxjk ≤ a0 −
t
∑

k=i

ajkbjk − z,

xj ∈ {0, 1} for all j ∈ T1 ∪ {j1, . . . , ji−1} },
with

z =

{

aji : bji = 0,
−aji : bji = 1.

For each i = 1, . . . , t, let

αji =











(|T1|+
∑i−1

k=1 αjkbjk)− zji : bji = 0 and Kαji
is feasible,

(|T1|+
∑i−1

k=1 αjkbjk) : bji = 0 and Kαji
is infeasible,

zji − (|T1|+
∑i−1

k=1 αjkbjk) : bji = 1.
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Then
∑

j∈T1

xj +
∑

j∈N\T

αjxj +
∑

j∈T2

αjxj ≤ |T1|+
∑

j∈T2

αj (4.14)

is valid for XBK .

We call inequality (4.14) lifted extended weight inequality using sequential up-
and down-lifting (LEWI). This inequality does not necessarily define a facet of P ,
but it may do so.

Example 4.8. Consider the 0-1 knapsack polytope P = conv(XBK) with

XBK = {x ∈ {0, 1}6 : 3x1 + 4x2 + 6x3 + 7x4 + 9x5 + 18x6 ≤ 21}.

Let T = {1, 2, 3, 4} and z = {5}. Then T is a feasible set for XBK . Trivially, for the
partition (T1, T2) of T with T2 = {1}, inequality x2 + x3 + x4 ≤ 3 is valid for

XBK ∩ {x ∈ {0, 1}6 : x5 = x6 = 0, x1 = 1}.

Choosing the lifting sequence (5, 6, 1) (here, the variable with index z is lifted first),
by Corollary 4.7, we obtain the lifting coefficients α5 = 2, α6 = 3 and α1 = 1. The
resulting inequality

x1 + x2 + x3 + x4 + 2x5 + 3x6 ≤ 4 (4.15)

is valid for XBK . In fact, inequality (4.15) defines a facet of P .

Class of LMCI2

Let C be a minimal cover for XBK . We use the partition (C1, C2) of C with C1 = C
and C2 = ∅. By Theorem 4.2, inequality

∑

j∈C

xj ≤ |C| − 1 (4.16)

defines a facet of conv(X0), where X0 = {x ∈ {0, 1}|C| : ∑j∈C ajxj ≤ a0}. Let
Z = [0, a0], then the lifting function f with respect to the valid inequality (4.16) for
X0, is given by

f(z) = min{ |C| − 1−
∑

j∈C

xj :

∑

j∈C

ajxj ≤ a0 − z,

xj ∈ {0, 1} for all j ∈ C } ,
for all z ∈ Z.

Suppose, without loss of generality, that C = {1, . . . , |C|} with a1 ≥ . . . ≥ a|C|.

Let λ =
∑

j∈C aj − a0, A0 = 0 and Ah =
∑h

j=1 aj for h = 1, . . . , |C|. Then, f can
be expressed in a closed form as

f(z) =

{

0 : 0 ≤ z ≤ A1 − λ,
h : Ah − λ < z ≤ Ah+1 − λ and h = 1, . . . , |C| − 1,



52 Chapter 4. Cutting Plane Separator for the 0-1 Knapsack Problem

for all z ∈ Z (see [32]).
The function f is not superadditve on Z in general. Therefore, we define a

superadditive valid lifting function g for f , given by

g(z) =























0 : z = 0,
h : Ah − λ+ ρh < z ≤ Ah+1 − λ and

h = 0, . . . , |C| − 1,

h− Ah−λ+ρh−z
ρ1

: Ah − λ < z ≤ Ah − λ+ ρh and
h = 1, . . . , |C| − 1,

(4.17)

for all z ∈ Z, where ρh = max{0, ah+1 − (a1 − λ)} for h = 0, . . . , |C| − 1.

Theorem 4.9 ([32]). The function g is a superadditve valid lifting function for f
that is nondominated and maximal on Z.

Therefore, by Corollary 2.16, the inequality

∑

j∈C

xj +
∑

j∈N\C

g(aj)xj ≤ |C| − 1 (4.18)

is valid for XBK . We call inequality (4.18) lifted minimal cover inequality using
superadditive up-lifting (LMCI2). Although, this inequality does not necessarily
define a facet of P , it may do so. In fact, it may define a facet of P which cannot
be obtained by sequential up-lifting.

Example 4.10 ([32]). Consider the 0-1 knapsack polytope P = conv(XBK) with

XBK = {x ∈ {0, 1}7 : 8x1 + 7x2 + 6x3 + 4x4 + 6x5 + 6x6 + 6x7 ≤ 22}.

Then C = {1, 2, 3, 4} is a minimal cover for XBK . For the partition (C1, C2) of C
with C2 = ∅, by Theorem 4.2, the inequality x1+ x2+ x3+ x4 ≤ 3 defines a facet of

conv(XBK ∩ {x ∈ {0, 1}7 : x5 = x6 = x7 = 0}).

Let Z = [0, 22]. The lifting function f : Z → R and the superadditive valid lifting
function g : Z → R are given in Figure 4.1. Note that f is not superadditive on
Z, since f(6) + f(6) = 2 > f(12) = 1. If we use the superadditive valid lifting
function g, we obtain g(a5) = g(a6) = g(a7) = 0.5. By Corollary 2.16, the resulting
inequality

x1 + x2 + x3 + x4 + 0.5x5 + 0.5x6 + 0.5x7 ≤ 3 (4.19)

is valid for XBK . In fact, inequality (4.19) defines a facet of P .

Classification of Facet Defining Inequalities

In our computational study, we will investigate which combination of our separation
algorithms for the classes of LMCI1, LEWI and LMCI2 leads to the best performance
of our cutting plane separator for the 0-1 knapsack problem in practice. In order
to explain, why we assume that using a combination leads to better results than
using only one class, we state a classification of facet defining inequalities for the 0-1
knapsack polytope which is taken from [34].
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Figure 4.1: Functions f and g for Example 4.10.

Let MC be the set of all minimal covers for XBK . For C ∈MC, a facet defining
inequality for P is called lifted from C if it can be scaled to the form

∑

j∈C

xj +
∑

j∈N\C

αjxj ≤ |C| − 1. (4.20)

A facet defining inequality for P lifted from C ∈MC is called integral if all its coef-
ficients are integers when scaled to the form (4.20), otherwise it is called nonintegral.
For C ∈MC, let FLI(C) be the class of all integral facet defining inequalities lifted
from C and FLNI(C) be the class of all nonintegral facet defining inequalities lifted
from C. Furthermore, let FLI = ∪C∈MCFLI(C), FLNI = ∪C∈MCFLNI(C) and FR
be the set of all facet defining inequalities which are not lifted from any C ∈MC.

Let C ∈MC. It is known that every integral facet defining inequality for P lifted
from C can, in fact, be obtained from C by applying Padberg’s sequential up-lifting
procedure to some sequence of N\C (see [12]). This means, that by enumerating all
sequences of N\C and applying Padberg’s sequential up-lifting procedure to each
sequence of N\C, one generates exactly the class FLI(C). It is also known that there
exist facet defining inequalities lifted from C which are not integral (see [12, 61]).
Such nonintegral facet defining inequalities lifted from C cannot be obtained from
C by Padberg’s sequential up-lifting procedure, but by the simultaneous up-lifting
procedure given in [12, 61]. In general, there may exist facet defining inequalities
which are not lifted from any C ∈MC.

We assume that a cutting plane separator which is able to generate inequalities
from all three classes of facet defining inequalities (FLI, FLNI and FR) leads to
good results in practice. Separating the class of LMCI1 may lead to inequalities in
FLI ∪ FR. The same holds for separating the class of LEWI. The computational
burden of the simultaneous up-lifting procedure given in [12, 61] prevents it from
being applied in practice. Therefore, we separate the class LMCI2, which may lead
to inequalities in FLI ∪ FLNI.
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In our computational study, we will also evaluate whether the separation algo-
rithms for the classes of LMCI1 and LEWI lead to different inequalities in practice.

Example 4.11. Consider Example 4.4. We obtained two facet defining inequalities
from the class of LMCI1. The first inequality x3 + x4 + x5 ≤ 2 is in FLI, since
C = {3, 4, 5} is a minimal cover for XBK with cardinality 3, and all coefficients of
the inequality are integral. The second inequality x1 + 2x3 + x4 + x5 ≤ 3 is in FR,
since none of the subsets of {1, 4, 5} is a minimal cover for XBK with cardinality 4
and {3} is not a minimal cover for XBK with cardinality 5

2 .

Consider Example 4.8. We obtained the facet defining inequality x1 + x2 + x3 +
2x5 + 3x6 ≤ 4 from the class of LEWI. This inequality is in FR, since none of
the subsets of {1, 2, 3} is a minimal cover for XBK with cardinality 5, {5} is not a
minimal cover for XBK with cardinality 3 and {6} is not a minimal cover for XBK

with cardinality 7
3 .

Consider Example 4.10. We obtained the facet defining inequality x1 + x2 +
x3 + x4 + 0.5x5 + 0.5x6 + 0.5x7 ≤ 3 from the class of LMCI2. This inequality is
in FLNI, since C = {1, 2, 3, 4} is a minimal cover for XBK with cardinality 4 and
three coefficients of the inequality are nonintegral and since none of the subsets of
{5, 6, 7} is a minimal cover for XBK with cardinality 7.

4.3 Algorithmic Aspects

In the last section, we have introduced three classes of strong valid inequalities for
the 0-1 knapsack polytope, the classes of LMCI1, LEWI and LMCI2. Separation
algorithms for these classes of inequalities can be part of a cutting plane separator
for the 0-1 knapsack problem. In this section, we investigate algorithmic aspects of
these separation algorithms.

Let x∗ ∈ [0, 1]n\{0, 1}n be a fractional vector with
∑

j∈N ajx
∗
j ≤ a0. We want to

solve the following separation problems.

Separation problem for the class of LMCI1

Find C ⊆ N with
∑

j∈C aj > a0 and
∑

j∈C\{i} aj ≤ a0 for all i ∈ C, a
partition (C1, C2) of C with C1 6= ∅ and a lifting sequence (j1, . . . , jt) of the
variables in N\C1 such that

∑

j∈C1

x∗j +
∑

j∈N\C

αjx
∗
j +

∑

j∈C2

αjx
∗
j > |C1| − 1 +

∑

j∈C2

αj ,

where αj for all j ∈ N\C1 are defined as in Corollary 4.3, or show that no
inequality in the class of LMCI1 is violated by x∗.
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Separation problem for the class of LEWI

Find T ⊆ N and z ∈ N\T with
∑

j∈T aj ≤ a0 and
∑

j∈T aj + az > a0, a
partition (T1, T2) of T and a lifting sequence (j1, . . . , jt) of the variables in
N\T with j1 = z such that

∑

j∈T1

x∗j +
∑

j∈N\T

αjx
∗
j +

∑

j∈T2

αjx
∗
j > |T1|+

∑

j∈T2

αj ,

where αj for all j ∈ N\T1 are defined as in Corollary 4.7, or show that no
inequality in the class of LEWI is violated by x∗.

Separation problem for the class of LMCI2

Find C ⊆ N with
∑

j∈C aj > a0 and
∑

j∈C\{i} aj ≤ a0 for all i ∈ C such
that

∑

j∈C

x∗j +
∑

j∈N\C

g(aj)x
∗
j > |C| − 1,

where the function g is defined by (4.17), or show that no inequality in the
class of LMCI2 is violated by x∗.

In the following, we assume that a cover exists, i.e.,
∑

j∈N aj > a0. We solve
the separation problem for the class of LMCI1 heuristically in a three stage process.
In the first stage, we solve the separation problem for the class of cover inequalities,
which is: Find C ⊆ N with

∑

j∈C aj > a0 and
∑

j∈C x∗j > |C| − 1, or show that no
inequality in the class of cover inequalities is violated by x∗. We call C an initial
cover. In the second stage, we make the initial cover minimal by removing variables
from C if necessary and partition it into (C1, C2) with C1 6= ∅. In the third stage,
we determine a lifting sequence of the variables in N\C1 and lift the inequality
∑

j∈C1
xj ≤ |C1| − 1 using sequential up- and down-lifting.

The separation problem for the class of LEWI is solved heuristically in an analog
three stage process. The first stage is the same as for the separation algorithm for the
class of LMCI1. In the second stage, we construct a feasible set T ⊆ N by removing
variables from the initial cover until the remaining variables satisfy

∑

j∈T aj ≤ a0.
We set z as the index of the variable removed last from the initial cover and partition
T into (T1, T2). In the third stage, we determine a lifting sequence of the variables
in N\T1 such that the variable with index z is lifted first, and lift the inequality
∑

j∈T1
xj ≤ |T1| using sequential up- and down-lifting.

The three stage process for heuristically solving the separation problem for the
class of LMCI2 also starts with solving the separation problem for the class of
cover inequalities. In the second stage, we make the initial cover C minimal by
removing variables from C if necessary. In the third stage, we lift the inequality
∑

j∈C xj ≤ |C| − 1 using superadditive up-lifting.

Note that in all these separation algorithms it is not necessary for the cover
inequality corresponding to the initial cover, to be the most violated one. Rather it
is more important, with respect to the overall procedure, to obtain an initial cover
which admits a ‘good’ lifting (see [30]). Because of the lifting step, we even continue
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the separation procedure if the initial cover does not correspond to a violated cover
inequality, as lifting may still lead to a violated inequality. Because of the heuristic
nature of the separation algorithms, we can not guarantee to find a violated inequal-
ity of the associated class if one exists. But, it will turn out that the cuts determined
by these separation algorithms significantly improve the performance of the linear
programming based branch-and-cut algorithm.

As one can see, the algorithmic aspects which we have to address when imple-
menting these three separation algorithms are similar. We have to decide

(1) Which algorithm do we use to find the initial cover?,

(2) In which order do we remove the variables from the initial cover to construct
a minimal cover and feasible set, respectively?

and for the separation algorithms for the classes of LMCI1 and LEWI

(3) Which partition of the minimal cover and feasible set, respectively do we use?,

(4) Which lifting sequence do we use?, and

(5) Which algorithm do we use to solve the knapsack problems which occur in the
sequential lifting procedure?.

These questions will be addressed in the next sections. In addition, we will state
how the researches mentioned in the introduction of this chapter have answered
these questions.

4.3.1 Initial Cover

In the first stage of all three separation algorithms, we determine an initial cover C
for XBK . We represent C by the characteristic vector z ∈ {0, 1}n, i.e., C = {j ∈
N : zj = 1}. It has to satisfy

∑

j∈N ajzj > a0. The separation problem for the class
of cover inequalities can be formulated as, solve the knapsack problem

min{
∑

j∈N

(1− x∗j )zj :

∑

j∈N

ajzj ≥ a0 + 1,

zj ∈ {0, 1} for all j ∈ N } .

(KP1BK)

Let ξ be the objective function value of an optimal solution of KP1BK . If ξ ≥ 1,
there exists no cover inequality which is violated by x∗. If ξ < 1, the cover inequality
corresponding to the initial cover C represented by an optimal solution of KP1BK is
violated by x∗ (see [46]). By complementing all variables, i.e., substituting zj = 1−z̄j
for all j ∈ N , we transform KP1BK into a knapsack problem in maximization form

max{
∑

j∈N

(1− x∗j )z̄j :

∑

j∈N

aj z̄j ≤
∑

j∈N

aj − (a0 + 1),

z̄j ∈ {0, 1} for all j ∈ N } .

(KP1BK
max)



4.3 Algorithmic Aspects 57

Input : (KP) max{∑j∈N pj z̃j :
∑

j∈N wj z̃j ≤ c, z̃j ∈ {0, 1} for all j ∈ N},
where pj ≥ 0 and wj ∈ Z+\{0} for all j ∈ N , c ∈ Z+ and n = |N |.

Output: z̃∗ ∈ {0, 1}n an optimal solution of KP.

1 for d ← 0 to c do
2 A0(d) ← 0

3 for j ← 1 to n do
4 for d ← 0 to min{wj − 1, c} do
5 Aj(d) ← Aj−1(d)

6 for d ← wj to c do
7 if Aj−1(d− wj) + pj > Aj−1(d) then
8 Aj(d) ← Aj−1(d− wj) + pj

9 else
10 Aj(d) ← Aj−1(d)

11 d ← c
12 for j ← n down to 1 do
13 if Aj(d) > Aj−1(d) then
14 z̃∗j ← 1
15 d ← d− wj

16 else
17 z̃∗j ← 0

18 return z̃∗

Algorithm 4.1: Exact algorithm to solve a knapsack problem in maximization form.

KP1BK
max can be solved exactly using Algorithm 4.1, which uses dynamic pro-

gramming (see [37]). Algorithm 4.1 has time and space complexity of O(nc), where
c is the right-hand side of the knapsack problem and n = |N | (see [37]). We also
call the right-hand side of a knapsack problem the capacity of a knapsack problem.
To reduce the time and space complexity, KP1BK

max can be solved approximately by
applying Algorithm 4.2. This algorithm solves a knapsack problem in maximization
form approximately by solving its LP relaxation using Dantzig’s method and round-
ing down the solution (see [23] and [37]). The time complexity of Algorithm 4.2
is O(n), and besides storing the input data and the solution no additional space
is required (see [37]). Note that the set N has to be ordered when applying Algo-
rithm 4.2. Sorting can be done in O(n logn) time using, e.g., the sorting algorithm
merge sort (see [17]).

As mentioned before, the initial cover C merely assists us in identifying a lower-
dimensional space and a valid inequality for the restriction of XBK to this lower-
dimensional space which will be lifted afterwards to a valid inequality for XBK .
That is, why our main focus is not to find an initial cover which corresponds to
a most violated cover inequality, but to find an initial cover that admits a lifted
inequality which is valid for XBK , but violated by x∗. In the following, we will state
two modifications of KP1BK which will hopefully contribute to this aim.

The first modification of KP1BK is to fix variables in advance. If a variable with
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Input : (KP) max{∑j∈N pj z̃j :
∑

j∈N wj z̃j ≤ c, z̃j ∈ {0, 1} for all j ∈ N},
where pj ≥ 0 and wj ∈ Q+\{0} for all j ∈ N , c ∈ Q+, n = |N | and
N is ordered such that p1

w1
≥ p2

w2
≥ . . . ≥ pn

wn
.

Output: z̃∗ ∈ {0, 1}n a feasible solution of KP.

1 w̄ ← 0
2 for j ← 1 to n do
3 if w̄ + wj ≤ c then
4 z̃∗j ← 1
5 w̄ ← w̄ + wj

6 else
7 while j ≤ n do
8 z̃∗j ← 0
9 j ← j + 1

10 return z̃∗

Algorithm 4.2: Approximate algorithm to solve a knapsack problem in maximization
form.

x∗j equal to zero ends up in the initial cover, the right-hand side of the lifted inequality
increases, whereas the activity of the left-hand side remains unchanged. Thus, in
this case the chance of finding a violated lifted inequality reduces. Therefore, we fix
these variables to zero in advance, i.e., we set zj = 0 for all j ∈ N0, where N0 =
{j ∈ N : x∗j = 0}. Note that as a consequence of this modification, the existence of
a cover is no longer guaranteed. In addition, we fix all variables with x∗j equal to one
to one in advance, i.e., we set zj = 1 for all j ∈ N1, where N1 = {j ∈ N : x∗j = 1}.
This is done to improve the chance of finding a violated lifted inequality, since out
of the set of variables in the cover, the variables with x∗j equal to one have the
greatest contribution to the violation of the lifted inequality. Proposition 4.12 and
Proposition 4.13 show that Algorithm 4.1 and Algorithm 4.2 choose the variables
with x∗j equal to one to be in the initial cover anyway. Thus, applying the last fixing
is actually done to reduce the time and space complexity.

Proposition 4.12. Let z̃∗ ∈ {0, 1}n be the solution vector obtained by applying
Algorithm 4.1 to KP1BK

max. Then z̃∗j = 0 for all j ∈ N1.

Proof. Let c =
∑

j∈N aj − (a0 + 1). Furthermore, for d = 0, . . . , c and j = 0, . . . , n,
let Aj(d) be defined as in Algorithm 4.1, i.e., for d = 0, . . . , c, A0(d) = 0 and for
d = 0, . . . , c and j = 1, . . . , n,

Aj(d) =

{

Aj−1(d) : d < aj ,
max{Aj−1(d), Aj−1(d− aj) + (1− x∗j )} : d ≥ aj .

Note that for d = 0, . . . , c and j = 0, . . . , n,

Aj(d) = max{
j
∑

k=1

(1− x∗k)z̃k :

j
∑

k=1

akz̃k ≤ d,

z̃k ∈ {0, 1} for k = 1, . . . , j}
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(see [37]).

Let l ∈ N1. We show that Al(d) ≤ Al−1(d) holds for d = 0, . . . , c. Then, by the
definition of Algorithm 4.1, it follows that z̃∗l = 0.

We have

Al−1(d) = max{
l−1
∑

k=1

(1− x∗k)z̃k :
l−1
∑

k=1

akz̃k ≤ d,

z̃k ∈ {0, 1} for k = 1, . . . , l − 1}

= max{
l
∑

k=1

(1− x∗k)z̃k :
l
∑

k=1

akz̃k ≤ d,

z̃k ∈ {0, 1} for k = 1, . . . , l − 1, z̃l = 0}.

And, since (1 − x∗l ) = 0 and {z̃ ∈ {0, 1}l :
∑l

k=1 akz̃k ≤ d and z̃l = 0} ⊆ {z̃ ∈
{0, 1}l :∑l

k=1 akz̃k ≤ d}, we obtain

Al−1(d) ≤ max{
l
∑

k=1

(1− x∗k)z̃k :
l
∑

k=1

akz̃k ≤ d,

z̃k ∈ {0, 1} for k = 1, . . . , l}
= Al(d).

Proposition 4.13. Let KP1BK
max be given with N ordered such that

1−x∗1
a1
≥ . . . ≥

1−x∗n
an
. Let z̃∗ ∈ {0, 1}n be the solution vector obtained by applying Algorithm 4.2 to

KP1BK
max. Then z̃∗j = 0 for all j ∈ N1.

Proof. By the definition of Algorithm 4.2, z̃∗ is of the form z̃∗j = 1 for j = 1, . . . , k
and z̃∗j = 0 for j = k + 1, . . . , n, where k ∈ {0, . . . , n} is uniquely determined by

k
∑

j=1

aj ≤
∑

j∈N

aj − (a0 − 1) and
k+1
∑

j=1

aj >
∑

j∈N

aj − (a0 + 1).

Let l ∈ N1. We show l ≥ k + 1, which proofs z∗l = 0. For that we show
∑l

j=1 aj >
∑

j∈N aj − (a0 + 1) or equivalently
∑n

j=l+1 aj ≤ a0. By the assumptions, we have

0 =
1− x∗l
al

≥ . . . ≥ 1− x∗n
an

.

In addition, since 0 ≤ x∗j ≤ 1 and aj > 0 for all j ∈ N ,
1−x∗j
aj
≥ 0 holds for all j ∈ N .

Therefore,
1−x∗j
aj

has to be equal to zero for j = l + 1, . . . , n and since aj > 0 for all

j ∈ N , x∗j has to be equal to one for j = l + 1, . . . , n. Thus, {l + 1, . . . , n} ⊆ N1.
Since, in addition, x∗ satisfies

∑

j∈N ajx
∗
j ≤ a0, 0 ≤ x∗j ≤ 1 and aj > 0 for all j ∈ N ,

we obtain

a0 ≥
∑

j∈N

ajx
∗
j ≥

∑

j∈N1

ajx
∗
j =

∑

j∈N1

aj ≥
n
∑

j=l+1

aj .
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The second modification of KP1BK was suggested in [30]. When KP1BK
max is

solved by applying Algorithm 4.1 or 4.2, the following problems may occur. One
problem is that a variable with large aj but small x∗j may be selected for the initial
cover. This can be interpreted as fixing this variable to one. However, since x∗j is
small, i.e., closer to zero than to one, it probably should be fixed to zero. Another
problem is that there is a tendency to pick variables with large aj for the initial cover,
most of which will get a cut coefficient equal to one. However, if these variables are
not in the initial cover, they may get a larger lifting coefficient, which would lead
to a larger contribution to the violation. The idea of [30] is to take into account the
weight of the variables in the objective function. Their modified version of KP1BK

is
min{

∑

j∈N

(1− x∗j )ajzj :

∑

j∈N

ajzj ≥ a0 + 1,

zj ∈ {0, 1} for all j ∈ N }.

(KP2BK)

Note that this changes the ordering of the variables required for Algorithm 4.2. We
denote KP2BK in maximization form by KP2BK

max.
The researchers mentioned in Section 4.1 have used the following methods to

find the initial cover in the first stage of their separation routines.

Crowder, Johnson and Padberg [22] Class of lifted minimal cover inequalities
using sequential up-lifting. Fix all variables in N0 to zero in advance and solve
KP1BK

max approximately using Algorithm 4.2.

Van Roy and Wolsey [55] Class of lifted cover inequalities using sequential up-
and down-lifting. Solve KP1BK approximately. Note that the algorithm used
has not been mentioned.

Hoffman and Padberg [35] Class of LMCI1. Fix all variables in N0 to zero and
all variables in N1 to one in advance and solve KP1BK

max approximately using
Algorithm 4.2.

Gu, Nemhauser and Savelsbergh [30] Class of LMCI1. (1) Fix all variables in
N0 to zero in advance and solve KP1BK exactly. Note that the algorithm used
has not been mentioned. (2) Fix all variables in N0 to zero in advance and
solve KP1BK

max approximately using Algorithm 4.2. (3) Fix all variables in N0

to zero in advance and solve KP2BK
max approximately using Algorithm 4.2.

Martin [44] Class of LEWI. Fix all variables in N0 to zero and all variables in N1

to one in advance and solve KP2BK
max approximately using Algorithm 4.2.

4.3.2 Minimal Cover, Feasible Set and Partition

In the second stage of the separation algorithms, we use the initial cover obtained
in the first stage to identify a lower-dimensional space and a valid inequality for the
restriction of XBK to this lower-dimensional space.

For the class of LMCI1, we use Theorem 4.2. First, we make the initial cover
minimal by removing variables if necessary. Note that a variable will only be removed
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if the remaining variables still form a cover. A natural way is to remove the variables
in the reverse order in which Algorithm 4.2 would have chosen them to be in an initial

cover. That means, removing variables in nonincreasing order of
1−x∗j
aj

if KP1BK
max

was solved in the first stage of the separation algorithm, and in nondecreasing order
of x∗j if KP2BK

max was solved in the first stage. In both cases, variables with x∗j
equal to one will be removed last. Especially for these variables, the first order
criterium for removing variables is not unique. Thus, we work with a second order
criterium for removing variables which uses aj . On the one hand, in behalf of
nonincreasing aj as a second order criterium speaks that a larger value of aj leads
to a larger lifting coefficient for this variable. On the other hand, in behalf of
nondecreasing aj as a second order criterium speaks that the lifting coefficient of
the variables not in the minimal cover depends on the sum of aj of the variables
in C2. The larger this sum the larger the lifting coefficient of the variables which
are not in the minimal cover (see Corollary 4.3). As we will choose C2 as the set
of all variables with x∗j equal to one, removing these variables will reduce the sum.
Therefore, it will possibly be better to remove variables with smallest aj . Next,
we have to partition the constructed minimal cover C into (C1, C2) with C1 6= ∅
in order to obtain the lower-dimensional space {x ∈ {0, 1}n : xj = 0 for all j ∈
N\C, xj = 1 for all j ∈ C2} and the facet defining inequality

∑

j∈C1
xj ≤ |C1| − 1

for conv(XBK ∩ {x ∈ {0, 1}n : xj = 0 for all j ∈ N\C, xj = 1 for all j ∈ C2}).
A natural way to partition C is to choose C2 = {j ∈ C : x∗j = 1}. Note that

since x∗ satisfies
∑

j∈N ajx
∗
j ≤ a0 there exists no cover for XBK which contains only

variables with x∗j equal to one, and therefore C1 6= ∅ holds. A second scheme for
partitioning C was suggested by Gu, Nemhauser and Savelsbergh [30]. They fix all
but two variables with smallest possible x∗j to one.

For the class of LEWI, we use the trivial observation concerning inequality (4.13)
stated in Section 4.2. We construct a feasible set T from the initial cover again by
removing variables. As for the class of LMCI1, a natural way is to remove variables
in the reverse order in which Algorithm 4.2 would have chosen them to be in the
initial cover. If we use this ordering, no variable with x∗j equal to one will be
removed from the initial cover, since x∗ satisfies

∑

j∈N ajx
∗
j ≤ a0 and the remaining

variables will therefore form a feasible set before the variables with x∗j equal to one
will be reached in the ordering. Thus, we do not investigate on a second order
criterium for removing variables. Next, we have to partition the feasible set T
into (T1, T2) in order to obtain a lower-dimensional space {x ∈ {0, 1}n : xj =
0 for all j ∈ N\T, xj = 1 for all j ∈ T2} and the valid inequality

∑

j∈T1
xj ≤ |T1|

for XBK ∩ {x ∈ {0, 1}n : xj = 0 for all j ∈ N\T, xj = 1 for all j ∈ T2}. Analog to
the class of LMCI1, a natural way to partition T is to set T2 = {j ∈ T : x∗j = 1}.

One problem may occur in the separation algorithms for the classes of LMCI1
and LEWI when we perform the second stage as stated above. The sequential lifting
procedure of the third stage starts with up-lifting some variables of N\C and N\T ,
respectively (see Section 4.3.4). By Corollary 4.3 and Corollary 4.7, these variables
will get a lifting coefficient equal to zero if |C1| = 1 and |T1| = 0, respectively. This
disadvantage can be fixed by the following modification of the partition. If |C1| = 1,
we choose the variable with smallest aj from C2 and put it to C1, and analog, if
|T1| = 0 we choose the variable with smallest aj from T2 and put it to T1. We choose
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the variable with smallest aj , since we want the sum of aj of the variables in C2

and T2, respectively, to remain as large as possible, as this sum influences the lifting
coefficient of the variables lifted up in the first part of the lifting procedure.

For the class of LMCI2, we use the special case of Theorem 4.2 where C2 = ∅.
Thus, as for the class of LMCI1, we have to make the initial cover minimal, but
we do not have to partition the minimal cover. The construction of the minimal
cover can be performed as in the separation algorithm for the class of LMCI1. Only
the argument for using nondecreasing aj as a second order criterium for removing
variables changes. Here, in behalf of nondecreasing aj speaks that the number of
variables removed may be larger which would lead to a reduced right-hand side of
the lifted inequality and thus, may improve the chance of finding a violated lifted
inequality.

The second stages of the separation algorithms of the researchers mentioned in
Section 4.1 are the following. Note that except Martin [44] none of the researchers
did go into details about the order in which the variables are removed from the
initial cover.

Crowder, Johnson and Padberg [22] Class of lifted minimal cover inequalities
using sequential up-lifting. Make the initial cover C minimal by removing
variables from C if necessary and set C2 = ∅.

Van Roy and Wolsey [55] Class of lifted cover inequalities using sequential up-
and down-lifting. Do not make the initial cover C minimal. Start with C2 = ∅,
if no violated inequality was found, set C2 = {j∗}, where aj∗ = maxj∈C{aj :
x∗j > 0}.

Hoffman and Padberg [35] Class of LMCI1. Make the initial cover C minimal
by removing variables from C if necessary and set C2 = {j ∈ C : x∗j = 1}.

Gu, Nemhauser and Savelsbergh [30] Class of LMCI1. (1) Make the initial
cover C minimal by removing variables from C if necessary and set C2 = {j ∈
C : x∗j = 1}. (2) Make the initial cover C minimal by removing variables from
C if necessary and choose C1 as the set of the two variables with smallest x∗j .

Martin [44] Class of LEWI. Construct a feasible set T from the initial cover C
by removing variables from C if necessary in the reverse order in which Al-
gorithm 4.2 has chosen them to be in the initial cover and set T2 = {j ∈ T :
x∗j = 1}.

4.3.3 Lifting Sequence

In the third stage of the separation algorithms, we lift the valid inequality for the
restriction of XBK to the lower-dimensional space identified in the second stage of
the separation algorithms to a valid inequality for XBK .

For the class of LMCI2, we perform superadditive up-lifting, which is sequence
independent. For the classes of LMCI1 and LEWI, we use sequential up- and
down-lifting. Here, different lifting sequences usually lead to different lifted in-
equalities. We will use a two-level lifting sequence. At the first level, we specify sets
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of variables that are lifted in a certain order, and at the second level, we specify the
lifting order within these sets.

For the class of LMCI1, we partition N\C into the sets F and R with F = {j ∈
N\C : x∗j > 0} and R = {j ∈ N\C : x∗j = 0}, and we use the following first level
lifting order: first up-lift all variables in F , then down-lift all variables in C2 and
finally up-lift all variables in R. This is done because the lifting coefficients of the
variables in C2 with x∗j equal to one and of the variables in R have no effect on
whether the lifted inequality is violated or not, which suggests that the variables
in F should be lifted first. In addition, first down-lifting all variables in C2 would
lead to a lifting coefficient of one for all variables in C2 (since C is a minimal cover)
and would, therefore, undo the partition of C. We still have to choose the lifting
order within the sets specified at the first level. Note that in case of up-lifting, the
maximum lifting coefficient is obtained when a variable is lifted first. And, in case
of down-lifting, the minimum lifting coefficient is obtained when a variable is lifted
first (see [12, 30]). Several sequences have been suggested in the literature (see [30]).

Sequence 1 Lift the variables in order of nonincreasing absolute difference between
x∗j and the value the variables are fixed to.

Sequence 2 Lift the variables in order of nondecreasing magnitude of reduced costs.

Sequence 3 At each lifting step, lift a variable with maximum αjx
∗
j .

Sequence 4 Lift the variables in order of nonincreasing aj .

In [30], the following explanations for these sequences are given. Sequence 1 is
the most natural one, since the larger the absolute difference between x∗j and the
value the variable is fixed to, the greater is the effect of the variable on the violation
of the lifted inequality. This sequence only applies to fractional variables. The
rational behind Sequence 2 is that variables with a reduced cost of small magnitude
are more important (at least locally) than variables with a reduced cost far away
from zero. This sequence only applies to nonbasic variables. Sequence 3 chooses at
each lifting step the variable with the highest contribution to the left-hand side of
the lifted inequality. This sequence only applies to fractional variables which have to
be up-lifted. Sequence 4 takes into account that the right-hand side of the knapsack
problem which has to be solved at each lifting step depends on aj .

For the class of LEWI, we can use an analog two-level lifting sequence as de-
scribed for the class of LMCI1, except that the variable xz removed last from the
initial cover has to be lifted first. We suggest to test a modification of this two-level
lifting sequence where the restriction to lift the variable removed last from the initial
cover first is released, since the lifting sequence within the set F (containing z) may
choose a different z which may lead to an improvement in the violation of the lifted
inequality.

The researchers mentioned in Section 4.1 have used the following lifting sequences
in their separation algorithms.

Crowder, Johnson and Padberg [22] Class of lifted minimal cover inequalities
using sequential up-lifting. Let C be the minimal cover, set F = {j ∈ N\C :
x∗j > 0} and R = {j ∈ N\C : x∗j = 0} and use the following lifting order:
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first up-lift all variables in F and then up-lift all variables in R. Note that the
lifting sequence used within the sets F and R has not been mentioned.

Van Roy and Wolsey [55] Class of lifted cover inequalities using sequential up-
and down-lifting. Let C be the cover and use the following lifting order: first
up-lift all variables in N\C using Sequence 3 and then down-lift the variable
in C2 if C2 is not empty.

Hoffman and Padberg [35] Class of LMCI1. Let C be the minimal cover, set
F = {j ∈ N\C : x∗j > 0} and R = {j ∈ N\C : x∗j = 0} and use the following
lifting order: first up-lift all variables in F , then down-lift all variables in C2

and finally up-lift all variables in R. Within the sets F , C2 and R use a lifting
sequence that is based on both the first-order lifting coefficient and the reduced
cost of nonbasic variables.

Gu, Nemhauser and Savelsbergh [30] Class of LMCI1. Let C be the minimal
cover and set F = {j ∈ N\C : x∗j > 0} and R = {j ∈ N\C : x∗j = 0}. (1) Use
the following lifting order: first up-lift all variables in F using Sequence 3, then
down-lift all variables in C2 using Sequence 2 and finally up-lift all variables in
R using Sequence 2. (2) Use the following lifting order: first up-lift all variables
in F using Sequence 4, then down-lift all variables in C2 using Sequence 4 and
finally up-lift all variables in R using Sequence 4. (3) Use the following lifting
order: first up-lift all variables in F using a random lifting order, then down-lift
all variables in C2 using a random lifting order and finally up-lift all variables
in R using a random lifting order.

Martin [44] Class of LEWI. Let T be the feasible set and set F = {j ∈ N\T :
x∗j > 0} and R = {j ∈ N\T : x∗j = 0} and use the following lifting order:
first up-lift all variables in F using Sequence 1 (note that Sequence 1 chooses
the variable removed last from the initial cover as the variable lifted first
automatically), then down-lift all variables in T2 using Sequence 4 and finally
up-lift all variables in R using Sequence 4.

4.3.4 Computing the Lifting Coefficients

In this section, we deal with methods of calculating the lifting coefficients in the
third stage of the separation algorithms.

For the class of LMCI1, we start with inequality
∑

j∈C1
xj ≤ |C1| − 1 and per-

form sequential up- and down-lifting. Let (j1, . . . , jt) be the lifting sequence of the
variables in N\C1. For each i = 1, . . . , t, we have to solve the knapsack problem
Kαji

defined in Corollary 4.3. Each of these knapsack problems can be solved ex-
actly using Algorithm 4.1 or approximately using Algorithm 4.2. For the class of
lifted minimal cover inequalities using sequential up-lifting, Zemel [62] developed an
exact procedure to calculate all lifting coefficients in time complexity O(n2). This
algorithm uses dynamic programming to solve a reformulation of the knapsack prob-
lems Kαji

in which the role of the objective function and the constraint is reversed.
In [30], Gu, Nemhauser and Savelsbergh used an extension of Zemel’s procedure
for the class of LMCI1, which has time complexity of O(n4) to calculate all lifting
coefficients. As the algorithm is not explicitly given in [30], we do that here.
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Consider for each i = 1, . . . , t, the set of dual knapsack problems Dαji
(ω) for

ω = 0, . . . , |C1|+
∑i−1

k=1 αjk

Aji(ω) = min{
∑

j∈C1

ajxj +
i−1
∑

k=1

ajkxjk :

∑

j∈C1

xj +
i−1
∑

k=1

αjkxjk ≥ ω

xj ∈ {0, 1} for all j ∈ C1 ∪ {j1, . . . , ji−1} }.

Clearly, if the problem Kαji
is feasible, i.e., a0 −

∑t
k=i ajkbjk − z ≥ 0, where z = aji

if bji = 0 and z = −aji if bji = 1, it is related to the set of problems Dαji
(ω),

ω = 0, . . . , |C1|+
∑i−1

k=1 αjk via the relation

zji = max{ω : Aji(ω) ≤ a0 −
t
∑

k=i

ajkbjk − z}. (4.21)

Proposition 4.14. Let i ∈ {1, . . . , t} with bji = 0. Then zji ≤ |C1|−1+
∑i−1

k=1 αjkbjk .

Proof. By Theorem 4.2 and Theorem 4.1, inequality

∑

j∈C1

xj +
i−1
∑

k=1

αjkxjk ≤ |C1| − 1 +
i−1
∑

k=1

αjkbjk (4.22)

is valid forX i−1 = {x ∈ {0, 1}|C1|+i−1 :
∑

j∈C1
ajxj+

∑i−1
k=1 ajkxjk ≤ a0−

∑t
k=i ajkbjk}.

Since aji > 0, inequality (4.22) is also valid for {x ∈ {0, 1}|C1|+i−1 :
∑

j∈C1
ajxj+

∑i−1
k=1 ajkxjk ≤ a0 −

∑t
k=i ajkbjk − aji}. Therefore,

zji = max{
∑

j∈C1

xj +
i−1
∑

k=1

αjkxjk :

∑

j∈C1

ajxj +
i−1
∑

k=1

ajkxjk ≤ a0 −
t
∑

k=i

ajkbjk − aji ,

xj ∈ {0, 1} for all j ∈ C1 ∪ {j1, . . . , ji−1} }

≤ |C1| − 1 +
i−1
∑

k=1

αjkbjk .

By Proposition 4.14, if bji = 0, we only have to consider ω with 0 ≤ ω ≤
|C1| − 1 +

∑i−1
k=1 αjkbjk when calculating zji via the equation (4.21).

Consider for each i = 1, . . . , t − 1, the set of dual knapsack problems Dαji+1
(ω)

for ω = 0, . . . , |C1|+
∑i

k=1 αjk of the next lifting step

Aji+1
(ω) = min{

∑

j∈C1

ajxj +
i−1
∑

k=1

ajkxjk + ajixji :

∑

j∈C1

xj +
i−1
∑

k=1

αjkxjk + αjixji ≥ ω

xj ∈ {0, 1} for all j ∈ C1 ∪ {j1, . . . , ji} }.
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If we set Aji(ω) =∞ for ω > |C1|+
∑i−1

k=1 αjk , we get

Aji+1
(ω) =

{

min{Aji(ω), aji} : ω < αji ,
min{Aji(ω), Aji(ω − αji) + aji} : ω ≥ αji .

This leads to Algorithm 4.3. Note that the lifting algorithm is given for first
up-lifting all variables in F , then down-lifting all variables in C2 and finally up-lifting
all variables in R.

For the class of LEWI, we start with inequality
∑

j∈T1
xj ≤ |T1| and perform

sequential up- and down-lifting. Let (j1, . . . , jt) be the lifting sequence of the vari-
ables in N\T1. We have to solve for each i = 1, . . . , t the knapsack problem Kαji
defined in Corollary 4.7. Each of this knapsack problems can be solved exactly using
Algorithm 4.1 or approximately using Algorithm 4.2. As for the class of LMCI1,
Zemel’s procedure can be extended to compute the lifting coefficients for the class
of LEWI in an analogue way.

For the class of LMCI2, we start with inequality
∑

j∈C xj ≤ |C|−1 and perform
superadditive lifting using the superadditive valid lifting function g defined in Sec-
tion 4.2. As explained in Section 4.2, we only have to compute g(aj) for all j ∈ N\C
to obtain the valid inequality

∑

j∈C xj +
∑

j∈N\C g(aj)xj ≤ |C| − 1 for XBK . The
complete procedure is given in Algorithm 4.4.

The researchers mentioned in Section 4.1 performed lifting in the following way.

Crowder, Johnson and Padberg [22] Class of lifted minimal cover inequalities
using sequential up-lifting. Calculate the lifting coefficients approximately us-
ing Algorithm 4.2 to solve each knapsack problem.

Van Roy and Wolsey [55] Class of lifted cover inequalities using sequential up-
and down-lifting. Calculate the lifting coefficients exactly using Algorithm 4.1
to solve each knapsack problem.

Hoffman and Padberg [35] Class of LMCI1. Calculate the lifting coefficients
approximately using Algorithm 4.2 to solve each knapsack problem.

Gu, Nemhauser and Savelsbergh [30] Class of LMCI1. (1) Calculate the lift-
ing coefficients exactly using the extension of Zemel’s procedure for the class
of LMCI1. (2) Calculate the lifting coefficients approximately using the al-
gorithm suggested in [43] to solve each knapsack problem, which provides a
slightly better bound than the value of the LP relaxation, and has time com-
plexity O(n logn) for the computation of a single lifting coefficient.

Martin [44] Class of LEWI. Calculate the lifting coefficient of the variables in F
and T2 exactly using the extension of Zemel’s procedure for the class of LEWI
and calculate the lifting coefficient of the variables in R approximately using
Algorithm 4.2 to solve each knapsack problem.



4.3 Algorithmic Aspects 67

Input : XBK defined as is (4.2), (C1, C2) partition of C minimal cover for
XBK , where C1 = {l1, . . . , l|C1|} 6= ∅ with al1 ≤ . . . ≤ al|C1|

and
C2 = {jf+1, . . . , jg}, (F,R) partition of N\C with
F = {j1, . . . , jf} and R = {jg+1, . . . , jt}, and

∑

j∈C1
xj ≤ |C1| − 1

facet defining inequality for conv(XBK ∩ {x ∈ {0, 1}n : xj =
0 for all j ∈ N\C, xj = 1 for all j ∈ C2}).

Output:
∑

j∈C1
xj +

∑

j∈N\C αjxj +
∑

j∈C2
αjxj ≤ |C1| − 1 +

∑

j∈C2
αj

valid inequality for XBK .

1 A(0) ← 0
2 for ω ← 1 to |C1| do
3 A(ω) ← A(ω − 1) + alω
4 α0 ← |C1| − 1
5 for i ← 1 to f do /* up-lifting of the variables in F */

6 if a0 −
∑g

k=f+1 ajk − aji < 0 then zji ← 0

7 else zji ← max{ω : 0 ≤ ω ≤ α0, A(ω) ≤ a0 −
∑g

k=f+1 ajk − aji}
8 αji ← α0 − zji
9 for ω ← |C1|+

∑i−1
k=1 αjk + 1 to |C1|+

∑i
k=1 αjk do

10 A(ω) ← ∞
11 for ω ← |C1|+

∑i
k=1 αjk down to 0 do

12 if ω < αji then A(ω) ← min{A(ω), aji}
13 else A(ω) ← min{A(ω), A(ω − αji) + aji}
14 for i ← f + 1 to g do /* down-lifting of the variables in C2 */

15 zji ← max{ω : 0 ≤ ω ≤ |C1|+
∑i−1

k=1 αjk , A(ω) ≤ a0 −
∑g

k=i ajk + aji}
16 αji ← zji − α0

17 α0 ← α0 + αji

18 for ω ← |C1|+
∑i−1

k=1 αjk + 1 to |C1|+
∑i

k=1 αjk do
19 A(ω) ← ∞
20 for ω ← |C1|+

∑i
k=1 αjk down to 0 do

21 if ω < αji then A(ω) ← min{A(ω), aji}
22 else A(ω) ← min{A(ω), A(ω − αji) + aji}
23 for i ← g + 1 to t do /* up-lifting of the variables in R */
24 zji ← max{ω : 0 ≤ ω ≤ α0, A(ω) ≤ a0 − aji}
25 αji ← α0 − zji
26 for ω ← α0 down to 0 do
27 if ω < αji then A(ω) ← min{A(ω), aji}
28 else A(ω) ← min{A(ω), A(ω − αji) + aji}

29 return
∑

j∈C1
xj +

∑t
k=1 αjkxjk ≤ α0

Algorithm 4.3: Exact lifting algorithm for the class of LMCI1 (extension of Zemel’s
procedure).
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Input : XBK defined as is (4.2), C minimal cover for XBK , and
∑

j∈C xj ≤ |C| − 1 facet defining inequality for

conv(XBK ∩ {x ∈ {0, 1}n : xj = 0 for all j ∈ N\C}).
Output:

∑

j∈C xj +
∑

j∈N\C αjxj ≤ |C| − 1 valid inequality for XBK .

1 Sort C by nonincreasing aj .
2 λ ← ∑

j∈C aj − a0
3 A0 ← 0
4 for h ← 1 to |C| do
5 Ah ← Ah−1 + ah
6 Ih−1 ← Ah − λ
7 ρh−1 ← max{0, ah − (a1 − λ)}
8 Sort N\C by nondecreasing aj . (Let {jj , . . . , jt} be the ordered set.)
9 h ← 0

10 for i ← 1 to t do
11 while Ih < aji do /* Search h : aji ∈ (Ah − λ,Ah+1 − λ] */
12 h ← h+ 1

13 if h = 0 then
14 αji ← h

15 else
16 if aji ≤ Ih−1 + ρh then /* aji ∈ (Ah − λ,Ah − λ+ ρh] */

17 αji ← h− Ih−1+ρh−aji
ρ1

18 else /* aji ∈ (Ah − λ+ ρh, Ah+1 − λ] */
19 αji ← h

21 return
∑

j∈C xj +
∑t

k=1 αjkxjk ≤ |C| − 1

Algorithm 4.4: Lifting algorithm for the class of LMCI2.
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4.4 Computational Study

In Section 4.3, we gave an outline of the separation algorithms for the classes of
LMCI1, LEWI and LMCI2 and discussed different algorithmic and implementation
choices which have to be made when implementing these separation algorithms.
In this section, we describe our computational experience with these choices. We
extended the initial test set (see Section 2.3) by 14 instances, which are real-world
problems obtained from various resources, and divided the extended initial test set
into two sets; the main test set and the remaining test set. The extension of the
initial test set was done in order to obtain a reasonable large main test set.

Main test set Contains all instances of the extended initial test set for which at
least one of the three default algorithms or at least one of the different versions
of the default algorithms where a single aspect is altered leads to an initial gap
closed of more than zero percent.

Remaining test set Contains the remaining instances of the extended initial test
set.

We use the main test set to develop the resulting separation algorithms for the
classes of LMCI1, LEWI and LMCI2, and to obtain our final cutting plane separator
for the 0-1 knapsack problem which uses the most efficient combination of the three
resulting separation algorithms. This set consists of 29 MIPs, 9 are various instances
from Miplib 2003 [3], 8 are instances from Miplib 3.0 [14] and 12 are real-world
problems that we obtained from various resources. Table B.20 summarizes the main
characteristics of the instances in the main test set. The remaining test set is only
used to show that the CPU time spent in our final cutting plane separator is on
an acceptable level for all instances in the extended initial test set. Table B.21
summarizes the main characteristics of the instances in the remaining test set.

See Section 2.3, for information about the workstation on which we performed our
computational experiments, about the implementation environment of the separa-
tion algorithms and about the representation of our test sets and our computational
results.

Finally, note that we always used the algorithm merge sort (see [17]) for sorting
sets.

4.4.1 Separation Algorithm for the Class of LMCI1

Our default algorithm for separating the class of LMCI1 is given in Algorithm 4.5.
The results for applying this algorithm to the instances in our main test set are
given in Table B.22 and a summary of the results is contained in Table 4.1. We
close 16.31 percent of the initial gap in geometric mean and the CPU time spent in
the separation routine is 1355.9 seconds in total. For four instances in our main test
set, the separation time is greater than 10 seconds of CPU time. As we will see, the
large separation time for these instances is caused by the fact that we use the exact
algorithm to find the initial cover in the first stage of the default algorithm.
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Input : XBK defined as is (4.2) and x∗ ∈ [0, 1]n\{0, 1}n fractional vector
with

∑

j∈N ajx
∗
j ≤ a0.

Output: Violated (with respect to x∗) inequality from the class of LMCI1
or notification that no such inequality was found.

/* First stage: Initial cover */

1 N0 ← {j ∈ N : x∗j = 0} and N1 ← {j ∈ N : x∗j = 1}
2 if

∑

j∈N\N0
aj − (a0 + 1) < 0 then return No inequality found

3 Call Algorithm 4.1 for

max{
∑

j∈N\(N0∪N1)

(1− x∗j )z̄j :

∑

j∈N\(N0∪N1)

aj z̄j ≤
∑

j∈N\N0

aj − (a0 + 1),

z̄j ∈ {0, 1} for all j ∈ N\(N0 ∪N1) }

(Let z̄∗ be the solution.)
4 C ← N1 ∪ {j ∈ N\(N0 ∪N1) : z̄

∗
j = 0}

/* Second stage: Minimal cover and partition */

5 Sort C by nonincreasing
1−x∗j
aj

and use nondecreasing aj as a second order
criterium.

6 c ← |C|
7 for j ← 1 to c and C is not minimal do
8 if

∑

i∈C ai − aj > a0 then C ← C\{j}
9 C2 ← {j ∈ C : x∗j = 1} and C1 ← C\C2

/* Third stage: Lifting sequence and computing the lifting

coefficients */

10 F ← {j ∈ N\C : x∗j > 0} and R ← {j ∈ N\C : x∗j = 0}
11 Sort F , C2, and R according to Sequence 4 and C1 by nondecreasing aj .
12 Call Algorithm 4.3 for XBK , (C1, C2), (F,R) and

∑

j∈C1
xj ≤ |C1| − 1. (Let

∑

j∈C1
xj +

∑

j∈N\C αjxj +
∑

j∈C2
αjxj ≤ |C1| − 1 +

∑

j∈C2
αj be the lifted

valid inequality for XBK .)

/* Result */

13 if
∑

j∈C1
x∗j +

∑

j∈N\C αjx
∗
j +

∑

j∈C2
αjx

∗
j > |C1| − 1 +

∑

j∈C2
αj then

14 return
∑

j∈C1
xj +

∑

j∈N\C αjxj +
∑

j∈C2
αjxj ≤ |C1| − 1 +

∑

j∈C2
αj

15 else return No inequality found

Algorithm 4.5: Separation algorithm for the class of LMCI1. Default algorithm.
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Gap Closed % Sepa Time sec Sepa Time > 10 sec
(Geom. Mean) (Total) (Number)

Value 4 Value 4 Value 4

Default algorithm 16.31 0.00 1355.9 0.0 4 0
Initial cover - 1. modification1 15.61 -0.70 7.6 -1348.3 0 -4
Initial cover - 2. modification2 15.81 -0.50 25.3 -1330.6 0 -4
Initial cover - 3. modification3 14.50 -1.81 256.9 -1099.0 4 0
Initial cover - 4. modification4 16.42 0.11 7.1 -1348.8 0 -4
Minimal cover - modification5 17.02 0.71 1738.2 382.3 4 0
Partition - modification6 16.40 0.09 1822.4 466.5 4 0
Lifting sequence - modification7 16.31 0.00 1468.9 113.0 5 1
Resulting algorithm4 6 16.36 0.05 7.4 -1348.5 0 -4

Table 4.1: Summary of the computational results for the separation algorithm for the class of
LMCI1 on the main test set. Default algorithm, default algorithm where a single algorithmic aspect
is altered and resulting algorithm. (4 with respect to the default algorithm)

Initial Cover

In Section 4.3.1, we described two modifications of KP1BK . We have decided to use
the first modification of KP1BK without comparing it to the unmodified version,
since most of the researchers mentioned in Section 4.1 have fixed some variables in
advance. This is, we fix all variables in N0 to zero and all variables in N1 to one
in advance. Thus, if we speak in the sequel of solving KP1BK

max (KP2BK
max) we mean

solving KP1BK (KP2BK ) in maximization form after applying this fixing to KP1BK

(KP2BK).

In the default algorithm, we solve KP1BK
max exactly using Algorithm 4.1. We

have tested to solve KP1BK
max approximately using Algorithm 4.2. See Table 4.1, for

a summary of the results obtained for the main test set. It turned out that this
reduces the separation time. For all instances in the main test set, the separation
time is less than or equal to 10 seconds of CPU time. But this also reduces the
initial gap closed for most of the instances in the main test set. We conclude that
solving KP1BK

max using Algorithm 4.1 performs better than using Algorithm 4.2 with
respect to the initial gap closed, but can be very time consuming. Algorithm 4.1 has
time and space complexity of O(nc), where n and c are defined as in Algorithm 4.1.
We tested another version of the default algorithm where we use Algorithm 4.1 if nc
is not greater than 1,000,000 and Algorithm 4.2 otherwise. (In order to find a good
bound for switching between both algorithms, we ran our default algorithm on the
main test set and examined the value of nc of the knapsack problems that had to
be solved to find initial covers.)

The results for the main test set are given in Table B.23 and a summary of the
results is contained in Table 4.1. As one can see, this version performs better than
the default algorithm, since all instances in the main test set have separation time

1Solve KP1BKmax approximately using Algorithm 4.2.
2Solve KP1BKmax exactly using Algorithm 4.1 if nc is not greater than 1,000,000 and approximately

using Algorithm 4.2 otherwise.
3Solve KP2BKmax exactly using Algorithm 4.1.
4Solve KP2BKmax approximately using Algorithm 4.2.
5Use nonincreasing aj as the second order criterium for removing variables.
6Set C2 = {j ∈ C : x∗j = 1} and C1 = C\C2. Change the partition if |C1| = 0.
7Use Sequence 1 for the set F and Sequence 4 for the sets C2 and R.
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less than or equal to 10 seconds of CPU time and the gap closed reduces only for
those instances for which using the default algorithm led to a large separation time.

The second modification of KP1BK discussed in Section 4.3.1 was assumed to
improve the performance of the separation algorithm. It will turn out that this
assumption is true. We have solved KP2BK

max exactly using Algorithm 4.1. The
results for the main test set are given in Table B.24 and a summary of the results
is contained in Table 4.1. As one can see, for some of the instances in the main
test set, the initial gap closed increases, but for others, it decreases. The initial gap
closed in geometric mean reduces by 1.81 percentage points. Better results were
obtained for solving KP2BK

max approximately using Algorithm 4.2. They are given in
Table B.25 and a summary of them is contained in Table 4.1. The initial gap closed
increases for most of the instances in our main test set and the initial gap closed in
geometric mean increases by 0.11 percentage points. Furthermore, the separation
time is 7.1 seconds of CPU time in total. Thus, solving KP2BK

max approximately
performs better than solving KP2BK

max exactly with respect to both, the separation
time and the initial gap closed. And it also outperforms the version of the default
algorithm where we solve KP1BK

max using Algorithm 4.1 if nc is not greater than
1,000,000 and using Algorithm 4.2 otherwise.

Minimal Cover and Partition

In the default algorithm, we make the initial cover minimal by removing variables
if necessary, in the reverse order in which Algorithm 4.2 would have chosen them
to be in the initial cover. In Section 4.3.2, we have discussed two schemes for the
second order criterium for removing variables. In the default algorithm, we use the
criterium of nondecreasing aj .

We have tested it against the criterium of nonincreasing aj . The results for our
main test set are given in Table B.26 and a summary of the results is contained in
Table 4.1. As one can see, the second scheme performs better than the first one, as
the initial gap closed increases for most of the instances and the initial gap closed in
geometric mean increases by 0.71 percentage points. Nevertheless, in our resulting
separation algorithm, we use the first scheme, since using the second scheme in
our resulting algorithm reduces the initial gap closed. In geometric mean, it is 14.77
percent in contrast to 16.36 percent (see Table B.27) for using the first scheme in the
resulting algorithm. A possible explanation is that in the default algorithm we solve
KP1BK

max to find an initial cover. In Section 4.3.1, we have stated the problem that
there is a tendency to pick variables with large aj for the initial cover and using the
second scheme removes some of these variables from the initial cover. However, in
the resulting algorithm, we solve KP2BK

max which already works against the tendency
to pick variables with large aj for the initial cover.

We have decided to use the natural partition of the minimal cover, i.e., we set
C2 = {j ∈ C : x∗ = 1} and C1 = C\C2, without comparing it to the second scheme
suggested by Gu, Nemhauser and Savelsbergh [30], since in their computational
study it turned out that there is no significant difference in the performance between
this partition and their suggested second scheme.

In Section 4.3.2, we have pointed out a disadvantage of using the natural par-
tition; the fact that it may occur that |C1| = 1. We have tested the modification
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of the natural partition where we put a variable with smallest aj from C2 to C1 if
|C1| = 1. A summary of the results for our main test set is contained in Table 4.1.
It turned out that this modification has only a small effect on the performance of
the separation algorithm with respect to the initial gap closed for our main test set.
The initial gap closed in geometric mean only increases by 0.09 percentage points.
But for the resulting algorithm we will use this modification, as there may be other
instances where this modification could help to improve the performance of the sep-
aration algorithm. Note that this causes the slight difference in the results given in
Table B.25 and the results for our resulting algorithm given in Table B.27.

Lifting Sequence

In Section 4.3.3, we have explained why it is reasonable to use a two-level lifting
sequence. In the default algorithm, we use Sequence 4 within the sets F , C2 and
R at the second level. We have decided to test this version only against the lifting
sequence used by Martin [44] for the class of LEWI, i.e., Sequence 1 for the set F and
Sequence 4 for the sets C2 and R at the second level, as the computational results of
Gu, Nemhauser and Savelsbergh [30] indicate that the lifting order within the sets
is not very important. Our results for using Sequence 1 instead of Sequence 4 for
the set F confirm that, as there is no significant difference with respect to the initial
gap closed (see Table 4.1, for a summary of the results for our main test set).

Computing the Lifting Coefficients

We have decided to compute the lifting coefficients exactly using Algorithm 4.3, as
Gu, Nemhauser and Savelsbergh [30] concluded from the results of their computa-
tional study that this algorithm is fast in practice. Our results for the resulting
algorithm (see Table B.27) confirm this conclusion.

Resulting Algorithm

From the results of our computational study we get the following three stages of the
separation algorithm for the class of LMCI1.

First stage Fix all variables in N0 to zero and all variables in N1 to one in advance
and solve KP2BK

max approximately using Algorithm 4.2.

Second stage Make the initial cover minimal by removing variables, if necessary,
in the reverse order in which Algorithm 4.2 has chosen them to be in the initial
cover and use as the second order criterium for removing variables nondecreas-
ing aj . Set C2 = {j ∈ C : x∗j = 1} and put a variable with smallest aj from
C2 to C1 if |C1| = 1.

Third stage Use the following lifting order: first up-lift all variables in F using
Sequence 4, then down-lift all variables in C2 using Sequence 4 and finally
up-lift all variables in R using Sequence 4. Compute the lifting coefficients
exactly using Algorithm 4.3.

The results for our resulting algorithm are given in Table B.27 and a summary of
the results is contained in Table 4.1. By using our resulting algorithm for the main
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Gap Closed % Sepa Time sec Sepa Time > 10 sec
(Geom. Mean) (Total) (Number)

Value 4 Value 4 Value 4

Default algorithm 16.45 0.00 1510.3 0.0 6 0
Initial cover - 1. modification8 16.13 -0.32 7.3 -1503.0 0 -6
Initial cover - 2. modification9 15.51 -0.94 20.3 -1490.0 0 -6
Initial cover - 3. modification10 13.78 -2.67 420.8 -1089.5 6 0
Initial cover - 4. modification11 14.67 -1.78 6.9 -1503.4 0 -6
Partition - modification12 3.79 -12.66 379.9 -1130.4 2 -4
Lifting sequence - 1. modification13 16.47 0.02 1573.0 62.7 6 0
Lifting sequence - 2. modification14 16.42 -0.03 1572.2 61.9 6 0
Resulting algorithm8 14 16.79 0.34 8.5 -1501.8 0 -6

Table 4.2: Summary of the computational results for the separation algorithm for the class of
LEWI on the main test set. Default algorithm, default algorithm where a single algorithmic aspect
is altered and resulting algorithm. (4 with respect to the default algorithm)

test set we close 16.36 percent of the initial gap in geometric mean and the CPU
time spent in the separation routine is 7.4 seconds of CPU time in total. Thus, we
have significantly improved the performance of our default separation algorithm for
the class of LMCI1.

4.4.2 Separation Algorithm for the Class of LEWI

Our default algorithm for separating the class of LEWI is given in Algorithm 4.6.
The results for applying this algorithm to the instances in our main test set are
given in Table B.28 and a summary of the results is contained in Table 4.2. The
initial gap closed in geometric mean is 16.45 percent and the CPU time spent in
the separation routine is 1510.3 seconds in total. For six instances in the main test
set the separation time is greater than 10 seconds of CPU time. As for the class of
LMCI1, we will see that the large separation time for these instances is caused by
using the exact algorithm to find the initial cover in the first stage of the default
algorithm.

Initial Cover

For the class of LEWI, we use the same method to find an initial cover in the
default algorithm as for the class of LMCI1 (see Section 4.4.1). This is, we use the
first modification of KP1BK discussed in Section 4.3.1 without comparing it to the
unmodified version and we solve KP1BK

max exactly using Algorithm 4.1.

As for the class of LMCI1, the large separation time needed for some of the in-
stances in the main test set when using the default algorithm reduces when KP1BK

max

is solved approximately using Algorithm 4.2 (see Table B.29 and Table 4.2). The

8Solve KP1BKmax approximately using Algorithm 4.2.
9Solve KP1BKmax exactly using Algorithm 4.1 if nc is not greater than 1,000,000 and approximately

using Algorithm 4.2 otherwise.
10Solve KP2BKmax exactly using Algorithm 4.1.
11Solve KP2BKmax approximately using Algorithm 4.2.
12Set T2 = {j ∈ T : x∗j = 1} and T1 = T\T2. Do not change the partition if |T1| = 0.
13Use Sequence 1 for the set F and Sequence 4 for the sets T2 and R.
14Do not use the restriction to lift first the variable which has been removed last from the initial

cover.
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Input : XBK defined as is (4.2) and x∗ ∈ [0, 1]n\{0, 1}n fractional vector
with

∑

j∈N ajx
∗
j ≤ a0.

Output: Violated (with respect to x∗) inequality from the class of LEWI or
notification that no such inequality was found.

/* First stage: Initial cover */

1 N0 ← {j ∈ N : x∗j = 0} and N1 ← {j ∈ N : x∗j = 1}
2 if

∑

j∈N\N0
aj − (a0 + 1) < 0 then return No inequality found

3 Call Algorithm 4.1 for

max{
∑

j∈N\(N0∪N1)

(1− x∗j )z̄j :

∑

j∈N\(N0∪N1)

aj z̄j ≤
∑

j∈N\N0

aj − (a0 + 1),

z̄j ∈ {0, 1} for all j ∈ N\(N0 ∪N1) }

(Let z̄∗ be the solution.)
4 C ← N1 ∪ {j ∈ N\(N0 ∪N1) : z̄

∗
j = 0}

/* Second stage: Feasible set and partition */

5 Sort C by nonincreasing
1−x∗j
aj

.

6 T ← C and t ← |T |
7 for j ← 1 to t and

∑

j∈T aj > a0 do
8 T ← T\{j} and z ← j

9 T2 ← {j ∈ T : x∗j = 1} and T1 ← T\T2
10 if |T1| = 0 then
11 T1 ← {j∗} with aj∗ = minj∈T2

{aj}, and T2 ← T2\{j∗}

/* Third stage: Lifting sequence and computing the lifting

coefficients */

12 F ← {j ∈ N\T : x∗j > 0} and R ← {j ∈ N\T : x∗j = 0}
13 Sort F\{z} according to Sequence 4 and set z to be the first variable in the

ordered set F , sort T2 and R according to Sequence 4, and sort T1 by
nondecreasing aj

14 Call a lifting algorithm that is the extension of Zemel’s procedure to the
class of LEWI (analog to Algorithm 4.3) for XBK , (T1, T2), (F,R) and
∑

j∈T1
xj ≤ |T1|. (Let

∑

j∈T1
xj +

∑

j∈N\T αjxj +
∑

j∈T2
αjxj ≤ |T1|+

∑

j∈T2
αj be the lifted valid

inequality for XBK .)

/* Result */

15 if
∑

j∈T1
x∗j +

∑

j∈N\T αjx
∗
j +

∑

j∈T2
αjx

∗
j > |T1|+

∑

j∈T2
αj then

16 return
∑

j∈T1
xj +

∑

j∈N\T αjxj +
∑

j∈T2
αjxj ≤ |T1|+

∑

j∈T2
αj

17 else return No inequality found

Algorithm 4.6: Separation algorithm for the class of LEWI. Default algorithm.
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separation time is 7.3 seconds of CPU time in total. But similar to the class of
LMCI1, in addition, the initial gap closed in geometric mean reduces by 0.32 per-
centage points. However, note that for some of the instances in the main test set the
initial gap closed increases. For the instances in the main test set which had a small
separation time in the default algorithm and for which the initial gap closed reduced
when we solved KP1BK

max approximately, this reduction can be eliminated when we
use Algorithm 4.1 if nc is not greater than 1,000,000 (where n and c are defined
as in Algorithm 4.1) and Algorithm 4.2 otherwise. The results for this version of
the default algorithm for the main test set are given in Table B.30 and a summary
of the results is contained in Table 4.2. Unfortunately, we also lose the increase of
the initial gap closed achieved for some of the instances when we solved KP1BK

max

approximately. Altogether, the initial gap closed in geometric mean reduces by 0.93
percentage points. Thus, in contrast to the class of LMCI1, here always solving
KP1BK

max approximately performs better than the version where we solve KP1BK
max

approximately only if nc is greater than or equal to 1,000,000.

The second modification of KP1BK discussed in Section 4.3.1 was assumed to
improve the performance of the separation algorithm. For the class of LMCI1,
this assumption fulfilled, but here it does not. The results for solving KP2BK

max

exactly using Algorithm 4.1 are given in Table B.31 and a summary of the results
is contained in Table 4.2. For the class of LMCI1, the initial gap closed increased
for some of the instances in the main test set and for others it decreased when we
solved KP2BK

max exactly using Algorithm 4.1, and the initial gap closed in geometric
mean reduced. Here a similar effect can be observed, except that the gap closed
does not increase for as many instances as for the class of LMCI1. The initial gap
closed in geometric mean reduces by 2.67 percentage points. For the class of LMCI1,
the initial gap closed increased for most of the instances in the main test set when
we solved KP2BK

max approximately using Algorithm 4.2 and the initial gap closed in
geometric mean increased. Here solving KP2BK

max approximately does also perform
better than solving KP2BK

max exactly (see Table B.32 and Table 4.2). But, as one can
see, the second modification of KP1BK discussed in Section 4.3.1 does not improve
the performance of the separation algorithm; the initial gap closed in geometric
mean reduces by 1.78 percentage points.

Feasible Set and Partition

In the default algorithm, we construct a feasible set T from the initial cover by
removing variables in the reverse order in which Algorithm 4.2 would have chosen
them to be in the initial cover.

As for the class of LMCI1, we have decided to use the natural partition of the
feasible set, i.e., we set T2 = {j ∈ T : x∗j = 1} and T1 = T\T2, without comparing it
to the second scheme suggested by Gu, Nemhauser and Savelsbergh [30].

In Section 4.3.2, we have pointed out a disadvantage of using the natural parti-
tion, the fact that it may occur that |T1| = 0. We also suggested a modification of
the natural partition to fix this problem, i.e., to put a variable with smallest aj from
T2 to T1. In contrast to the class of LMCI1, we use this modification already in the
default algorithm. This is done, because, when we did not use this modification,
the number of cuts found was so small that the other tests, especially for finding
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the initial cover, were not meaningful anymore. The results for using the natural
partition without this modification for the main test set are given in Table B.33 and
a summary of the results is contained in Table 4.2. As one can see, the modification
clearly improves the performance of the separation algorithm.

Lifting Sequence

In the default algorithm, we use at the second level of the two-level lifting sequence
for the set F the Sequence 4 with the restriction to lift the variable removed last
from the initial cover first, and for the sets T2 and R we use Sequence 4.

We have tested this scheme against the lifting sequence used by Martin [44]:
use Sequence 1 for the set F (here the variable removed last from the initial cover
is lifted first automatically) and Sequence 4 for the sets T2 and R. The results for
using Sequence 1 instead of Sequence 4 for the set F show that there is no significant
difference with respect to the initial gap closed (see Table 4.2 for a summary of
the results). Therefore, our results confirm the conclusion of Gu, Nemhauser and
Savelsbergh [30] for the class of LMCI1 that the lifting order within the sets is not
very important.

We have tested the modification concerning the handling of the variable removed
last from the initial cover, i.e., we used Sequence 4 for the set F without the restric-
tion to lift this variable first. The results for the main test set are given in Table B.34
and a summary of the results is contained in Table 4.2. As one can see, there is no
significant difference in the performance with respect to the initial gap closed (the
initial gap closed in geometric mean reduces by 0.03 percentage points). Neverthe-
less, we will use this modification in our resulting algorithm since this version is less
restrictive and it improves the performance of the default algorithm when it is used
in connection with solving KP1BK

max approximately (see Table B.29 and Table B.35).

Computing the Lifting Coefficients

As for the class of LMCI1, we have decided to compute the lifting coefficients exactly
using the extension of Zemel’s procedure (analog to Algorithm 4.3). The results for
our resulting algorithm (see Table B.35) show that this lifting procedure is fast in
practice.

Resulting Algorithm

From the results of our computational study we get the following three stages of the
separation algorithm for the class of LEWI.

First stage Fix all variables in N0 to zero and all variables in N1 to one in advance
and solve KP1BK

max approximately using Algorithm 4.2.

Second stage Construct a feasible set T from the initial cover by removing vari-
ables, in the reverse order in which Algorithm 4.2 has chosen them to be in
the initial cover. Set T2 = {j ∈ T : x∗j = 1} and put a variable with smallest
aj from T2 to T1 if |T1| = 0.
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Gap Closed % Sepa Time sec Sepa Time > 10 sec
(Geom. Mean) (Total) (Number)

Value 4 Value 4 Value 4

Default algorithm 14.46 0.00 1220.2 0.0 4 0
Initial cover - 1. modification15 13.94 -0.52 5.3 -1214.9 0 -4
Initial cover - 2. modification16 14.03 -0.43 15.1 -1205.1 0 -4
Initial cover - 3. modification17 13.49 -0.97 181.8 -1038.4 4 0
Initial cover - 4. modification18 15.01 0.55 4.1 -1216.1 0 -4
Minimal cover - modification19 15.83 1.37 1501.8 281.6 4 0
Resulting algorithm18 15.01 0.55 4.1 -1216.1 0 -4

Table 4.3: Summary of the computational results for the separation algorithm for the class of
LMCI2 on the main test set. Default algorithm, default algorithm where a single algorithmic aspect
is altered and resulting algorithm. (4 with respect to the default algorithm)

Third stage Use the following lifting order: first up-lift all variables in F using
Sequence 4, then down-lift all variables in C2 using Sequence 4 and finally
up-lift all variables in R using Sequence 4. Compute the lifting coefficients
exactly using the extension of Zemel’s procedure (analog to Algorithm 4.3).

The results for using our resulting algorithm for the main test set are given in
Table B.35 and a summary of the results is contained in Table 4.2. By using our
resulting algorithm for the main test set we close 16.79 percent of the initial gap in
geometric mean and the CPU time spent in the separation routine is 8.5 seconds in
total. Thus, we have reduced the separation time without reducing the performance
of our separation algorithm with respect to the initial gap closed in geometric mean.

4.4.3 Separation Algorithm for the Class of LMCI2

Our default algorithm for separating the class of LMCI2 is given in Algorithm 4.7.
The results for the main test set are given in Table B.36 and a summary of the
results is contained in Table 4.3. By using our default algorithm for the main test
set, we close 14.46 percent of the initial gap in geometric mean and the CPU time
spent in the separation routine is 1220.2 seconds in total. For four instances in the
main test set, the separation time is greater than 10 seconds of CPU time. As for
the classes of LMCI1 and LEWI, we will see that the large separation time for these
instances is caused by the fact that we use the exact algorithm to find an initial
cover in the first stage of the default algorithm.

Initial Cover

In the default algorithm for the class of LMCI2, we use the same method to find
an initial cover as for the classes of LMCI1 and LEWI (see Section 4.4.1 and Sec-
tion 4.4.2), i.e., we use the first modification of KP1BK discussed in Section 4.3.1

15Solve KP1BKmax approximately using Algorithm 4.2.
16Solve KP1BKmax exactly using Algorithm 4.1 if nc is not greater than 1,000,000 and approximately

using Algorithm 4.2 otherwise.
17Solve KP2BKmax exactly using Algorithm 4.1.
18Solve KP2BKmax approximately using Algorithm 4.2.
19Use nonincreasing aj as the second order criterium for removing variables.
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Input : XBK defined as is (4.2) and x∗ ∈ [0, 1]n\{0, 1}n fractional vector
with

∑

j∈N ajx
∗
j ≤ a0.

Output: Violated (with respect to x∗) inequality from the class of LMCI2
or notification that no such inequality was found.

/* First stage: Initial cover */

1 N0 ← {j ∈ N : x∗j = 0} and N1 ← {j ∈ N : x∗j = 1}
2 if

∑

j∈N\N0
aj − (a0 + 1) < 0 then

3 return No inequality found

4 Call Algorithm 4.1 for

max{
∑

j∈N\(N0∪N1)

(1− x∗j )z̄j :

∑

j∈N\(N0∪N1)

aj z̄j ≤
∑

j∈N\N0

aj − (a0 + 1),

z̄j ∈ {0, 1} for all j ∈ N\(N0 ∪N1) }

(Let z̄∗ be the solution.)
5 C ← N1 ∪ {j ∈ N\(N0 ∪N1) : z̄

∗
j = 0}

/* Second stage: Minimal cover and partition */

6 Sort C by nonincreasing
1−x∗j
aj

and use nondecreasing aj as a second order
criterium.

7 c ← |C|
8 for j ← 1 to c and C is not minimal do
9 if

∑

i∈C ai − aj > a0 then
10 C ← C\{j}

/* Third stage: Computing the lifting coefficients */

11 Call Algorithm 4.4 for XBK and
∑

j∈C xj ≤ |C| − 1. (Let
∑

j∈C xj +
∑

j∈N\C αjxj ≤ |C| − 1 be the lifted valid inequality for XBK .)

/* Result */

12 if
∑

j∈C x∗j +
∑

j∈N\C αjx
∗
j > |C| − 1 then

13 return
∑

j∈C xj +
∑

j∈N\C αjxj ≤ |C| − 1

14 else
15 return No inequality found

Algorithm 4.7: Separation algorithm for the class of LMCI2. Default algorithm.
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without comparing it to the unmodified version and solve KP1BK
max exactly using

Algorithm 4.1.

As for the classes of LMCI1 and LEWI, the large separation time needed for some
of the instances in the main test set when using the default algorithm reduces when
KP1BK

max is solved approximately using Algorithm 4.2 (see Table 4.3 for a summary
of the results for the main test set). But as for the class of LMCI1, in addition,
the initial gap closed reduces for most of the instances in the main test set. This
reduction of the initial gap closed can be eliminated for the instances which already
had a small separation time in the default algorithm if we use Algorithm 4.1 if nc
is not greater than 1,000,000 (where n and c are defined as in Algorithm 4.1) and
Algorithm 4.2 otherwise. The results for the last scheme are given in Table B.37
and a summary of the results in contained in Table 4.3. As for the class of LMCI1,
one can see that this version performs better than the default algorithm, since all
instances in the main test set have separation time less than or equal to 10 seconds
of CPU time and the gap closed reduces only for those instances for which using the
default algorithm led to a large separation time.

The second modification of KP1BK discussed in Section 4.3.1 was assumed to
improve the performance of the separation algorithm, which turned out to be true
for the class of LMCI1 and false for the class of LEWI. For the class of LMCI2,
the assumption is again fulfilled. The results for solving KP2BK

max exactly using
Algorithm 4.1 are given in Table B.38 and a summary of the results is contained in
Table 4.3. As for the class of LMCI1, one can see that for some of the instances in the
main test set the initial gap closed increases, but for others it decreases. The initial
gap closed in geometric reduces by 0.97 percentage points. Here we also obtained
better results when we solved KP2BK

max approximately using Algorithm 4.2. The
results are given in Table B.39 and a summary is contained in Table 4.3. The initial
gap closed in geometric mean increases by 0.55 percentage points and the separation
time is 4.1 seconds of CPU time in total. Thus, as for the class of LMCI1, the last
scheme outperforms the version of the default algorithm where we solve KP2BK

max

exactly. And it also performs better than the version where we solve KP1BK
max using

Algorithm 4.1 if nc is not greater than 1,000,000 and using Algorithm 4.2 otherwise.

Minimal Cover

As for the class of LMCI1, in the default algorithm, we make the initial cover minimal
by removing variables if necessary, in the reverse order in which Algorithm 4.2
would have chosen them to be in the initial cover. In Section 4.3.2, we discussed
two schemes for the second order criterium for removing variables. In the default
algorithm, we use the criterium of nondecreasing aj .

We have tested it against the criterium of nonincreasing aj . The results for our
main test set are given in Table B.40 and a summary of the results is contained
in Table 4.3. As for the class of LMCI1, the second scheme performs better than
the first one. The initial gap closed in geometric mean increases by 1.37 percentage
points. Nevertheless as for the class of LMCI1, in our resulting algorithm, we use
the first scheme since using the second scheme in our resulting algorithm reduces
the initial gap closed. In geometric mean, it is 12.95 percent in contrast to 15.01
percent for using the first scheme in the resulting algorithm (see Table B.39). The
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possible explanation for the reduction of the performance given in Section 4.4.1 for
the class of LMCI1 can also be applied here.

Resulting Algorithm

From the results of our computational study we get the following three stages of the
separation algorithm for the class of LMCI2.

First stage Fix all variables in N0 to zero and all variables in N1 to one in advance
and solve KP2BK

max approximately using Algorithm 4.2.

Second stage Make the initial cover minimal by removing variables if necessary, in
the reverse order in which Algorithm 4.2 has chosen them to be in the initial
cover and use as the second order criterium for removing variables nondecreas-
ing aj .

Third stage Compute the lifting coefficients exactly using Algorithm 4.4.

Thus, the version of the default algorithm where we solve KP2BK
max approximately

using Algorithm 4.2 to find the initial cover becomes our resulting algorithm. The
results for the main test set were given in Table B.39 and a summary is contained
in Table 4.3. By using our resulting algorithm for the main test set we close 15.01
percent of the initial gap in geometric mean and the CPU time spent in the sep-
aration routine is 4.1 seconds in total. Thus, we have significantly improved the
performance of our default separation algorithm for the class of LMCI2.

4.4.4 Comparison

In the last three sections, we have investigated the effect of using different algorithmic
choices on the performance of the separation algorithms for the classes of LMCI1,
LEWI and LMCI2. Building on these results we have developed efficient separation
algorithms for the three classes. We decided to include all three classes in the
computational study as the three separation algorithms may lead to different cuts
(see Section 4.2). In this section, we will investigate whether in practice this is true
and develop the final cutting plane separator for the 0-1 knapsack problem.

Out of the three developed separation algorithms the one for the class of LEWI
performs best (see Table 4.4). We have tested an algorithm which separates both
the class of LEWI and the class of LMCI1. The results for the main test set are
given in Table B.41 and a summary of the results is contained in Table 4.4. They
show that separating both classes of valid inequalities instead of separating only the
class of LEWI improves the performance of the separation algorithm. We conclude
that in practice our separation algorithms for the classes of LEWI and LMCI1 lead
to different cuts.

Furthermore, the separation algorithm for the class of LMCI1 performs better
than the separation algorithm for the class of LMCI2 (see Table 4.4). In particular,
the separation algorithm for the class of LMCI1 finds more cuts than the one for
the class of LMCI2 for most of the instances in our main test set (see Table B.27
and Table B.39). The results for the main test set for separating both the class
of LMCI1 and the class of LMCI2 are given in Table B.42 and a summary of the
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Gap Closed % Sepa Time sec Sepa Time > 10 sec
(Geom. Mean) (Total) (Number)

Value 4 Value 4 Value 4

LEWI 16.79 0.00 8.5 0.0 0 0
LMCI1 16.36 -0.43 7.4 -1.1 0 0
LMCI2 15.01 -1.78 4.1 -4.4 0 0
LEWI and LMCI1 17.52 0.73 11.6 3.1 0 0
LMCI1 and LMCI2 16.59 -0.20 7.2 -1.3 0 0
LEWI and LMCI2 17.09 0.30 8.9 0.4 0 0
LEWI, LMCI1 and LMCI2 17.27 0.48 12.5 4.0 0 0

Table 4.4: Summary of the computational results for different combinations of the separation
algorithms for the classes of LMCI1, LEWI and LMCI2 on the main test set. (4 with respect to
the resulting separation algorithm for the class of LEWI)

results is contained in Table 4.4. Note that in Table B.42 the 4 values are given
with respect to the separation algorithm for the class of LMCI1. As one can see,
there is no significant difference between the performance of this algorithm and the
performance of the separation algorithm for the class of LMCI1. We conclude that
the cuts found by our separation algorithm for the class of LMCI2 are nearly the
same as the cuts found by our separation algorithm for the class of LMCI1, i.e., our
separation algorithm for the class of LMCI2 does not find many cuts with fractional
coefficients. The results for separating both the class of LEWI and the class of
LMCI2 (see Table B.43 and Table 4.4) confirm this conclusions, since this algorithm
performs better than the separation algorithm for the class of LEWI but not as good
as the algorithm separating both the class of LEWI and the class of LMCI1.

Finally, we have tested an algorithm which separates all three classes of valid
inequalities for the 0-1 knapsack polytope. The results for the main test set are
given in Table B.44 and a summary of the results is contained in Table 4.4. As one
can see, this algorithm performs worse than the algorithm which separates only the
classes of LEWI and LMCI1.

Thus, in our final cutting plane separator for the 0-1 knapsack problem we sep-
arate both the class of LMCI1 and the class of LEWI. By using this cutting plane
separator for the main test set, we close 17.52 percent of the initial gap in geometric
mean and the CPU time spent in the separation routine is 11.6 seconds in total.
The results for applying our final cutting plane separator to the remaining test set
are given in Table B.45. They show that the separation time is on an acceptable
level for all instances in the extended initial test set.

4.5 Conclusion

In our computational study, we found out that for all three classes of valid inequal-
ities the construction of the initial cover is the crucial point for implementing fast
and effective separation algorithms.

This includes both the separation problem which is used to find the initial cover
and the algorithm used to solve this separation problem. The best combination
differs for the three classes of valid inequalities. The modification of the separation
problem for the class of cover inequalities suggested by Gu, Nemhauser, and Savels-
bergh [30] helped to improve the performance of the separation algorithms for the
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classes of LMCI1 and LMCI2 but only if the separation problem was solved approx-
imately. For the class of LEWI, independent of whether we used the approximate
or exact algorithm this modification led to a degradation in the performance of the
separation algorithm. On our test set, we obtained the best results when we did
not apply the construction used in [44] but solved the original separation problem
approximately. Here, as in all other test runs carried out in this chapter, the exact
algorithm for solving the separation problem led to an unacceptable amount of time
spent in the separation algorithm.

Furthermore, we observed that the effect of using different constructions for the
minimal cover strongly depends on whether the modification of Gu, Nemhauser, and
Savelsbergh [30] is applied.

Finally, our computational experiments showed that our resulting separation
algorithm for the class of LEWI performs slightly better than the one for the class
of LMCI1 and that the combination of both algorithms leads to the best performance
on our test set. Concerning the practical usefulness of separating the class of LMCI2
we found out that the corresponding separation algorithm is inferior to the one for
the class of LMCI1. Furthermore, the separation algorithm for the class of LMCI2
does not help to improve the performance of the cutting plane separator when it is
used neither in combination with the one for the class of LMCI1 nor with the one
separating both the class of LEWI and LMCI1.
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Chapter 5

Cutting Plane Separator for the

0-1 Single Node Flow Problem

In this chapter we investigate the implementation of an efficient cutting plane sepa-
rator for the 0-1 single node flow problem. The algorithm generates valid inequalities
for the feasible region of the 0-1 single node flow problem, the so-called 0-1 single
node flow set. This set with some additional simple constraints can be obtained as
a relaxation of a mixed integer set. Therefore, the cutting plane separator can be
applied to each row of a MIP.

5.1 Introduction

In the 1980s, Padberg, Van Roy, and Wolsey [53] introduced a class of valid inequal-
ities for the 0-1 single node flow set with only inflow arcs. The inequalities are based
on a structure called flow cover and are denoted by flow cover inequalities (FCIs).
These results were generalized to the 0-1 single node flow set with additional outflow
arcs by Van Roy and Wolsey [54]. They derived the class of generalized flow cover
inequalities (GFC inequalities), which, among other things, depend on a constant ū.
In [54], two choices of the value of ū are emphasized. The corresponding inequalities
are denoted by GFC1 and GFC2 inequalities. Note that in later literature, the GFC1
inequality is also called extended generalized flow cover inequality (EGFCI) and the
GFC2 inequality is also called simple generalized flow cover inequality (SGFCI).
Furthermore, in [54], a procedure is given to transform a mixed 0-1 integer set into
a 0-1 single node flow set with some additional simple constraints (see also [46]).

As for the classes of valid inequalities for the 0-1 knapsack polytope, the con-
cept of superadditive lifting was investigated to strengthen FCIs and SGFCIs. Gu,
Nemhauser, and Savelsbergh [31] derived the classes of lifted flow cover inequal-
ities (LFCIs) and lifted simple generalized flow cover inequalities (LSGFCIs). In
addition, they showed that LFCIs are also at least as strong as EGFCIs.

Marchand [39] showed that the c-MIR approach can also be used to derive valid
inequalities for the 0-1 single node flow set which are at least as strong as SGFCIs
and EGFCIs respectively, i.e., he showed that particular c-MIR inequalities (see
Chapter 3) for particular mixed knapsack relaxations of the 0-1 single node flow set
are at least as strong as SGFCIs and EGFCIs respectively (see also [38]). Here, the
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structure of a flow cover does also play a crucial role. In addition, he showed that
the inequality which is at least as strong as the EGFCI is equivalent to the LFCI
derived in [31] and that the inequality which is at least as strong as the SGFCI does
not necessarily dominate the LSGFCI derived in [31].

In [41], another class of valid inequalities for the 0-1 single node flow set was
introduced, namely the class of continuous cover inequalities. This class is also
derived from a mixed knapsack relaxation of the 0-1 single node flow set and is
based on a structure called k-cover. In [4], it was shown that LSGFCIs are at least
as strong as continuous cover inequalities.

Cutting plane separators for the classes of valid inequalities mentioned above
have been used successively in linear programming based branch-and-cut algorithms
to solve BMIPs. See [55], for the separation of the classes of SGFCIs and EGFCIs,
and [41] for the separation of the class of continuous cover inequalities. A computa-
tional study comparing the effectiveness of SGFCIs, EGFCIs, LSGFCIs, and LFCIs
was presented in [31]. It turned out that separating the class of LSGFCIs yields the
best performance of the branch-and-cut algorithm.

The classes of valid inequalities mentioned above are based on the structure of a
flow cover and k-cover, respectively. Further classes of valid inequalities for the 0-1
single node flow set have been derived in the literature. They are complementary
to the classes mentioned above and are based on the structure of a flow pack and
k-reverse cover, respectively. See [57], for the introduction of the class of generalized
flow pack inequalities, [4] for the investigation of superadditive lifting of special
cases of generalized flow pack inequalities, [38, 39] for the c-MIR approach and
[41] for the introduction of the class of continuous reverse cover inequalities. The
relationship between the inequalities based on flow packs and k-reverse covers is
similar to the relationship between the complementary inequalities based on flow
covers and k-covers (see [4, 39]).

Considering the relationship between the classes of valid inequalities for the 0-1
single node flow set and the results of the computational study of Gu, Nemhauser,
and Savelsbergh [31], it seems reasonable to us to separate the class of LSGFCI or to
use Marchand’s c-MIR approach in our cutting plane separator for the 0-1 single node
flow problem and to separate in addition the corresponding complementary class of
valid inequalities. We decided to use the c-MIR approach, i.e., we implement a
cutting plane separator for the 0-1 single node flow problem which generates c-MIR
inequalities for particular mixed knapsack relaxations of the 0-1 single node flow set.
We call these inequalities c-MIR flow cover inequalities (c-MIRFCIs). Furthermore,
we investigate the effectiveness of separating in addition the complementary class of
valid inequalities which we call c-MIR flow pack inequalities (c-MIRFPIs).

The remainder of this chapter is organized as follows. In Section 5.2, we introduce
the classes of SGFCIs, EGFCIs, and c-MIRFCIs, and review the results concerning
the relationship between these inequalities. Furthermore, we show how c-MIRFPIs
can be obtained as c-MIRFCIs for a relaxation of the 0-1 single node flow set. In
Section 5.3, we develop a separation algorithm for the class of c-MIRFCIs which
uses the relationship between this class and the classes of SGFCIs and EGFCIs,
and discuss different algorithmic aspects of the separation algorithm. In addition,
we state a procedure to construct 0-1 single node flow relaxations of mixed integer
sets. Our computational results for using the different algorithmic and implemen-
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Figure 5.1: 0-1 single node flow set.

tation choices discussed in Section 5.3 are reported in Section 5.4. In Section 5.5, a
conclusion and remarks on possible extensions are given.

5.2 Valid Inequalities for the 0-1 Single Node Flow Set

In this section, we introduce three classes of valid inequalities for the 0-1 single
node flow set; the classes of simple generalized flow cover inequalities (SGFCIs) and
extended generalized flow cover inequalities (EGFCIs) and the class of c-MIR flow
cover inequalities (c-MIRFCIs). Furthermore, we show that particular c-MIRFCIs
are at least as strong as SGFCIs and EGFCIs respectively. Therefore, in our cut-
ting plane separator for the 0-1 single node flow problem, we separate the class of
c-MIRFCIs. The separation algorithm strongly uses the relationship between this
class and the other two. This is the reason for introducing not only the class of
c-MIRFCIs in this section.

We consider the 0-1 single node flow set

XSNF = {(x, y) ∈ {0, 1}n × Rn
+ :

∑

j∈N1

yj −
∑

j∈N2

yj ≤ b,

yj ≤ ujxj for all j ∈ N},
(5.1)

where b is a rational number, uj are nonnegative rational numbers for all j ∈ N =
{1, . . . , n} and (N1, N2) is a partition of N .

XSNF is the feasible region of a 0-1 single node flow problem with external
demand of b and inflow arcs j ∈ N1 and outflow arcs j ∈ N2 of the single node (see
Figure 5.1). Here, each real variable yj , j ∈ N represents the flow on an arc j and
each binary variable xj , j ∈ N indicates whether arc j is open (xj = 1) or closed
(xj = 0). The flow on the inflow and outflow arcs of the single node is constrained
by the conservation inequality. In addition, for each arc j ∈ N , the flow yj on it is
bounded by the capacity uj of arc j if arc j is open and by zero otherwise.

Van Roy and Wolsey [54] derive two classes of valid inequalities for XSNF as
special cases of the class of generalized flow cover (GFC) inequalities. Both are
based on the structure of a flow cover. A pair (C1, C2) is called a flow cover for
XSNF if C1 ⊆ N1, C2 ⊆ N2 and

∑

j∈C1

uj −
∑

j∈C2

uj = b+ λ

with λ > 0. Note that C1 and C2 can be empty.
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Theorem 5.1 ([54]). If (C1, C2) is a flow cover for X
SNF and L2 ⊆ N2\C2, then

the inequality

∑

j∈C1

yj + (uj − λ)+(1− xj)−
∑

j∈C2

uj −
∑

j∈L2

min{uj , λ}xj

−
∑

j∈N2\(C2∪L2)

yj ≤ b
(5.2)

is valid for XSNF .

We call inequality (5.2) simple generalized flow cover inequality (SGFCI), which
is the name used in [31]. In [54], it was introduced as GFC2 inequality.

Theorem 5.2 ([54]). If (C1, C2) is a flow cover for XSNF with C1 6= ∅, L1 ⊆
N1\C1, L2 ⊆ N2\C2 and ū = maxj∈C1

uj > λ, then the inequality

∑

j∈C1

yj + (uj − λ)+(1− xj) +
∑

j∈L1

yj − (max{ū, uj} − λ)xj

−
∑

j∈C2

uj −min{λ, (uj − ū+ λ)+}(1− xj)

−
∑

j∈L2

min{uj ,max{uj − ū+ λ, λ}}xj −
∑

j∈N2\(C2∪L2)

yj ≤ b

(5.3)

is valid for XSNF .

We call inequality (5.3) extended generalized flow cover inequality (EGFCI),
which is again the name used in [31]. In [54], it was introduced as GFC1 inequality.

Marchand and Wolsey [39, 42] introduced the class of c-MIR inequalities for
the mixed knapsack set (see Chapter 3). Furthermore, in [39], it was shown how
a flow cover (C1, C2) for XSNF and sets L1 ⊆ N1\C1 and L2 ⊆ N2\C2 can be
used to construct a mixed knapsack relaxation of XSNF and how these sets can, in
addition, be used to obtain c-MIR inequalities for this relaxation. Thus, the c-MIR
approach can be applied to derive another class of valid inequalities for XSNF . This
result is given in Theorem 5.3. We state the proof since it involves the construction
mentioned above, which we will use in our cutting plane separator for the 0-1 single
node flow problem. See also [38], for a review of this result.

Let fd for d ∈ R as well as the MIR function Fα : R → R for 0 ≤ α < 1 be
defined as in Section 3.2.

Theorem 5.3 ([38, 39]). If (C1, C2) is a flow cover for XSNF , L1 ⊆ N1\C1,
L2 ⊆ N2\C2 and ū ∈ Q+\{0} with ū > λ, then the inequality

∑

j∈C1

yj + (uj + λFfβ (−
uj
ū
))(1− xj) +

∑

j∈L1

yj − (uj − λFfβ (
uj
ū
))xj

−
∑

j∈C2

uj − λFfβ (
uj
ū
)(1− xj) +

∑

j∈L2

λFfβ (−
uj
ū
)xj

−
∑

j∈N2\(C2∪L2)

yj ≤ b,

(5.4)

where β = −λ
ū
, is valid for XSNF .
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Proof. Mixed knapsack relaxation of XSNF . Using the lower and the upper bounds
imposed on the real variables, we substitute yj = ujxj − ȳj for all j ∈ N

′
= C1 ∪

L1 ∪ C2 ∪ L2 and use the trivial substitution yj = 0 + ȳj for all j ∈ N\N ′
in the

conservation inequality of XSNF and obtain the set

{(x, ȳ) ∈ {0, 1}n × Rn
+ :

∑

j∈C1∪L1

ujxj +
∑

j∈N1\(C1∪L1)

ȳj −
∑

j∈C2∪L2

ujxj

≤ b+
∑

j∈C1∪L1

ȳj +
∑

j∈N2\(C2∪L2)

ȳj −
∑

j∈C2∪L2

ȳj ,

ȳj ≤ ujxj for all j ∈ N}.

Using the nonnegativity of ȳj for all j ∈ N1\(C1 ∪ L1) and for all j ∈ C2 ∪ L2, we
obtain the mixed knapsack relaxation

XMK = {(x, s) ∈ Zn
′

+ × R+ :
∑

j∈C1∪L1

ujxj −
∑

j∈C2∪L2

ujxj ≤ b+ s,

xj ≤ 1 for all j ∈ N
′}

of XSNF , where s =
∑

j∈C1∪L1
ȳj +

∑

j∈N2\(C2∪L2)
ȳj and n

′
= |N ′ |.

C-MIR inequality for XMK . By Theorem 3.3 for (T,U) = (L1 ∪ L2, C1 ∪ C2)
partition of N

′
and δ = ū, the c-MIR inequality

∑

j∈C1

Ffβ (−
uj
ū
)(1− xj) +

∑

j∈L1

Ffβ (
uj
ū
)xj +

∑

j∈C2

Ffβ (
uj
ū
)(1− xj)

+
∑

j∈L2

Ffβ (−
uj
ū
)xj ≤ bβc+

s

ū(1− fβ)
,

(5.5)

where β =
b−

∑

j∈C1
uj+

∑

j∈C2
uj

ū
, is valid for XMK .

Valid inequality for XSNF . Since β = −λ
ū
and ū > λ > 0, bβc = −1 and therefore

1− fβ = λ
ū
. Thus, inequality (5.5) is equivalent to

∑

j∈C1

Ffβ (−
uj
ū
)(1− xj) +

∑

j∈L1

Ffβ (
uj
ū
)xj +

∑

j∈C2

Ffβ (
uj
ū
)(1− xj)

+
∑

j∈L2

Ffβ (−
uj
ū
)xj ≤ −1 +

s

λ
.

(5.6)

Multiplying inequality (5.6) by λ > 0, using the definition of λ and restating the
inequality in terms of the original variables gives inequality (5.4) valid forXSNF .

Inequality (5.4) is called c-MIR flow cover inequality (c-MIRFCI), and the family
of all c-MIRFCIs is called the class of c-MIRFCIs.

Marchand [39] showed that particular c-MIRFCIs are at least as strong as EGF-
CIs. In [38], this result was given for EGFCIs where the coefficient−min{uj ,max{uj−
ū+ λ, λ} of xj for all j ∈ L2 is relaxed to −max{uj − ū+ λ, λ}.
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Corollary 5.4 ([39]). If (C1, C2) is a flow cover for X
SNF , L1 ⊆ N1\C1, L2 ⊆

N2\C2 and ū = maxj∈C1
uj > λ, then the c-MIRFCI (5.4) takes the form

∑

j∈C1

yj + (uj − λ)+(1− xj) +
∑

j∈L1

yj − (uj − λFfβ (
uj
ū
))xj

−
∑

j∈C2

uj − λFfβ (
uj
ū
)(1− xj) +

∑

j∈L2

λFfβ (−
uj
ū
)xj −

∑

j∈N2\(C2∪L2)

yj ≤ b,

where β = −λ
ū
and is at least as strong as the EGFCI (5.3).

Marchand [39] also showed that particular c-MIRFCIs are at least as strong as
SGFCIs where the coefficient −min{uj , λ} of xj for all j ∈ L2 is relaxed to −λ. In
Corollary 5.5, we proof that this also holds when omitting the relaxation.

Corollary 5.5. If (C1, C2) is a flow cover for X
SNF , L1 ⊆ N1\C1, L2 ⊆ N2\C2

and ū = maxj∈C1∪L2
uj > λ, then the c-MIRFCI (5.4) takes the form

∑

j∈C1

yj + (uj − λ)+(1− xj) +
∑

j∈L1

yj − (uj − λFfβ (
uj
ū
))xj

−
∑

j∈C2

uj − λFfβ (
uj
ū
)(1− xj)−

∑

j∈L2

min{uj , λ}xj −
∑

j∈N2\(C2∪L2)

yj ≤ b,
(5.7)

where β = −λ
ū
. If in addition L1 = ∅, then the c-MIRFCI (5.7) is at least as strong

as the SGFCI (5.2).

Proof. In [38], it was observed that λFfβ (−
uj
ū
) = −min{uj , λ} for uj ≤ ū. Since

uj ≤ ū for all j ∈ C1 ∪ L2, uj + λFfβ (−
uj
ū
) = uj − min{uj , λ} = (uj − λ)+ for all

j ∈ C1 and λFfβ (−
uj
ū
) = −min{uj , λ} for all j ∈ L2. Therefore, the c-MIRFCI (5.4)

takes the form (5.7).
By the definition of Fα : R → R for 0 ≤ α < 1, Ffβ (d) ≥ 0 for d ≥ 0. Since

uj ≥ 0 and xj ∈ {0, 1} for all j ∈ C2 and ū > λ > 0, λFfβ (
uj
ū
)(1 − xj) ≥ 0 for

all j ∈ C2. Therefore, if L1 = ∅, the c-MIRFCI (5.7) is at least as strong as the
SGFCI (5.2).

The following example shows that if L1 ⊆ N1\C1 is chosen arbitrarily the
c-MIRFCI (5.7) is not necessarily at least as strong as neither the SGFCI nor the
relaxed SGFCI. Note that this disproves the statement in [38] (Section 4.2, Corol-
lary 3) where Corollary 5.5 is given for the relaxed SGFCI with L1 ⊆ N1\C1 chosen
arbitrarily.

Example 5.6. Consider the 0-1 single node flow set

XSNF = {(x, y) ∈ {0, 1}6 × R6
+ : y1 + y2 − y3 + y4 + y5 − y6 ≤ −8,

y1 ≤ 10x1, y2 ≤ 9x2, y3 ≤ 7x3,
y4 ≤ 16x4, y5 ≤ 5x5, y6 ≤ 19x6}.

Taking flow cover (C1, C2) = ({1, 2}, {6}) with λ = 8, sets L1 = {4} and L2 = ∅ and
ū = maxj∈C1∪L2

uj = 10 > λ by Corollary 5.5, we obtain the c-MIRFCI

[y1 + 2(1− x1)] + [y2 + 1(1− x2)] + [y4 − 4x4]− [19− 15(1− x6)]− y3 ≤ −8 (5.8)
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and by Theorem 5.1, we obtain the SGFCI

[y1 + 2(1− x1)] + [y2 + 1(1− x2)]− 19− y3 ≤ −8. (5.9)

We show that the c-MIRFCI (5.8) is not necessarily at least as strong as the
SGFCI (5.9) since there exists a point (x∗, y∗) ∈ R6

+ × R6
+ with

(x∗, y∗) ∈ {(x, y) ∈ R6
+ × R6

+ : (x, y) satisfies (5.8)},

but
(x∗, y∗) /∈ {(x, y) ∈ R6

+ × R6
+ : (x, y) satisfies (5.9)}.

Consider (x∗, y∗) = ((1, 1, 0, 1, 0, 1), (10, 3, 0, 0, 0, 0)). Then, (x∗, y∗) ∈ {(x, y) ∈
R6
+ × R6

+ : (x, y) satisfies (5.8)}, since

[y∗1 + 2(1− x∗1)] + [y∗2 + (1− x∗2)] + [y∗4 − 4x∗4]− [19− 15(1− x∗6)]− y∗3 = −10 < −8,

but (x∗, y∗) /∈ {(x, y) ∈ R6
+ × R6

+ : (x, y) satisfies (5.9)}, since

[y∗1 + 2(1− x∗1)] + [y∗2 + (1− x∗2)]− 19− y∗3 = −6 > −8.

Remark 5.7. A pair (C1, C2) is called a flow pack for XSNF if C1 ⊆ N1, C2 ⊆ N2

and
∑

j∈C1

uj −
∑

j∈C2

uj = b− λ,

with λ > 0. As mentioned in the introduction of this chapter, classes of valid
inequalities for XSNF based on flow packs have been derived in the literature. It is
well known that these classes of valid inequalities can also be obtained by applying
known results based on flow covers to the relaxation

XSNF
rel = {(x, y, s) ∈ {0, 1}n × Rn

+ × R+ : −
∑

j∈N1

yj +
∑

j∈N2

yj − s ≤ −b,

yj ≤ ujxj for all j ∈ N}

of XSNF (see [4, 38, 57]). Note that the flow pack (C1, C2) for XSNF is a flow
cover for XSNF

rel . XSNF
rel is constructed by introducing a slack variable s ∈ R+ in the

conservation constraint defining XSNF , multiplying the obtained equality by minus
one and relaxing it to an inequality.

In particular, for XSNF
rel , (C1, C2) flow cover for XSNF

rel , sets L1 ⊆ N1\C1 and
L2 ⊆ N2\C2 and a constant ū ∈ Q+\{0}, we can apply the construction used in the
proof of Theorem 5.3 (the slack variable is handled like the real variables yj with
j ∈ N1\(C1 ∪ L1)) in order to obtain the inequality

−
∑

j∈C1

uj − yj − λFfβ (
uj
ū
)(1− xj) +

∑

j∈L1

yj + λFfβ (−
uj
ū
)xj

+
∑

j∈C2

(uj + λFfβ (−
uj
ū
))(1− xj) +

∑

j∈L2

−(uj − λFfβ (
uj
ū
))xj

−∑j∈N2\(C2∪L2)
yj ≤ 0

(5.10)

valid for XSNF , where β = −λ
ū
(see [38]). Inequality (5.10) is called c-MIR flow

pack inequality (c-MIRFPI), and the family of all c-MIRFPIs is called the class of
c-MIRFPIs.
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The theory presented in this chapter is much more general than it appears; it
can be used to separate cutting planes for BMIPs. A transformation of a mixed 0-1
integer set in which all real variables have simple or variable upper bounds into a
0-1 single node flow set with some additional simple constraints is given in [54] (see
also [46]). In Section 5.3.3, we consider mixed integer sets in which the real variables
have simple lower and upper bounds and Scip 0.81 specific variable lower and upper
bounds. We state a procedure similar to the one given in [54] to construct 0-1 single
node flow relaxations with some additional simple constraints of these sets. Note
that here integer variables which are not binary variables are simply relaxed to real
variables. Using this procedure, we can apply our cutting plane separator for the
0-1 single node flow problem to each row of a MIP.

5.3 Algorithmic Aspects

In the last section, we introduced the class of c-MIRFCIs valid for 0-1 single node
flow sets. Here, we first investigate algorithmic aspects of a cutting plane separator
for the 0-1 single node flow problem which separates this class of valid inequalities
and then state a procedure which constructs 0-1 single node flow relaxations with
some additional simple constraints of mixed integer sets.

Let (x∗, y∗) ∈ ([0, 1]n\{0, 1}n) × Rn
+ be a fractional vector, and let XSNF be a

0-1 single node flow set. We want to solve the following separation problem.

Separation problem for the class of c-MIRFCIs

Find sets C1 ⊆ N1 and C2 ⊆ N2 such that
∑

j∈C1
uj −

∑

j∈C2
uj = b + λ

with λ > 0, sets L1 ⊆ N1\C1 and L2 ⊆ N2\C2 and a constant ū ∈ Q+\{0}
with ū > λ such that

∑

j∈C1

y∗j + (uj + λFfβ (−
uj
ū
))(1− x∗j ) +

∑

j∈L1

y∗j − (uj − λFfβ (
uj
ū
))x∗j

−
∑

j∈C2

uj − λFfβ (
uj
ū
)(1− x∗j ) +

∑

j∈L2

λFfβ (−
uj
ū
)x∗j

−
∑

j∈N2\(C2∪L2)

y∗j > b,

where β = −λ
ū
, or show that no inequality in the class of c-MIRFCIs is

violated by (x∗, y∗).

In the following, we assume that a flow cover (C1, C2) for XSNF exists, i.e.,
∑

j∈N1
uj > b.

The separation problem for the class of c-MIRFCIs is equivalent to solving a
family of equality knapsack problems parameterized by λ and ū. However, if a
flow cover (C1, C2) for XSNF is specified and ū is fixed, the remaining problem of
choosing L1 and L2 such that the violation of the resulting c-MIRFCI is maximized
can be solved by comparison. Thus, the main aspect of the separation algorithm is
to choose a useful flow cover (C1, C2) for XSNF and a useful value of ū ∈ Q+\{0}
with ū > λ.
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In the last section, we showed that for two values of ū, the c-MIRFCI is at least
as strong as the SGFCI if L1 = ∅ and at least as strong as the EGFCI respectively.
Therefore, as a first attempt we concentrate on those two values of ū. Furthermore,
to find a useful flow cover, we use the same approach which has been devised by
various researchers for the separation algorithm for the class of SGFCIs (see [46,
54, 55]). Note that in [55], Van Roy and Wolsey use this approach also to obtain a
useful flow cover in the separation algorithm for the class of EGFCIs (see also [46]).

Let z ∈ {0, 1}n be the incidence vector of the flow cover to be determined. The
separation problem for the class of SGFCIs is equivalent to solving the family of
equality knapsack problems

Zλ = max {
∑

j∈N1

[y∗j + (uj − λ)+(1− x∗j )]zj −
∑

j∈N2

ujzj

−
∑

j∈N2

min{min{uj , λ}x∗, y∗j }(1− zj)− b :

∑

j∈N1

ujzj −
∑

j∈N2

ujzj = b+ λ,

zj ∈ {0, 1} for all j ∈ N},

for all positive values of λ. There exists a violated SGFCI with λ = λ∗ > 0 if and
only if Zλ∗ > 0 (see [46, 54]). As stated in [46], there are two difficulties with this
separation problem. Equality knapsack problems are hard to solve, and the function
Zλ is not well behaved as a function of λ. Therefore, in the separation heuristic for
the class of SGFCI given in [55], Van Roy and Wolsey solve the knapsack problem

max {
∑

j∈N1

(x∗j − 1)zj +
∑

j∈N2

x∗jzj :

∑

j∈N1

ujzj −
∑

j∈N2

ujzj > b,

zj ∈ {0, 1} for all j ∈ N}

(KPSNF )

in order to find a useful flow cover for XSNF . Here, the idea is to consider a subclass
of weakenings of SGFCIs and to work with an upper bound on the violation of these
inequalities. This is achieved by setting L2 = N2\C2, decreasing (uj −λ)+ to uj −λ
for all j ∈ C1, increasing min{uj , λ} to λ for all j ∈ L2 and replacing y∗j by ujx

∗
j for

all j ∈ N (see also [46, 54]).
In summary, in our separation algorithm for the class of c-MIRFCIs, we first

solve the knapsack problem KPSNF in order to obtain a flow cover (C1, C2) for
XSNF and then fix ū according to Corollary 5.5 and Corollary 5.4. For both values
of ū, we choose the sets L1 ⊆ N1\C1 and L2 ⊆ N2\C2 by comparison and generate
the c-MIRFCI. If we found violated c-MIRFCIs, we choose the most violated one.
Note that for ū chosen according to Corollary 5.5, the resulting c-MIRFCI is not
necessarily at least as strong as the corresponding SGFCI since we allow L1 6= ∅,
but the violation of the c-MIRFCI is greater than or equal to the violation of the
SGFCI, since we maximize the violation by choosing L1 by comparison.

In the next sections, we describe this procedure in more details and discuss
different algorithmic aspects. Furthermore, we modify this procedure by extending
the candidate set for the value of ū.
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In Remark 5.7, we explained that c-MIRFPIs valid for XSNF can be obtained as
c-MIRFCIs for the relaxation XSNF

rel of XSNF . XSNF
rel is constructed by introducing

a slack variable s ∈ R+ in the conservation constraint defining XSNF , multiplying
the obtained equality by minus one and relaxing it to an inequality. Thus, we can
apply our separation algorithm for the class of c-MIRFCIs in addition to XSNF

rel (the
introduced slack variable is handled like the real variables yj with j ∈ N1\(C1∪L1)).
We suggest to test this approach in order to improve the performance of our cutting
plane separator for the 0-1 single node flow problem.

5.3.1 Flow Cover

In the first part of the separation algorithm for the class of c-MIRFCIs, we solve the
knapsack problem KPSNF in order to obtain a useful flow cover for XSNF .

In Section 4.3.1, we have stated Algorithm 4.1, which solves a knapsack problem
in the form

max{
∑

j∈N

pj z̃j :
∑

j∈N

wj z̃j ≤ c, z̃j ∈ {0, 1} for all j ∈ N}, (KP)

where pj ≥ 0 and wj ∈ Z+\{0} for all j ∈ N = {1, . . . , n} and c ∈ Z+, exactly
by dynamic programming. In addition, we stated Algorithm 4.2, which solves KP,
where pj ≥ 0 and wj ∈ Q+\{0} for all j ∈ N = {1, . . . , n} and c ∈ Q+, approxi-
mately by solving its LP relaxation using Dantzig’s method and rounding down the
solution. Remember that Algorithm 4.1 has time and space complexity of O(nc)
and Algorithm 4.2 was suggested to reduce the time and space complexity. Note
that the set N has to be ordered when applying Algorithm 4.2. Sorting can be done
in O(n logn) time using, e.g., the sorting algorithm merge sort (see [17]).

In order to solve KPSNF exactly using Algorithm 4.1 or approximately using
Algorithm 4.2, we transform KPSNF into the required form.

If uj = 0 for j ∈ N , the violation of the resulting c-MIRFCI for fixed ū and L1

and L2 chosen by comparison is not influenced by the decision whether to put j into
the flow cover. Therefore, we set zj = 0 for all j ∈ N with uj = 0. To simplify the
notation we assume uj > 0 for all j ∈ N . By substituting zj = 1− z̄j for all j ∈ N1,
we obtain

max {
∑

j∈N1

(1− x∗j )z̄j +
∑

j∈N2

x∗jzj :

∑

j∈N1

uj z̄j +
∑

j∈N2

ujzj < −b+
∑

j∈N1

uj ,

z̄j ∈ {0, 1} for all j ∈ N1,
zj ∈ {0, 1} for all j ∈ N2}.

(KPSNF
rat )

Since uj are rational numbers for all j ∈ N , we can multiply the constraint in
KPSNF

rat by a suitable factor γ ∈ Q+\{0} to obtain

max {
∑

j∈N1

(1− x∗j )z̄j +
∑

j∈N2

x∗jzj :

∑

j∈N1

γuj z̄j +
∑

j∈N2

γujzj ≤ b̃,

z̄j ∈ {0, 1} for all j ∈ N1,
zj ∈ {0, 1} for all j ∈ N2},

(KPSNF
int )
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Input : (KP
′
) max{∑j∈N pjzj :

∑

j∈N wjzj < c, zj ∈ {0, 1} for j ∈ N},
where pj ≥ 0 and wj ∈ Q+\{0} for all j ∈ N , c ∈ Q+, n = |N | and
N is ordered such that p1

w1
≥ p2

w2
≥ . . . ≥ pn

wn
.

Output: z∗ ∈ {0, 1}n a feasible solution of KP
′
.

1 w̄ ← 0
2 for j ← 1 to n do
3 if w̄ + wj < c then
4 z∗j ← 1
5 w̄ ← w̄ + wj

6 else
7 while j ≤ n do
8 z∗j ← 0
9 j ← j + 1

10 return z∗

Algorithm 5.1: Approximate algorithm to solve a knapsack problem in maximization
form with ‘<’ constraint.

such that γuj ∈ Z+\{0} for all j ∈ N , and b̃ ∈ Z+ is defined by

b̃ =

{ bγ(−b+∑j∈N1
uj)c : γ(−b+∑j∈N1

uj) /∈ Z,
γ(−b+∑j∈N1

uj)− 1 : otherwise.

To calculate the scaling factor γ, in Scip 0.81, we use an algorithm which at first
finds a rational representation of given rational numbers and chooses γ as the small-
est common multiple of all denominators divided by the greatest common divisor
of all nominators. KPSNF

int has the required form for using Algorithm 4.1 and Algo-
rithm 4.2.

If we want to solve KPSNF approximately, we can avoid the effort of calculating
the scaling factor γ by solving KPSNF

rat using Algorithm 5.1. It can be shown that
the flow cover obtained by solving KPSNF

int using Algorithm 4.2 is the same as the
one obtained by solving KPSNF

rat using Algorithm 5.1 if the (required) ordering of N
is the same for KPSNF

int and KPSNF
rat .

In our cutting plane separator for the 0-1 knapsack problem, we modified the
knapsack problem which has been used to find the initial cover by fixing some of
the variables in advance (see Section 4.3.1). A similar modification of KPSNF

rat and
KPSNF

int respectively can be applied here. In order to reduce the time and space
complexity required for solving these knapsack problems by one of the algorithms
discussed above, we suggest to fix some of the variables z̄j , j ∈ N1 and zj , j ∈ N2

in advance according to the following strategy.

Fixing Strategy For j ∈ N1, set z̄j = 0 if x∗j = 1 and z̄j = 1 if x∗j = 0. For j ∈ N2,
set zj = 0 if x∗j = 0 and zj = 1 if x∗j = 1.

We state the motivation of this strategy. In the context of our separation algorithm,
solving KPSNF

rat and KPSNF
int respectively can be interpreted as follows. Start with
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the flow cover (C1, C2) for X
SNF with C1 = N1 and C2 = ∅. Remove some variables

from the set C1 and add some variables to the set C2 such that the violation of
the resulting c-MIRFCI with ū fixed according to Corollary 5.5 and Corollary 5.4
and L1 and L2 chosen by comparison is greater than the violation of the c-MIRFCI
corresponding to the starting flow cover. Analyzing the effect of modifying the flow
cover is quite complicated; thus we used the following observation to find a useful
fixing strategy. Consider the c-MIRFCI corresponding to the starting flow cover and
assume y∗j = ujx

∗
j for all j ∈ N . Then, for j ∈ C1,

y∗j + (uj + λFfβ (−
uj
ū
))(1− x∗j ) = ujx

∗
j + (uj + λFfβ (−

uj
ū
))(1− x∗j )

= (uj + λFfβ (−
uj
ū
))− λFfβ (−

uj
ū
)x∗.

Since −λFfβ (−
uj
ū
) > 0, the impact of j ∈ C1 on the violation of the c-MIRFCI is the

greater the greater the value of x∗j is. This suggests to keep all variables with x∗j = 1
in the set C1 and remove all variables with x∗j = 0 from the set C1. Furthermore,
for j ∈ N2\C2,

max{λFfβ (−
uj
ū
)x∗j ,−y∗j } = max{λFfβ (−

uj
ū
),−uj}x∗j .

Since max{λFfβ (−
uj
ū
),−uj} < 0, the impact of j ∈ N2\C2 on the violation of the

c-MIRFCI is the greater the smaller the value of x∗j is. This suggests to keep all
variables with x∗j = 0 in the set N2\C2 and add all variables with x∗j = 1 to the set
C2.

5.3.2 Cut Generation Heuristic

In the last section, we discussed different methods to obtain a useful flow cover
(C1, C2) for X

SNF in the first part of the separation algorithm. In the second part
of the separation algorithm, the cut generation heuristic, we generate a c-MIRFCI
based on the obtained flow cover, and on sets L1 ⊆ N1\C1 and L2 ⊆ N2\C2 and a
constant ū ∈ Q+\{0} with ū > λ. The latter sets and the constant are still to be
chosen.

Suppose we have fixed ū. Then, the remaining problem of choosing sets L1 and
L2 such that the violation of the resulting c-MIRFCI is maximized can be solved by
comparison. For j ∈ N1\C1, the contribution to the left hand side of the c-MIRFCI
is yj − (uj − λFfβ (

uj
ū
))xj if we put j into the set L1 and zero if we put j into the

set N1\(C1 ∪ L1). For j ∈ N2\C2, the contribution to the left hand side of the
c-MIRFCI is λFfβ (−

uj
ū
)xj if we put j into the set L2 and −yj if we put j into the

set N2\(C2 ∪ L2). Thus, for fixed ū, we choose

L1 = {j ∈ N1\C1 : y
∗
j − (uj − λFfβ (

uj
ū
))x∗j ≥ 0} (5.11)

and
L2 = {j ∈ N2\C2 : λFfβ (−

uj
ū
)x∗j ≥ −y∗j }. (5.12)

Note that for ū = maxj∈C1∪L2
uj > λ, λFfβ (−

uj
ū
) = −min{uj , λ} for all j ∈ L2 (see

Corollary 5.5).
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To find a useful value of ū, we test different candidates for the value of ū and
choose the one which leads to the most violated c-MIRFCI with L1 and L2 chosen
according to (5.11) and (5.12) respectively. As explained when we stated the outline
of our separation algorithm, in a first attempt, we choose ū according to Corollary 5.5
and Corollary 5.4, i.e., we use the set

N∗
1 = {max{uj : j ∈ C1 ∪ L̃2 and uj > λ},max{uj : j ∈ C1 and uj > λ}},

where L̃2 = {j ∈ N2\C2 : −min{uj , λ}x∗j ≥ −y∗j } as the candidate set for the value
of ū. Note that N ∗

1 can be empty.
To ensure the generation of a c-MIRFCI (not necessarily violated), we suggest

to test also the extended sets

N∗
2 = N∗

1 ∪ {λ+ 1},

and

N∗
3 = {uj : j ∈ N and uj > λ} ∪ {max{uj : j ∈ N and uj ≥ λ}+ 1, λ+ 1}

as candidate sets for the value of ū. Here, the set N ∗
3 is defined according to the

results in our computational study for the cutting plane separator for the class of
c-MIR inequalities (see Chapter 3).

In the cut generation heuristic of our cutting plane separator for the class of
c-MIR inequalities, we do not further use generated c-MIR inequalities with fβ <
MINFRAC, since the violation of a c-MIR inequality with small value of fβ is probably
very small (see Section 3.3.3). Here we use a similar approach. We do not further
use generated c-MIRFCIs with fβ < MINFRAC for MINFRAC = 0.01.

5.3.3 0-1 Single Node Flow Relaxation

In this section, we present a procedure to construct a 0-1 single node flow relaxation
with some additional simple constraints of a mixed integer set.

We relax integer variables which are not binary variables to real variables with
suitable simple and variable lower and upper bounds. Therefore, we do not handle
them explicitly in the following, but consider a mixed 0-1 integer set given in the
form

XBMI = {(x, y) ∈ {0, 1}n × Rn :
∑

j∈N

ajxj + cjyj ≤ a0},

where a0, aj and cj are rational numbers for all j ∈ N = {1, . . . , n}. In addition,
let each real variable yj , j ∈ N be bounded by a simple and variable lower bound
and by a simple and variable upper bound, defined as follows. Note that we use the
Scip 0.81 specify definition.

Definition 5.8. Let lj , l̃j ∈ Q ∪ {−∞}, dlj ∈ Q and xj be a binary variable. Let yj

be a real variable with lj ≤ yj and l̃jxj + dlj ≤ yj . Then lj is called simple lower

bound imposed on yj , and l̃jxj + dlj is called variable lower bound imposed on yj .

Definition 5.9. Let uj , ũj ∈ Q ∪ {∞}, duj ∈ Q and xj be a binary variable. Let yj
be a real variable with yj ≤ uj and yj ≤ ũjxj + duj . Then uj is called simple upper
bound imposed on yj , and ũjxj + duj is called variable upper bound imposed on yj .
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Remark 5.10. Note that in Definition 5.8 and Definition 5.9, l̃j = −∞ and ũj =∞,
respectively are only allowed to simplify the notation for the variable bounds. If
l̃j = −∞, then l̃jx

∗
j + dlj = −∞ for all x∗ ∈ [0, 1] and dlj ∈ Q, and if ũj = ∞, then

ũjx
∗
j + duj =∞ for all x∗ ∈ [0, 1] and duj ∈ Q.

We want to relax XBMI to a 0-1 single node flow set in the form

{(x, y′) ∈ {0, 1}n
′

× Rn
′

+ :
∑

j∈N1

y
′

j −
∑

j∈N2

y
′

j ≤ b, y
′

j ≤ u
′

jxj for all j ∈ N
′},

where b is a rational number, u
′

j are nonnegative rational numbers for all j ∈ N
′
=

{1, . . . , n′} and (N1, N2) is a partition of N
′
. The main subject here is to ensure the

nonnegativity of y
′

j and u
′

j for all j ∈ N
′
. In the following, we state ten constructions

to define one or two real variables y
′

j , j ∈ N
′
which are bounded by u

′

jxj and for
which j is put into the sets N1 or N2. Our procedure chooses for all j ∈ N one
of these constructions depending on the coefficients cj and aj and on the bounds
imposed on yj .

Let j ∈ N with cj > 0. Our procedure chooses one of the following constructions
(Construction 1 to 4) for which the conditions are satisfied.

Construction 1 Conditions: lj > −∞, ũj <∞, cj(lj−duj ) ≥ 0, cj(lj−duj )+aj ≥ 0
and cj ũj + aj ≥ 0. We use the variable upper bound in lj ≤ yj ≤ ũjxj + duj to
define

y
′

j = cj(yj − duj ) + ajxj with cj(lj − duj ) + ajxj ≤ y
′

j ≤ (cj ũj + aj)xj .

We relax the lower bound imposed on y
′

j to zero an put j into the set N1.

Construction 2 Conditions: l̃j > −∞, uj <∞, cj(uj−dlj) ≤ 0, cj(uj−dlj)+aj ≤ 0

and cj l̃j + aj ≤ 0. We use the variable lower bound in l̃jxj + dlj ≤ yj ≤ uj to
define

y
′

j = −(cj(yj − dlj) + ajxj) with − (cj(uj − dlj) + ajxj) ≤ y
′

j ≤ −(cj l̃j + aj)xj .

We relax the lower bound imposed on y
′

j to zero an put j into the set N2.

Construction 3 Conditions: lj > −∞ and uj < ∞. We use the simple upper
bound in lj ≤ yj ≤ uj to define

y
′

j = cj(yj − lj) with 0 ≤ y
′

j ≤ cj(uj − lj)xj and xj = 1.

and put j into the set N1. In addition, we define a second real variable analog
to Construction 9 if aj > 0 and analog to Construction 10 if aj < 0.

Construction 4 Conditions: lj > −∞ and uj < ∞. We use the simple lower
bound in lj ≤ yj ≤ uj to define

y
′

j = −cj(yj − uj) with 0 ≤ y
′

j ≤ cj(uj − lj)xj and xj = 1.

and put j into the set N2. In addition, we define a second real variable analog
to Construction 9 if aj > 0 and analog to Construction 10 if aj < 0.
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Let j ∈ N with cj < 0. Our procedure chooses one of the following constructions
(Construction 5 to 8) for which the conditions are satisfied.

Construction 5 Conditions: lj > −∞, ũj <∞, cj(lj−duj ) ≤ 0, cj(lj−duj )+aj ≤ 0
and cj ũj + aj ≤ 0. We use the variable upper bound in lj ≤ yj ≤ ũjxj + duj to
define

y
′

j = −(cj(yj − duj )+ ajxj) with − (cj(lj − duj )+ ajxj) ≤ y
′

j ≤ −(cj ũj + aj)xj .

We relax the lower bound imposed on y
′

j to zero an put j into the set N2.

Construction 6 Conditions: l̃j > −∞, uj <∞, cj(uj−dlj) ≥ 0, cj(uj−dlj)+aj ≥ 0

and cj l̃j + aj ≥ 0. We use the variable lower bound in l̃jxj + dlj ≤ yj ≤ uj to
define

y
′

j = cj(yj − dlj) + ajxj with cj(uj − dlj) + ajxj ≤ y
′

j ≤ (cj l̃j + aj)xj .

We relax the lower bound imposed on y
′

j to zero an put j into the set N1.

Construction 7 Conditions: lj > −∞ and uj < ∞. We use the simple upper
bound in lj ≤ yj ≤ uj to define

y
′

j = −cj(yj − lj) with 0 ≤ y
′

j ≤ −cj(uj − lj)xj and xj = 1.

and put j into the set N2. In addition, we define a second real variable analog
to Construction 9 if aj > 0 and analog to Construction 10 if aj < 0.

Construction 8 Conditions: lj > −∞ and uj < ∞. We use the simple lower
bound in lj ≤ yj ≤ uj to define

y
′

j = cj(yj − uj) with 0 ≤ y
′

j ≤ −cj(uj − lj)xj and xj = 1.

and put j into the set N1. In addition, we define a second real variable analog
to Construction 9 if aj > 0 and analog to Construction 10 if aj < 0.

Let j ∈ N with cj = 0 and aj > 0. Our procedure chooses Construction 9.

Construction 9 We define y
′

j = ajxj with ajxj ≤ y
′

j ≤ ajxj , relax the lower bound

imposed on y
′

j to zero and put j into the set N1.

Let j ∈ N with cj = 0 and aj < 0. Our procedure chooses Construction 10.

Construction 10 We define y
′

j = −ajxj with −ajxj ≤ y
′

j ≤ −ajxj , relax the lower

bound imposed on y
′

j to zero and put j into the set N2.

If for a real variable yj , j ∈ N , the conditions of more than one construction
are satisfied, the procedure chooses the one for which the value of the bound used
within the construction is closest to y∗j . We use this criterium since the results
of our computational study for the cutting plane separator for the class of c-MIR
inequalities indicate that using the closest bound leads to a good performance in
practice.

Note that our procedure can not handle mixed 0-1 integer sets which involve real
variables yj , j ∈ N with cj 6= 0 and lj = l̃j = −∞ or uj = ũj =∞.
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5.3.4 Numerical Issues

To avoid numerical troubles for our separation algorithm, we take the following
measure which we also used in the cutting plane separator for the class of c-MIR
inequalities (see Section 3.3.4).

The measure concerns the cut generation heuristic. Let

∑

j∈C1

yj + (uj + λFfβ (−
uj
ū
))(1− xj) +

∑

j∈L1

yj − (uj − λFfβ (
uj
ū
))xj

−
∑

j∈C2

uj − λFfβ (
uj
ū
)(1− xj) +

∑

j∈L2

λFfβ (−
uj
ū
)xj

−
∑

j∈N2\(C2∪L2)

yj ≤ b,

(5.13)

where β = −λ
ū
, be a c-MIRFCI found within the cut generation heuristic. We do

not further use this c-MIRFCI if fβ > MAXFRAC for MAXFRAC = 0.95. This is done to
avoid large coefficients of the integer and real variables in the generated c-MIRFCIs.

5.4 Computational Study

In Section 5.3, we described in outline a cutting plane separator for the 0-1 single
node flow problem which generates violated c-MIRFCIs and theoretically analyzed
different algorithmic aspects of this separation algorithm. Here, we present a com-
putational study about the effect on the performance of the cutting plane separator
when using the algorithmic and implementation choices suggested in the last section.

We divided the initial test set (see Section 2.3) into two sets; the main test set
and the remaining test set.

Main test set Contains all instances of the initial test set for which the default
algorithm or at least one of the different versions of the default algorithm
where a single aspect is altered leads to an initial gap closed of more than zero
percent.

Remaining test set Contains the remaining instances of the initial test set.

The main test set will be used to evaluate the effect on the performance of the differ-
ent versions of the separation algorithm and to develop the final efficient separation
algorithm. This set consists of 66 MIPs, 30 are various instances from Miplib 2003
[3], 20 are instances from Miplib 3.0 [14] and 16 are members of the MIP collection
of Mittelmann [45]. Table B.46 summarizes the main characteristics of the instances
in the main test set. The remaining test set will only be used to ensure that the
CPU time spent in our final separation algorithm is on an acceptable level for all
instances in the initial test set. Table B.47 summarizes the main characteristics of
the instances in the remaining test set.

See Section 2.3, for information about the workstation on which we performed our
computational experiments, about the implementation environment of the cutting
plane separator and about the representation of our test sets and our computational
results.
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Gap Closed % Sepa Time sec Sepa Time > 60 sec Sepa Time > 600 sec
(Geom. Mean) (Total) (Number) (Number)
Value 4 Value 4 Value 4 Value 4

Default algorithm 10.92 0.00 1617.5 0.0 7 0 0 0
Flow cover - 1. modification1 10.00 -0.92 239.3 -1378.2 1 -6 0 0
Flow cover - 2. modification2 10.87 -0.05 469.3 -1148.2 2 -5 0 0
Flow cover - 3. modification3 11.37 0.45 345.0 -1272.5 1 -6 0 0
Cut gen. heur. - 1. modification4 11.99 1.07 4047.3 2429.8 10 3 3 3
Cut gen. heur. - 2. modification5 13.52 2.60 5082.9 3465.4 10 3 3 3
Default algorithm (c-MIRFPIs) 12.78 1.86 5003.1 3385.6 11 4 3 3
Resulting algorithm3 2 5 17.30 6.38 3278.7 1661.2 6 -1 1 1

Table 5.1: Summary of the computational results for the cutting plane separator for the 0-1 single
node flow problem on the main test set. Default algorithm (applied to all rows of a MIP), default
algorithm where a single algorithmic aspect is altered (applied to all rows of a MIP), default algorithm
(applied to all rows of a MIP including the separation of the class of c-MIRFPIs) and resulting
algorithm (applied to all rows of a MIP including the separation of the class of c-MIRFPIs). (4
with respect to the default algorithm (applied to all rows of a MIP))

Default Algorithm

Our default algorithm, which separates the class of c-MIRFCIs, is given in Algo-
rithm 5.2. Note that in our implementation in Scip 0.81, we construct the c-MIRFCI
for (C1, C2), L1, L2 and ū (Line 21 and 25) by calling the bound substitution heuris-
tic and the cut generation heuristic of our cutting plane separator for the class of
c-MIR inequalities according to the construction given in the proof of Theorem 5.3.
That means, we modified Algorithm 3.3 such that it can handle given bounds for the
substitution and modified Algorithm 3.4 such that it can use a given partition (T,U)
and a given constant δ. Afterwards, we multiplied the obtained c-MIR inequality
by λ.

For each row of a MIP, we use the procedure given in Section 5.3.3 to construct
a 0-1 single node flow relaxation XSNF plus some additional simple constraints of
the mixed integer set corresponding to the row. Then, we try to generate violated
c-MIRFCIs for XSNF by using our default algorithm. We call this procedure appli-
cation of the separation algorithm to the row of a MIP. Note that the derived cuts
have to be restated in terms of the original variables before they are added to the
MIP.

For our main test set, the results for applying the default algorithm to all rows
of a MIP are given in Table B.48 and a summary of the results is contained in
Table 5.1. The initial gap closed in geometric mean is 10.92 percent and the CPU
time spent in the separation routine is 1617.5 seconds in total. For seven instances
in our main test set, the separation time is greater than 60 seconds of CPU time and
for none of the instances in our main test set, the separation time is greater than
600 seconds of CPU time. Thus, the separation time is unacceptable high.

1Always solve KPSNF
rat approximately using Algorithm 5.1.

2Solve KPSNF
int exactly using Algorithm 4.1 if the calculated scaling factor γ is not greater than

1,000 and nc for KPSNF
int is not greater than 1,000,000, and solve KPSNF

rat approximately using
Algorithm 5.1 otherwise.

3Apply the fixing strategy suggested in Section 5.3.1 to KPSNF
int and KPSNF

rat .
4Use N∗2 = N∗1 ∪ {λ+ 1} as candidate set for the value of ū.
5Use N∗3 = {uj : j ∈ N and uj > λ} ∪ {max{uj : j ∈ N and uj ≥ λ} + 1, λ + 1} as candidate

set for the value of ū.
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Input : 0-1 single node flow set XSNF defined as in (5.1) and
(x∗, y∗) ∈ ([0, 1]n\{0, 1}n)× Rn

+ fractional vector.
Output: Violated (with respect to (x∗, y∗)) inequality from the class of

c-MIRFCIs or notification that no inequality was found.

/* Flow cover */

1 if −b+∑j∈N1
uj ≤ 0 then return No inequality found

2 Find a rational representation of uj for all j ∈ N and define γ as the
smallest common multiple of all denominators divided by the greatest
common divisor of all nominators.

3 Ñ1 ← {j ∈ N1 : uj > 0}, Ñ2 ← {j ∈ N2 : uj > 0} and Ñ ← Ñ1 ∪ Ñ2

4 if γ ≤ 1,000 then
5 if γ(−b+∑j∈Ñ1

uj) /∈ Z then b̃ ← bγ(−b+∑j∈Ñ1
uj)c

6 else b̃ ← γ(−b+∑j∈Ñ1
uj)− 1

7 Call Algorithm 4.1 for KPSNF
int

max{∑j∈Ñ1
(1− x∗j )z̄j +

∑

j∈Ñ2
x∗jzj :

∑

j∈Ñ1
γuj z̄j +

∑

j∈Ñ2
γujzj ≤

b̃, z̄j ∈ {0, 1} for all j ∈ Ñ1, zj ∈ {0, 1} for all j ∈ Ñ2}. (Let (z̄∗, z∗) be
the solution.)

8 else

9 Sort Ñ by nonincreasing value of
pj
uj
, where pj = 1− x∗j for all j ∈ Ñ1

and pj = x∗j for all j ∈ Ñ2.

10 Call Algorithm 5.1 for KPSNF
rat

max{∑j∈Ñ1
(1− x∗j )z̄j +

∑

j∈Ñ2
x∗jzj :

∑

j∈Ñ1
uj z̄j +

∑

j∈Ñ2
ujzj <

−b+∑j∈Ñ1
uj , z̄j ∈ {0, 1} for all j ∈ Ñ1, zj ∈ {0, 1} for all j ∈ Ñ2}.

(Let (z̄∗, z∗) be the solution.)

11 C1 ← {j ∈ Ñ1 : z̄
∗
j = 0} and C2 ← {j ∈ Ñ2 : z

∗
j = 1}

12 λ ← −b+∑j∈C1
uj −

∑

j∈C2
uj

/* Cut generation heuristic */

13 L̃2 ← {j ∈ N2\C2 : −min{uj , λ}x∗j ≥ −y∗j }
14 N∗

1 ← {max{uj : j ∈ C1 ∪ L̃2 and uj > λ},max{uj : j ∈ C1 and uj > λ}}
15 if N∗

1 = ∅ then return No inequality found
16 vbest ← −∞, L1best ← ∅, L2best ← ∅ and ūbest ← 0
17 foreach ū ∈ N∗

1 do

18 β ← −λ
ū
, if fβ < 0.01 or fβ > 0.95 then continue

19 L1 ← {j ∈ N1\C1 : y
∗
j − (uj − λFfβ (

uj
ū
))x∗j ≥ 0}

20 L2 ← {j ∈ N2\C2 : λFfβ (−
uj
ū
)x∗j ≥ −y∗j }

21 v ← violation (with respect to (x∗, y∗)) of the c-MIRFCI (5.4) for
(C1, C2), L1, L2 and ū

22 if v > vbest then
23 vbest ← v, L1best ← L1, L2best ← L2 and ūbest ← ū

24 if vbest ≤ 0 then return No inequality found
25 else return c-MIRFCI (5.4) for (C1, C2), L1best, L2best and ūbest

Algorithm 5.2: Separation algorithm for the class of c-MIRFCIs. Default algorithm.
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As it will turn out, for one thing, the large amount of time spent in the separation
routine is caused by the methods used in the default algorithm to find the flow cover
and another, by the fact that we apply our default algorithm to all rows of a MIP.
Remember that the latter point was also true for our cutting plane separator for the
class of c-MIR inequalities.

We have decided to use the following approach in our computational study to
develop an efficient and fast cutting plane separator. At first, for each of the different
algorithmic and implementation choices suggested in Section 5.3, we test its effect on
the performance of the separation algorithm with respect to the initial gap closed
ignoring the separation time. Only for the different methods for finding the flow
cover, we also analyze their effect on the separation time. Using the results, we
develop an effective separation algorithm. Since we apply this resulting algorithm
to all rows of the MIP, the separation time is still unacceptable high. At the end,
we describe methods for managing the application of the resulting algorithm to the
rows of a MIP such that the separation time reduces to an acceptable level for all
instances in the initial test set.

Flow Cover

In our default algorithm, we obtain a flow cover by solving KPSNF
int exactly using

Algorithm 4.1 if the calculated scaling factor γ is not greater than 1,000 and by
solving KPSNF

rat approximately using Algorithm 5.1 otherwise. Furthermore, in our
default algorithm, we do not apply the fixing strategy suggested in Section 5.3.1.

We have tested to obtain a flow cover by always solving KPSNF
rat approximately

using Algorithm 5.1. For our main test set, the results for applying the default
algorithm with this modification to all rows of a MIP are given in Table B.49 and a
summary of the results is contained in Table 5.1. On the one hand, the separation
time in total reduces to 239.3 seconds of CPU time and for only one instance in
our main test set (atlanta-ip), the separation time is greater than 60 seconds of
CPU time in contrast to seven instances for our default algorithm. On the other
hand, the initial gap closed in geometric mean reduces by 0.92 percentage points.
We conclude that solving KPSNF

int exactly using Algorithm 4.1 performs better than
solving KPSNF

rat approximately using Algorithm 5.1, but can be very time consuming.
This confirms our conclusions for the cutting plane separator for the 0-1 knapsack
problem (see Section 4.4).

Algorithm 4.1 has time and space complexity of O(nc), where n and c are de-
fined as in Algorithm 4.1. For our cutting plane separator for the 0-1 knapsack
problem, we tested to use Algorithm 4.1 only if nc is not greater than 1,000,000 and
an approximate algorithm otherwise. Here we tested a similar approach. We solved
KPSNF

int exactly using Algorithm 4.1 if the calculated scaling factor γ is not greater
than 1,000 and nc for KPSNF

int is not greater than 1,000,000, and solving KPSNF
rat ap-

proximately using Algorithm 5.1 otherwise. We have chosen the bound on the value
of nc which has already been proofed to be useful for our cutting plane separator
for the 0-1 knapsack problem. The results obtained for our main test set given in
Table B.50 (see also the summary of the results contained in Table 5.1) show that
this version performs better than the default algorithm and that the used bound on
nc is well chosen. The CPU time spent in the separation routine in total reduces
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to 469.3 seconds and for only two instances in our main test set (atlanta-ip and
msc98-ip), it is greater than 60 seconds of CPU time in contrast to seven instances
for our default algorithm. The initial gap closed in geometric mean only reduces by
0.05 percentage points.

We also tested to reduce the time spent in the separation routine by using the
fixing strategy suggested in Section 5.3.1 for KPSNF

int and KPSNF
rat , i.e., we fixed in

advance all variables z̄j with j ∈ N1 to zero if x∗j = 1 and to one if x∗j = 0 and all
variables zj with j ∈ N2 to zero if x∗j = 0 and to one if x∗j = 1. For our main test set,
the results for applying the default algorithm with this modification to all rows of a
MIP are given in Table B.51 and a summary is contained in Table 5.1. The results
show that our fixing strategy is very useful, since the time spent in the separation
routine in total reduces to 345.0 seconds of CPU time and for only one instance in
our main test set (atlanta-ip), the separation time is greater than 60 seconds of CPU
time in contrast to seven instances for the default algorithm. In addition, the initial
gap closed in geometric mean increases by 0.45 percentage points.

Concluding in our resulting algorithm, at first we apply the fixing strategy sug-
gested in Section 5.3.1 to KPSNF

int and KPSNF
rat , and than solve KPSNF

int exactly using
Algorithm 4.1 if the calculated scaling factor γ is not greater than 1,000 and nc
for KPSNF

int is not greater than 1,000,000, and solve KPSNF
rat approximately using

Algorithm 5.1 otherwise.

Cut Generation Heuristic

In Section 5.3.2, we explained that the main aspect of the cut generation heuristic
is to choose a useful value of ū and we stated three candidate sets for the value of ū.
In our default algorithm, we use the candidate set N ∗

1 , i.e., we choose ū according
to Corollary 5.5 and Corollary 5.4.

We tested to use the extended candidate set N ∗
2 = N∗

1 ∪ {λ + 1} which guar-
antees the generation of a c-MIRFCI (not necessarily violated). For our main test
set, the results for applying the default algorithm with this modification are given
in Table B.52 and a summary of the results is contained in Table 5.1. The initial
gap closed in geometric mean increases by 1.07 percentage points. Note that for
the instances momentum2, neos8, rentacar and rgn, where using the default algo-
rithm leads to gap closed of zero percent, using the modified version of the default
algorithm leads to a gap closed of more than zero percent.

We also tested to use the extended candidate set N ∗
3 = {uj : j ∈ N and uj >

λ}∪{max{uj : j ∈ N and uj ≥ λ}+1, λ+1}. For our main test set, the results for
applying the default algorithm with this modification to all rows of a MIP are given
in Table B.53 and a summary of the results is contained in Table 5.1. The results
show that using N∗

3 performs better than using N ∗
2 with respect to the initial gap

closed, since the initial gap closed in geometric mean increases to 13.52 percent and
for the instances momentum2, neos8, rentacar and rgn the initial gap closed is again
greater than zero percent.

We conclude that the performance of the separation algorithm with respect to
the initial gap closed can be significantly improved when testing additional useful
candidates for the value of ū. In our resulting algorithm, we use the candidate set
N∗

3 .
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Gap Closed % Sepa Time sec Sepa Time > 60 sec Sepa Time > 600 sec
(Geom. Mean) (Total) (Number) (Number)
Value 4 Value 4 Value 4 Value 4

Resulting algorithm 17.30 0.00 3278.7 0.0 6 0 1 0
Resulting algorithm6 16.07 -1.23 166.7 -3112.0 0 -6 0 -1

Table 5.2: Summary of the computational results for the cutting plane separator for the 0-1 single
node flow problem on the main test set. Resulting algorithm (applied to all rows of a MIP including
the separation of the class of c-MIRFPIs) and resulting algorithm with MAXTESTDELTA = 10 (applied
to the rows of a MIP (ordered by nonincreasing value of ROWSCOREi, i ∈ P ) including the separation
of the class of c-MIRFPIs, where the application is limited by using MAXFAILS = 100, MAXCUTS = 200
and MAXROUNDS = 10). (4 with respect to the resulting algorithm (applied to all rows of a MIP
including the separation of the class of c-MIRFPIs))

C-MIRFPIs

So far, we applied our default algorithm and the modified versions of our default
algorithm to the 0-1 single node flow relaxation XSNF of the mixed integer set
corresponding to the row of a MIP. In Section 5.3, we suggested to apply the sepa-
ration algorithm in addition to the relaxation XSNF

rel of XSNF in order to generate
c-MIRFPIs valid for XSNF (see also Remark 5.7).

We have tested this approach, i.e., for each row of a MIP, we applied our default
algorithm to the 0-1 single node flow relaxation XSNF of the mixed integer set
corresponding to the row and to the relaxationXSNF

rel ofXSNF . The results obtained
for our main test set are given in Table B.54 and a summary of the results is contained
in Table 5.1. The initial gap closed in geometric mean increases by 1.86 percentage
points and for the instances atlanta-ip, momentum2, and rentacar, where applying
the default algorithm only to XSNF leads to a gap closed of zero percent, the initial
gap closed is greater than zero percent.

We conclude that separating in addition the class of c-MIRFPIs improves the
performance of the cutting plane separator for the 0-1 single node flow problem with
respect to the initial gap closed. Therefore, we will apply our resulting algorithm
to the 0-1 single node flow relaxation XSNF of the mixed integer set corresponding
to the row of a MIP and to the relaxation XSNF

rel of XSNF . We call this approach
application of the separation algorithm to the row of a MIP including the separation
of the class of c-MIRFPIs.

Resulting Algorithm

From the results of our computational study, we obtain the following best algorithmic
and implementation choices for the cutting plane separator for the 0-1 single node
flow problem.

Flow cover Apply the fixing strategy suggested in Section 5.3.1 to KPSNF
int and

KPSNF
rat , and solve KPSNF

int exactly using Algorithm 4.1 if the calculated scaling
factor γ is not greater than 1,000 and nc for KPSNF

int is not greater than
1,000,000, and solve KPSNF

rat approximately using Algorithm 5.1 otherwise.

Cut generation heuristic Use N ∗
3 as candidate set for the value of ū.

6Use MAXTESTDELTA = 10.
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Gap Closed % Sepa Time sec Sepa Time > 60 sec Sepa Time > 600 sec
(Geom. Mean) (Total) (Number) (Number)
Value 4 Value 4 Value 4 Value 4

Resulting algorithm 1.04 0.00 1527.1 0.0 3 0 1 0
Resulting algorithm6 1.04 0.00 34.8 -1492.3 0 -3 0 -1

Table 5.3: Summary of the computational results for the cutting plane separator for the 0-1 single
node flow problem on the remaining test set. Resulting algorithm (applied to all rows of a MIP
including the separation of the class of c-MIRFPIs) and resulting algorithm with MAXTESTDELTA = 10
(applied to the rows of a MIP (ordered by nonincreasing value of ROWSCOREi, i ∈ P ) including the
separation of the class of c-MIRFPIs, where the application is limited by using MAXFAILS = 100,
MAXCUTS = 200 and MAXROUNDS = 10). (4 with respect to the resulting algorithm (applied to all rows
of a MIP including the separation of the class of c-MIRFPIs))

We call the corresponding separation algorithm resulting algorithm. For our
main test set, the results for applying the resulting algorithm to all rows of the MIP
including the separation of the class of c-MIRFPIs are given in Table B.55 and a
summary of the results is contained in Table 5.1 and Table 5.2. On the one hand, the
initial gap closed in geometric mean increases by 6.38 percentage points. Thus, the
modifications significantly improve the performance of the cutting plane separator
with respect to the initial gap closed. On the other hand, the CPU time spent in
the separation routine is 3278.7 seconds in total, which is unacceptable high. For
six instances in our main test set, the separation time is greater than 60 seconds of
CPU time and for the instance atlanta-ip it is even greater than 600 seconds of CPU
time. However, the separation time in total is smaller than the one for applying our
default algorithm with N ∗

3 as candidate set for the value of ū to all rows of a MIP
(5082.9 seconds of CPU time, see Table B.53) and smaller than the one for applying
our default algorithm to all rows of a MIP including the separation of the class of
c-MIRFPIs (5003.1 seconds of CPU time, see Table B.54). We conclude that using
the new methods for finding the flow cover help to reduce the separation time.

For our remaining test set, the results for applying the resulting algorithm to
all rows of a MIP including the separation of the class of c-MIRFPIs are given in
Table B.56 and a summary of the results is contained in Table 5.3. The initial gap
closed is zero percent for all instances in our remaining test set except for neos632659

(14.02 percent) and pp08a (0.29 percent). That means, for these two instances, where
neither the default algorithm nor the default algorithm with a single aspect altered
leads to a gap closed of more than zero percent, the combination of the best aspects
improves the performance of the cutting plane separator. The separation time in
total is 1527.1 seconds of CPU time. For three instances in the remaining test set,
the separation time is greater than 60 seconds of CPU time and for neos19 it is even
greater than 600 seconds of CPU time. Thus, as for the main test set, the separation
time is unacceptable high.

Since we want to implement an efficient cutting plane separator for the 0-1 single
node flow problem, we have to find methods for reducing the separation time without
loosing too much of the initial gap closed. We apply our resulting algorithm to all
rows of a MIP. Because of our experiences for implementing an efficient cutting plane
separator for the class of c-MIR inequalities, we suppose that a large amount of time
spent in the separation routine here is among other things caused by a large number
of rows. Therefore, we want to be more selective about the rows to which we apply
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the separation algorithm, i.e., we want to use only those rows which may lead to
violated c-MIRFCIs or c-MIRFPIs. For that, we use an approach which is similar to
the one used in our cutting plane separator for the class of c-MIR inequalities. Let P
be the set of all rows of the MIP. For i ∈ P , let the mixed integer set corresponding
to row i be given in the form

{(x, y) ∈ Zn × Rm :
∑

j∈N

aijxj +
∑

j∈M

cijyj ≤ ai0},

where ai0 and aij are rational numbers for all j ∈ N = {1, . . . , n} and cij are rational
numbers for all j ∈M = {1, . . . ,m}. Furthermore, let dbi be the LP solution value
of the dual variable corresponding to row i ∈ P . See [52], for the definition of

the dual LP. Let densi =
|{j∈N :aij 6=0}|+|{j∈M :cij 6=0}|

n+m
be the density of row i ∈ P and

s∗ = ai0 − (
∑

j∈N aijy
∗
j +

∑

j∈M cijx
∗
j ) be the slack of row i ∈ P . For each i ∈ P , we

define
ROWSCOREi = max{ dbi

max{‖(c,d)‖,1.0} , 0.0001}+ 0.0001densi+

0.001(1− s∗

max{‖(ai,ci)‖,0.1}),

where (c, d) ∈ Qn×Qm is the vector of the coefficients of all variables in the objective
function of the MIP, (ai, ci) ∈ Qn×Qm is the vector of the coefficients of all variables
in row i and ‖ · ‖ is the Euclidean norm. We select the rows by nonincreasing value
of ROWSCOREi, i ∈ P and limit the number of rows to which we apply our resulting
algorithm by the following parameter.

MAXFAILS The parameter denotes the maximum number of rows i ∈ P per separa-
tion round for which we consecutively did not obtain a violated c-MIRFCI or
c-MIRFPI. Note that in early separation rounds we increase this value up to
the double value, i.e., we allow up to MAXFAILS+ (MAXFAILS− 2k)+ consecutive
fails, where k is the number of separation rounds which have already been
performed at the current branch-and-bound node.

That means we prefer rows for which the corresponding dual variable has a great
LP solution value, which have a large density and which are tight. Note that this
approach is similar to the one used in our cutting plane separator for the class of
c-MIR inequalities, except that here we prefer rows with a large density since we do
not perform any aggregation.

If the separation algorithm generates cuts for nearly every row of the MIP, the
parameter MAXFAILS does not help to reduce the separation time. Therefore, we
suggest to use in addition the following parameters.

MAXCUTS The parameter denotes the maximum number of violated c-MIRFCIs and
c-MIRFPIs generated per separation round.

MAXROUNDS The parameter denotes the maximum number of separation rounds per-
formed at the current branch-and-bound node.

Another point which may cause a large separation time for our resulting algo-
rithm is the fact that we test all candidates for the value of ū contained in the set
N∗

3 . If a MIP has a large number of variables, the cardinality of N ∗
3 can be very

large. We suggest to limit the time spent in the cut generation heuristic by the
following parameter.
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MAXTESTDELTA The parameter denotes the maximum number of different values of
ū for which we generate a c-MIRFCI in the cut generation heuristic.

Note that if we use N ∗
3 as candidate set for the value of ū, we first test the values

in N∗
2 ⊆ N∗

3 and the value max{uj : j ∈ N and uj ≥ λ}+ 1.

In order to find useful values for the four parameters introduced above, we se-
lected all instances of our main and remaining test set for which the separation time
in the last test was greater than 60 seconds of CPU time and some instances with
small separation time. We applied our resulting algorithm to all rows (ordered by
nonincreasing value of ROWSCOREi, i ∈ P ) of these MIPs including the separation of
the class of c-MIRFPIs and analyzed the behavior of the separation algorithm with
respect to the four parameters.

For our main test set, the results for applying our resulting algorithm with
MAXTESTDELTA = 10 to the rows of a MIP (ordered by nonincreasing value of ROWSCOREi,
i ∈ P ) including the separation of the class of c-MIRFPIs and limiting the appli-
cation by using MAXFAILS = 100, MAXCUTS = 200 and MAXROUNDS = 10 are given
in Table B.57 and a summary of the results is contained in Table 5.2. Here the
4 values are given with respect to the resulting algorithm applied to all rows of a
MIP including the separation of the class of c-MIRFPIs. The initial gap closed in
geometric mean reduces only by 1.23 percentage points and the separation time in
total is now 166.7 seconds of CPU time. For none of the instance in our main test
set, the separation time is greater than 60 seconds of CPU time. For our remaining
test set, the results for the same test are given in Table B.58 and a summary of the
results is contained in Table 5.3. Here the 4 values are also given with respect to
the resulting algorithm applied to all rows of a MIP including the separation of the
class of c-MIRFPIs. The initial gap closed does not change for any instance in our
remaining test set and the separation time in total reduces to 34.8 seconds of CPU
time. Thus, for both test sets, the separation time is now on an acceptable level.

Note that 10 seems to be a very small value for MAXTESTDELTA and we are close
to using N∗

2 , but the following table shows that for our main test set, the gap closed
in geometric mean for using N ∗

3 and MAXTESTDELTA = 10 is close to the one for using
N∗

3 and MAXTESTDELTA = 100 and much higher than the one for testing only the
values in N∗

2 .

Candidate Set MAXTESTDELTA Gap Closed % Sepa Time sec
(Geom. Mean) (Total)

N∗3 100 16.23 314.1
N∗3 50 16.23 268.6
N∗3 10 16.07 166.7
N∗3 5 15.78 125.2
N∗2 (∞) 13.61 85.3

In our final cutting plane separator for the 0-1 single node flow problem, we apply
our resulting algorithm with MAXTESTDELTA = 10 to the rows of a MIP (ordered by
nonincreasing value of ROWSCOREi, i ∈ P ) including the separation of the class of
c-MIRFPIs and limit the application by using MAXFAILS = 100, MAXCUTS = 200 and
MAXROUNDS = 10.
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5.5 Conclusion

The results of our computational study indicate that the c-MIR approach is very
useful for implementing an efficient cutting plane separator for the 0-1 single node
flow problem.

We found out that the performance of the cutting plane separator is strongly
influenced by the choice of the value of ū. The performance can be improved if
one chooses the candidates for the value of ū not only according to Corollary 5.5
and Corollary 5.4, but also selects a limited number of other useful candidates.
Furthermore, we conclude that separating in addition to the class of c-MIRFCIs,
the class of c-MIRFPIs significantly improves the performance of the cutting plane
separator.

As for the cutting plane separator for the class of c-MIR inequalities, it is im-
portant to select the rows of a MIP to which the cutting plane separator is applied
carefully since applying it to all rows of a MIP may lead to an unacceptable large
amount of time spent in the separation algorithm.
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Chapter 6

Further Cutting Plane

Separators

Although there is a wide variety of cutting planes derived in the literature, only a
limited number of the corresponding cutting plane separators have been shown to
be practical useful within linear programming based branch-and-cut algorithms for
solving general MIPs.

In the previous chapters, we have studied three of them in details. Here, we give
a brief introduction to three further cutting plane separators which are also provided
by Scip 0.81. They will be included in the computational study presented in the
next chapter.

6.1 Cutting Plane Separator for the Class of GMI In-

equalities

Gomory mixed integer cuts (GMI cuts) are general cutting planes and we have
already mentioned them in connection with c-MIR cuts (see Section 3.1). As we will
see in the next chapter, the cutting plane separator for the class of GMI inequalities
is one of the most important ones within a linear programming based branch-and-cut
algorithm.

We consider a mixed integer set in the form

X = {(x, y) ∈ Zn
+ × Rm

+ :
∑

j∈N

ajxj +
∑

j∈M

cjyj = a0},

where a0, aj for all j ∈ N = {1, . . . , n}, and cj for all j ∈M = {1, . . . ,m} are rational
numbers. Furthermore, for d ∈ R, let fd = d− bdc. Then the GMI inequality

∑

j∈N,
faj

≤fa0

fajxj +
fa0

1− fa0

∑

j∈N,
faj

>fa0

(1− faj )xj +
∑

j∈M,
cj≥0

cjyj −
fa0

1− fa0

∑

j∈M,
cj<0

cjyj ≥ fa0

is valid for X (see [28]). Thus, the GMI inequality defined for a mixed integer set
which is a relaxation of the feasible region of a MIP is valid for the feasible region
of the MIP.

111
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A special case arises when we want to separate a basic feasible solution (where
at least one integer variable is fractional) of the LP relaxation of a MIP. For an
arbitrary integer variable with fractional value, consider the corresponding row of
the optimal simplex tableau. It is well known that the GMI inequality for the mixed
integer set defined by this simplex tableau row is violated by the given basic feasible
solution of the LP relaxation (see [19]).

This approach is used in our cutting plane separator for the class of GMI in-
equalities. Given an optimal solution of the LP relaxation of the MIP, we generate
for each integer variable xi with fractional value x∗i in the given vector, except those
for which fx∗i < 0.05, the GMI inequality associated with the simplex tableau row
corresponding to xi.

Adding generated GMI cuts to the MIP may cause numerical instability. In
Scip 0.81, we address this problem in the following way. We scale generate GMI cuts
such that all integer variables have integer coefficients in the scaled cuts. For each
integer variable, the scaling algorithm first tries to find a fractional representation
of the rational coefficient of the variable such that the denominator is not greater
than 1, 000. If this was successful for all integer variables, it calculates the greatest
common divisor of the nominators (gcd) and the smallest common multiple of the
denominators (scm) and than multiplies the GMI cut by the scalar scm

gcd
. But, out

off the set of the scaled GMI cuts, we only allow those to be added to the MIP for
which the scalar is not greater than 1, 000.

6.2 Cutting Plane Separator for the Node Packing Prob-

lem

This cutting plane separator generates strong valid inequalities for the node packing
polytope associated with the node packing problem. More precisely, we separate the
class of clique inequalities.

Given a graph G = (V,E), where V is the set of nodes and E is the set of edges,
a node packing is a subset of nodes such that no pair of nodes is joined by an edge
(see [46]). Clique inequalities are based on the structure of a clique, which is a
subset of nodes such that each pair of nodes is joined by an edge (see [46]). It is
well known that if a clique C ⊆ V is maximal with respect to node inclusion, then
the corresponding clique inequality

∑

j∈C

xj ≤ 1

defines a facet of the node packing polytope (see [49]).
In a linear programming based branch-and-cut algorithm for solving MIPs, the

cutting plane separator can be applied to the node packing relaxation of the feasible
region of a MIP. To obtain this relaxation, we use the conflict graph of the MIP,
which is constructed from logical implications between binary variables of the MIP
derived by probing techniques (see [6, 56]). It contains a node for every binary
variable of the MIP and for its complement. Furthermore, there is an edge between
two nodes if at most one of the binary variables represented by the nodes can be equal
to one in any feasible solution of the MIP. Thus, any feasible solution of the MIP
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corresponds to a node packing in the conflict graph. Therefore, the node packing
polytope corresponding to the conflict graph defines a relaxation of the convex hull
of the feasible region of the MIP and valid inequalities for the feasible region of the
node packing problem are also valid for the feasible region of the MIP (see [6, 40]).

The separation problem for the class of clique inequalities can be formulated
as a maximum weighted clique problem, where the weights of the nodes are defined
by the given fractional vector to be separated (see [6]). This problem is known to
be NP-hard (see [36]). In our cutting plane separator, we use a branch-and-bound
algorithm to exactly solve a maximum weighted clique problem. The algorithm is
due to Ralf Borndörfer and Zoltán Kormos and uses a heuristic for coloring weighted
graphs in the bounding step.

We apply the branch-and-bound algorithm only to the subgraph of the conflict
graph associated with the nodes which have nonzero weights. Then, a generated
clique inequality defines a facet of the restriction of the node packing polytope to
some lower dimensional space where all variables which are represented by nodes
with zero weights are fixed to zero. If the inequality is violated, we use the concept
of lifting (see Section 2.2) to generate a strong valid inequality for the node packing
polytope in the original space (see also [46]). Here, a lifting step consists of checking
whether the current clique and the node which represents to current variable still
form a clique. In our cutting plane separator, we perform the lifting step only for a
limited number of variables fixed to zero.

6.3 Cutting Plane Separator for the Class of Implied

Bound Inequalities

In the previous section, we described how logical implications between binary vari-
ables can help to derive valid inequalities for the feasible region of a MIP. The cutting
plane separator which we briefly describe here does also use logical implications de-
rived by preprocessing and probing techniques (see [6, 56]).

Let x be a binary variable and y be a real variable with bounds l ≤ y ≤ u, where
l, u ∈ Q. Preprocessing and probing techniques may yield logical implications of the
form

x = 0⇒ y ≤ b, with b ∈ Q and l ≤ b < u, (6.1)

x = 0⇒ y ≥ b, with b ∈ Q and l < b ≤ u, (6.2)

x = 1⇒ y ≤ b, with b ∈ Q and l ≤ b < u, (6.3)

and

x = 1⇒ y ≥ b, with b ∈ Q and l < b ≤ u. (6.4)

These implications state that if the binary variable x is fixed to zero or one, the
lower and upper bound imposed on the real variable y respectively can be strength-
ened. Logical implications of the form (6.1), (6.2), (6.3), and (6.4) imply that the
inequalities

y ≤ b+ (u− b)x,
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y ≥ b− (b− l)x,

y ≤ u− (u− b)x,

and
y ≥ l + (b− l)x,

respectively are valid for the feasible region of a MIP (see [56]). We denote these
inequalities by implied bound inequalities.

Given a fractional vector, our cutting plane separator for the class of implied
bound inequalities checks for each binary variable of the MIP with fractional value
in the given vector, if there exists an implication of the from (6.1), (6.2), (6.3), or
(6.4) for which the corresponding implied bound inequality is violated by the given
vector.



Chapter 7

Computational Results

In the previous chapters, we evaluated the implementation of cutting plane separa-
tors for

• the class of c-MIR inequalities (see Chapter 3),

• the 0-1 knapsack problem (see Chapter 4), and for

• the 0-1 single node flow problem (see Chapter 5).

The main focus was to find implementations such that the separators are efficient
when they are used isolated. We considered this to be a good starting point for
developing cutting plane separators which are efficient with respect to the over-
all performance of the MIP solver in which they are embedded. Furthermore, in
Chapter 6, we gave a brief introduction to the cutting plane separators for

• the class of GMI inequalities,

• the node packing problem, and for

• the class of implied bound inequalities

which are also implemented in Scip 0.81.
When we speak of efficient cutting plane separators, the following question arises.

• Are these cutting plane separator implemented in Scip 0.81 competitive to
the ones included in other MIP solvers?

In the first part of this chapter, we will answer that question for the three sep-
arators1 discussed in details in this thesis and for the separator for the class of
GMI inequalities. The remaining two separators are based on logical implications
derived by preprocessing and probing techniques. In Scip 0.81, this information is
not available anymore when we disable presolving. But, since we have to do that to
ensure a fair comparison with the other MIP solvers, we do not include these two
separators in our computational study. Nevertheless, as we will see in Section 7.2,

1The cutting plane separator for the 0-1 knapsack problem can also be applied to relaxations
of the set {x ∈ {0, 1}n :

∑

j∈N ajxj ≤ a0}, where a0 and aj are rational numbers for all j ∈ N =
{1, . . . , n}. In all test runs for Scip 0.81 concerning the cutting plane separator for the 0-1 knapsack
problem, reported in this chapter, we also include this application.

115



116 Chapter 7. Computational Results

these separators do not belong to the ones which are most important for improving
the performance of Scip 0.81. The same holds for CPlex 8.0 (see [15]).

In the second part of this chapter, we remove the isolated application of the
cutting plane separators and answer the following question.

• How strong is the impact of the individual cutting plane separators on the
overall performance of Scip 0.81?

Here, we consider all of the six cutting plane separators mentioned above.

All computational experiments described in this chapter were performed on a
Dell Precison 650 MT working station with a Dual 3.06 GHz Intel Xeon CPU
(512 KB cache) and 3.6 GB RAM. In each test, we used a time limit of 3,600 sec-
onds of CPU time and a memory limit of 512 MB for each instance contained in
the considered test set. In the tables and figures which report the results of our test
runs, we denote the above mentioned cutting plane separators by C-MIR, Knapsack,
Flow Cover, GMI, Clique, and Impl. B. in that order.

7.1 Comparison with Cplex and Cbc

We start with answering the first question asked in the introduction of this chap-
ter. For that, we compare the effectiveness of four cutting plane separators imple-
mented in Scip 0.81 with the corresponding ones provided by the commercial solver
Cplex 10.01, and the ones included in the Coin-Or Cut Generator Library 0.5
which is used in the non-commercial solver Coin-Or Branch and Cut solver 1.01.00
(Cbc 1.01.00) [24, 25].

In our experiments, we used Cplex 10.01 as underlying LP solver in Scip 0.81
and the Coin-Or Linear Program Solver 1.3 [26] in Cbc 1.01.00. To shorten the
presentation, we will leave out the version numbers of the solvers in the remainder
of this chapter and refer to them just by Scip, Cplex, and Cbc.

We applied the presolving routines of Cplex to all instances in our initial test
set (see Section 2.3) and use the obtained presolved instances as our test set for
the comparison. This was done in order to eliminate the effect of using different
versions of presolvers in our test runs. A summary of the main characteristics of
the instances in our test set is given in Table B.59. The summary is presented in
the same way as it was done for the test sets used in the computational studies of
the previous chapters (see Section 2.3, for details). Note that here zLP is the value
obtained by running Scip.

For each of the four cutting plane separators, we ran three tests; one for each
solver2. In each of these tests, only one cutting plane separator was enabled in
the used solver3. Furthermore, to make the results obtained for the different solvers
comparable and to eliminate the effect of other features of the solvers, we considered
only the root node of the branch-and-cut tree and called up each solver with its
default settings, except the following changes.

2The cutting plane separator for the class of c-MIR inequalities provided by Scip is compared
to the separators which generate MIR cuts in Cplex and Cbc.

3In Cplex, we set the associated cut indicator to 2, i.e., the cuts are generated aggressively.
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Primal heuristics If a primal heuristic is successful, this might cause further dual
propagations, which could lead to the generation of further cuts. Therefore,
we disabled all primal heuristics.

Strong branching Every branching strategy employing strong branching can de-
tect infeasibility of subproblems of a MIP (see [2]) and may therefore cause
fixing of variables. As this influences the dual bound, we did not use strong
branching, but most infeasible branching (see [2]).

Presolving and probing Since our test set already contains the presolved in-
stances (obtained by the presolving routines of Cplex), we disabled presolving
in all three MIP solvers. In contrast to Scip and Cbc, Cplex applies prob-
ing, which may cause fixing of binary variables, after the preprocessing step.
Therefore, in Cplex, in addition, we disabled probing.

MIP gap tolerance In Cplex, we set the absolute MIP gap tolerance to 10−9 and
the relative MIP gap tolerance to 0.0 and in Cbc, we set the allowable gap to
10−9 and the ratio gap to 0.0, which are the corresponding values to the ones
used in Scip.

Restarts. This feature is only provided by Scip. As it may influence the dual
bound, we disabled it in Scip.

Scaling of the problem This feature is only provided by Cbc. As it may improve
the dual bound, we disabled it in Cbc.

To evaluate and compare the performance of the cutting plane separators of
the three solvers, we use the performance measure Gap closed % which denotes
the percentage of the initial gap that is closed by using the separation algorithm
(see Section 2.3, for the definition). Furthermore, we report the dual bound used
in the calculation of Gap closed % (denoted by Dual Bound)4, the number of cuts
generated (denoted by Cuts)5, and the overall CPU time in seconds required by the
solver (denoted by Time).

For each cutting plane separator, the results for the three solvers are reported
in one table (Table B.60, B.61, B.62, and B.63). Column 2 to 5 contain the results
for Scip, Column 6 to 10 the ones for Cplex, and Column 11 to 15 the ones for
Cbc. At the bottom of each table, in the row labelled Total, we give the sum of
the reported values over all instances. And, in the row labelled Geom. Mean, we
give the geometric mean of the reported values over all instances where individual
values smaller than one were replaced by one. For Cplex and Cbc, we state, in
addition, the difference to Scip for the performance measure Gap closed %. Here,
numbers in blue indicate that the value of the performance measure obtained by
Cplex and Cbc respectively is better than the one obtained by Scip and numbers

4In Cplex, although we do not use strong branching, the variable selection algorithm influences
the dual bound. Therefore, for Cplex, we consider the dual bound which the solver obtains before
the variable selection algorithm is called. A test run where we disabled all cutting plane separators
in Cplex led to Gap closed % equal to zero for all instances in the test set. We performed the same
test for Cbc. For some of the instances in the test set, this led to Gap closed % not equal to zero.
But, the values were such small (< 0.1) that we consider the comparison to be fair.

5For Cbc, we report the number of cuts which are active after adding rounds of cuts.
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Figure 7.1: Summary of the computational results for the comparison with Cplex and Cbc.

in red indicate the opposite case. Note that the 4 values for each instance, for Total,
and for Geom. Mean, are given in percentage points, not in percentage.

A summary of the results of all test runs is given in Figure 7.1.

Cutting Plane Separator for the Class of GMI Inequalities

The separator provided by Scip leads to an initial gap closed of 7.02 percent in
geometric mean, in contrast to 15.02 percent for Cplex and 10.88 percent for Cbc.
For only seven instances in the test set, the separator of Scip leads to a greater value
of the initial gap closed than the separators of the other two solvers, in contrast to
53 instances for Cplex and 47 instances for Cbc.

Thus, our separator is not competitive to neither the one provided by Cplex

nor the one provided by Cbc. Further investigations should be carried out in order
to improve the performance of this cutting plane in Scip.

Cutting Plane Separator for the Class of C-MIR Inequalities

For this cutting plane separator, we obtained better results than for the previous
one. Here, Scip is competitive to Cplex and Cbc, in fact with respect to the initial
gap closed in geometric mean and in total, it performs better than both Cplex and
Cbc. The separator of Scip leads to an initial gap closed of 5.45 percent in geometric
mean, whereas the ones of Cplex and Cbc lead to 5.00 percent in geometric mean
and 4.06 percent in geometric mean, respectively. Furthermore, for 31 instances in
the test set, Scip leads to a greater value of the initial gap closed than the other
two solvers, in contrast to 38 instances for Cplex and only 14 instances for Cbc.

In Chapter 3, we made a great effort to reduce the computation time required
by this cutting plane separator. The main aspect was our strategy for selecting the
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starting constraints. And, the results obtained here show that our cutting plane
separator is competitive to the ones of the other two solvers with respect to the
computation time. Even though, Scip generates the largest number of cuts in total,
the time spent in the root node in total for Scip is similar to the one for Cplex

and smaller than the one for Cbc. Note that for Cbc, the large amount of time
spent in the root node in total is basically caused by the instance neos19.pre (see
Table B.61). For the original instance neos19, the slow version of our resulting
separation algorithm also led to a large time spent in the separation routine, whereas
our fast version, i.e., the version used here, led to a much smaller separation time
(see Table B.16 and B.18).

Cutting Plane Separator for the 0-1 Single Node Flow Problem

Here, again the separator of Scip is competitive to the ones of both Cplex and Cbc

and it performs even better than both of them. Scip leads to an initial gap closed
of 4.08 percent in geometric mean, Cplex to an initial gap closed of 2.76 percent
in geometric mean, and Cbc to an initial gap closed of 1.28 percent in geometric
mean. For 44 instances in the test set, Scip is the solver which leads to the greatest
value of the initial gap closed and for about 60 percent of these instances both other
solvers lead to an initial gap closed of zero percent. For Cplex, similar observations
can be made. This solver leads for 32 instances in the test set to the greatest value
of the initial gap closed and for about 60 percent of these instances none of the other
solvers leads to an initial gap closed of more than zero percent. In contrast, Cbc is
superior for only 5 instances in the test set with respect to the initial gap closed.

Thus, for a large number of instances where the separators of Scip and Cplex

respectively lead to an improved gap, the separators of the other solvers fail to do so.
This may indicate that the cutting plane separators of these two solvers use different
strategies for constructing the 0-1 single node flow sets or that they separate different
classes of valid inequalities for the 0-1 single node flow set (see Chapter 5).

Cutting Plane Separator for the 0-1 Knapsack Problem

For this cutting plane separator, Scip and Cbc are competitive to each other, but
Cplex outperforms both. Scip and Cbc close 2.06 percent and 1.74 percent of the
initial gap in geometric mean, respectively, in contrast to 3.45 percent in geometric
mean obtained for Cplex. The superiorness of Cplex can also be seen in the
following figures. For 59 instances in the test set, Cplex leads to a greater value
of the initial gap closed than both Scip and Cbc and for about 50 percent of these
instances, the other solvers close zero percent of the initial gap. Scip leads to the
greatest value of the initial gap closed for only nine instances in the test set and
Cbc for only five instances in the test set.

Thus, the cutting plane separator of Cplex seems to contain a feature not used
in neither Scip nor Cbc. But, note that this feature might also be the reason why
Cplex spends a large amount of time in the root node for some of the instances
in the test set (see Table B.63). The time spent in the root node in total is more
than ten times larger than the ones for both Scip and Cbc, even though Cplex

produces a smaller number of cuts in total than Scip.
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7.2 Impact on the Overall Performance of Scip

Cutting plane separators are a single feature out of a variety of features used in gen-
eral purpose algorithms for solving MIPs. In [13] and [15], computational studies
can be found which concern the impact of primal heuristics on the overall perfor-
mance of Scip 0.82b and the impact of different features provided by CPlex 8.0
on the overall performance of this solver, respectively. The results of Bixby et al.
[15] have shown that cutting plane separators are a very effective single feature, in
fact, in CPlex 8.0, they are by far the most important one.

In all computational studies of this thesis reported so far, we have evaluated
only the performance of the cutting plane separators when they are used on their
own. That is, in Scip, we considered only the root node of the branch-and-cut tree,
used only one type of cutting plane separator, and disabled all primal heuristics and
strong branching. Now, we want to evaluate the impact of the individual cutting
plane separators on the overall performance of Scip. In particular, we want to
find out which of these cutting plane separators are the most important ones for
improving the performance of Scip.

The interaction with other cutting plane separators may influence the perfor-
mance of an individual cutting plane separator. And thus, it may also affect the
impact which this cutting plane separator has on the overall performance of the MIP
solver. That is why we decided to evaluate the impact of individual cutting plane
separators on the overall performance of Scip when they are used for one thing

• as the only cutting plane separator in Scip (no interaction) and for another

• in connection with all other cutting plane separators provided by Scip (inter-
action).

How do we want to evaluate the impact of the individual cutting plane separators
in these two situations? Influenced by the work of Bixby et al. [15], we compare for
each cutting plane separator, the overall performance of Scip run with this separator
with the one of Scip run without this separator. More precisely, we perform two
kinds of tests.

• No interaction: We start with running Scip without any cutting plane sepa-
rators enabled. Then we compare the performance with the one of Scip when
we enable an individual cutting plane separator.

• Interaction: We start with running Scip with all cutting plane separator pro-
vided by Scip enabled. Then we compare the performance with the one of
Scip when we disable an individual cutting plane separator.

There is a weakness in the version of Scip used here, i.e., in Scip 0.81, concern-
ing the restart feature. The cuts which have been generated before a restart are not
known anymore afterwards, i.e., they have to be generated once again. Thus, a per-
formed restart may strongly influence the overall solution time. Since this weakness
has been eliminated in later versions of Scip, we decided to run all tests without
restarts in order to not confuse the comparison of the overall solution times of two
tests.

Our test set contains all instances of the initial test set (see Section 2.3) except
harp2 since for this instance, numerical troubles occurred in some of the test runs.
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Enabling Individual Cutting Plane Separators

We start with the computational study concerning the impact of the individual
cutting plane separators on the overall performance of Scip when they are used as
the only cutting plane separators.

We divided our test set into two subsets; the solvable test set and the unsolvable
test set.

Solvable test set It contains all instances of our test set which can be solved to
optimality within the time and memory limit by Scip run without any cutting
plane separators.

Unsolvable test set It contains the rest of the instances of our test set, i.e., all
instances which cannot be solved to optimality within the time and memory
limit by Scip run without any cutting plane separators.

For the solvable test set, we use the performance measures Nodes and Time.
Here, Nodes denotes the number of nodes evaluated in the branch-and-cut tree and
Time is the elapsed overall CPU time in seconds. For the unsolvable test set, we use
the performance measure Gap % (γ). It denotes the gap between the dual bound
(db) and the primal bound (pb) both obtained when the time or memory limit is
reached for an instance. It is defined as

γ =







0 : db = pb,
∞ : (db = 0 and db < pb) or db · pb < 0,

100 · pb−db|db| : otherwise.

With respect to each of these performance measures, we measure the impact of
an individual cutting plane separator on the overall performance of Scip by taking
the ratio

value of the performance measure obtained by
Scip run without any cutting plane separators

value of the performance measure obtained by
Scip run with only one cutting plane separator enabled

, (7.1)

where individual values smaller than one are replaced by one. This ratio gives us the
factor by which enabling an individual separator improves the overall performance.
We call it improvement factor. An improvement factor greater than one indicates
that enabling the separator improves the overall performance and an improvement
factor smaller than one indicates that enabling the separator causes a degradation in
the overall performance. Therefore, an improvement factor greater than one shows
that the cutting plane separator is important for improving the performance and
the greater the factor (> 1) the greater is the impact of the separator.

For the solvable test set, the results for running Scip without any cutting plane
separators and for enabling individual cutting plane separators are given in Ta-
ble B.64 and Table B.65. In both tables, the column headed No Cuts reports the
results for running Scip without any cutting plane separators and the columns
headed Only GMI, Only C-MIR, Only Knapsack, Only Flow Cover, Only Impl. B., and
Only Clique report the results for enabling individual cutting plane separators.
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Solvable Test Set Unsolvable Test Set

Not Solved Nodes Time Solved No Feas. Gap %
to Opt. Improv. Factor Improv. Factor to Opt. Sol.6 Improv. Factor

Cutting Plane Separator (Number) (Geom. Mean) (Geom. Mean) (Number) (Number) (Geom. Mean)

C-MIR 0 3.55 1.45 6 7 1.66
Flow Cover 0 2.17 1.33 2 8 1.32

Knapsack 0 1.74 1.25 3 8 1.10
GMI 2 1.42 1.12 8 9 1.20
Impl. B. 0 1.29 1.13 5 8 1.24

Clique 0 1.08 1.01 0 7 0.99

Table 7.1: Summary of the computational results concerning the impact of individual cutting plane
separators on the overall performance of Scip. Enabling individual cutting plane separators on the
solvable and unsolvable test set.

At the bottom of these tables, for each test run, we report the number of instances
which could not be solved to optimality within the time and memory limit. These
cases are indicated by the symbol ‘>’ in front of the value of the performance measure
and by the symbol ‘–’ for the corresponding improvement factor. Furthermore, at
the bottom of the tables in the row labelled Geom. Mean, we give the geometric mean
of the improvement factors over all instances which could be solved to optimality
in all test runs reported in the tables. Similar to the presentation of earlier results,
numbers in blue indicate that the corresponding cutting plane separator is important
for improving the performance of Scip with respect to the considered performance
measure. And, numbers in red indicate the opposite case.

For the unsolvable test set, the results for running Scip without any cutting
plane separators and for enabling individual cutting plane separators are given in
Table B.66. They are presented in the same way as for the solvable test set, except
the following changes. At the bottom of the table, we do not report the number
of instances which could not be solved to optimality within the time and memory
limit, but of course the ones which could be solved to optimality within the time and
memory limit. Furthermore, in the row labelled No. Feas. Sol., we report the number
of instances for which no feasible solution was found within the time and memory
limit. For the unsolvable test set, in the columns headed Improvement Factor, the
symbol ‘–’ indicates that Gap % is infinite for using Scip without any cutting plane
separators or that Gap % is zero or infinite for enabling the corresponding cutting
plane separator. For each separator, we calculate the geometric mean of the im-
provement factors only over those instances for which the improvement factors is
given for all cutting plane separators.

A summary of the results of the computational study is given in Figure 7.2 and
Table 7.1. We ordered the cutting plane separators by the magnitude of their impact
on the overall performance with respect to the performance measure Nodes.

The following observations can be made.

Impact on the overall performance For all cutting plane separators, except the
one for the node packing problem, enabling them significantly improves the
overall performance of Scip with respect to all three performance measures.
Enabling the separator for the node packing problem slightly improves the

6No Feas. Sol. = 8 for Scip run without any cutting plane separators.
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Figure 7.2: Summary of the computational results concerning the impact of individual cutting
plane separators on the overall performance of Scip. Enabling individual cutting plane separators
on the solvable and unsolvable test set.

performance on the solvable test set, but it causes a small degradation in the
performance on the unsolvable test set. Thus, all separators, except the one for
the node packing problem are clearly important for improving the performance
of Scip when they are used as the only separators.

Ranking The cutting plane separator for the class of c-MIR inequalities is by far
the most important one for improving the overall performance. It is followed
by the one for the 0-1 single node flow problem, which is also very important
for improving the performance. Afterwards come the ones for the 0-1 knapsack
problem, for the class of GMI inequalities, and for the class of implied bound
inequalities. For them, no clear ranking is possible since the ranking is different
for the solvable and unsolvable test set. On the last position we find the cutting
plane separator for the node packing problem.

Difference between performance measures Nodes and Time For all cutting
plane separators, their impact with respect to the measure Nodes is greater
than their impact with respect to the measure Time. This is not surprising
since the measure Time reflects the costs of an individual cutting plane sepa-
rator.

Difference between solvable and unsolvable test set The performance mea-
sures Time on the solvable test set and Gap % on the unsolvable test set both
reflect the costs of an individual cutting plane separator. Thus, the results
with respect to these measures are comparable. They show that for some
of the separators, there is a difference in the importance of these separators
between the solvable and the unsolvable test set.

On the one hand, the separators for the classes of c-MIR inequalities, GMI in-
equalities, and implied bound inequalities seem to be more important on the
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unsolvable test set than on the solvable test set. In particular, when we enable
the cutting plane separator for the class of GMI inequalities, two instances in
the solvable test set cannot be solved to optimality anymore within the time
and memory limit, but eight instances in the unsolvable test set can now be
solved to optimality. All these separators are general cutting plane separators.

On the other hand, the separator for the 0-1 knapsack problem seems to be
more important on the solvable test set than on the unsolvable test set. This
separator exploits knowledge about the underlying problem.

Furthermore, for the cutting plane separator for the 0-1 single node flow prob-
lem there is no significant difference between the solvable and the unsolvable
test set. This separator exploits knowledge about the underlying problem, but
can be applied in a quite general way (see Chapter 5).

The results seem to indicate that for the unsolvable test set, general cutting
plane separators are more important than the ones which exploit knowledge
about the underlying problem.

Comparison to the results of Section 7.1 The results obtained in Section 7.1
indicated that the cutting plane separator for the class of GMI inequalities
might be more important for the improvement of the overall performance than
the ones for the class of c-MIR inequalities and the 0-1 single node flow prob-
lem. But, the results obtained here show another trend.

Disabling Individual Cutting Plane Separators

Now, we present the results of our computational study concerning the impact of the
individual cutting plane separators when they are used in connection with all other
cutting plane separator provided by Scip. As we will see, in our implementation, the
interaction of the cutting plane separators influences the impact which the individual
separators have on the overall performance.

As for enabling individual cutting plane separators, we divided our test set into
two subsets. They are also called solvable test set and unsolvable test set.

Solvable test set It contains all instances of our test set which can be solved to
optimality within the time and memory limit by Scip run with all cutting
plane separators enabled.

Unsolvable test set It contains the rest of the instances, i.e., all instances which
cannot be solved to optimality within the time and memory limit by Scip run
with all cutting plane separators enabled.

For both test sets, we use the same performance measures as for enabling indi-
vidual cutting plane separators, i.e., we use the measures Nodes and Time for the
solvable test set and the measure Gap % for the unsolvable test set. Furthermore,
with respect to each performance measure, we measure the impact of an individual
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Solvable Test Set Unsolvable Test Set

Not Solved Nodes Time Solved No Feas. Gap %
to Opt. Degrad. Factor Degrad. Factor to Opt. Sol.7 Degrad. Factor

Cutting Plane Separator (Number) (Geom. Mean) (Geom. Mean) (Number) (Number) (Geom. Mean)

C-MIR 4 1.85 1.13 1 9 1.29
GMI 2 1.34 1.03 0 9 1.05

Knapsack 1 1.18 1.05 1 9 1.01
Flow Cover 3 1.16 1.02 0 9 0.99

Impl. B. 1 1.05 1.03 1 7 1.05
Clique 2 1.06 0.97 1 8 1.01

Table 7.2: Summary of the computational results concerning the impact of individual cutting
plane separators on the overall performance of Scip. Disabling individual cutting plane separators
on the solvable and unsolvable test set.

cutting plane separator on the overall performance by taking the ratio

value of the performance measure obtained by
Scip run with one cutting plane separator disabled

value of the performance measure obtained by
Scip run with all cutting plane separators enabled

, (7.2)

where individual values smaller than one are replaced by one. Here, the ratio gives
us the factor by which disabling an individual separator degrades the overall per-
formance. We call it degradation factor. A degradation factor greater than one
indicates that disabling the cutting plane separator causes a degradation in the
performance and a degradation factor smaller than one indicates an improved per-
formance for disabling the separator. Therefore, a degradation factor greater than
one shows that the corresponding cutting plane separator is important for an im-
proved overall performance and the greater the factor (> 1) the greater is the impact
of the separator.

For the solvable test set, the results for running Scip with all cutting plane
separators enabled and for disabling individual cutting plane separators are given in
Table B.67 and Table B.68. In both tables, the column headed All Cuts reports the
results for running Scip with all cutting plane separator enabled, and the columns
headed No GMI, No C-MIR, No Knapsack, No Flow Cover, No Impl. B., and No Clique

report the results for disabling individual cutting plane separators. Apart from that,
the presentation of the results is the same as for enabling individual separators.
Note that in both tables the cutting plane separators are ordered with respect to
the results obtained in [15] for disabling the corresponding separators in CPlex 8.0.

For the unsolvable test set, the results for the same tests are given in Table B.69.
The meaning of the columns is the same as in Table B.67 and Table B.68, and
the presentation of the results is the same as for enabling individual cutting plane
separators.

A summary of the results of the computational study can be found in Figure 7.3
and Table 7.2. As for enabling individual separators, we ordered the separators by
their importance for improving the overall performance with respect to the perfor-
mance measure Nodes.

7No Feas. Sol. = 8 for Scip run with all cutting plane separators enabled.
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Figure 7.3: Summary of the computational results concerning the impact of individual cutting
plane separators on the overall performance of Scip. Disabling individual cutting plane separators
on the solvable and unsolvable test set.

Here, we observe the following.

Impact on the overall performance For all cutting plane separators except the
ones for the 0-1 single node flow problem and the node packing problem,
disabling them causes a degradation in the overall performance with respect
to all three performance measures. Disabling the separator for the 0-1 single
node flow problem leads to a slight improvement in the performance with
respect to the measure Gap % on the unsolvable test set. This is different to
the situation where the separator was used as the only cutting plane separator
(see Figure 7.2 and Table 7.1). We will give a possible explanation when we
discuss the ranking of the separators. Disabling the cutting plane separator
for the node packing problem causes an improved performance with respect to
the measure Time on the solvable test set. This result goes along with the one
obtained for using it as the only cutting plane separator (see Figure 7.2 and
Table 7.1).

Ranking There is a difference in the ranking of the separators here to the one
obtained for enabling individual cutting plane separators.

First of all, the cutting plane separator for the class of c-MIR inequalities is
still the most important one for improving the performance when it is used
in connection with all other separators provided by Scip. And, the cutting
plane separator for the node packing problem is still the least important one
for improving the performance.

For the rest of the separators, it is hard to find a ranking with respect to the
measures Time and Gap %. Since the measure Nodes gives a much clearer pic-
ture, we consider it for the ranking of these separators. Here, the importance
of the separators for the class of GMI inequalities and the 0-1 single node flow
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problem interchange. After the separator for the class of c-MIR inequalities
(degradation factor of 1.85 in geometric mean), the separator for the GMI in-
equalities is the most important one for improving the overall performance
(degradation factor of 1.34 in geometric mean). It is followed by the ones for
the 0-1 knapsack problem and the 0-1 single node flow problem (degradation
factors of 1.18 and 1.16 in geometric mean, respectively). The impact of the
cutting plane separator for the class of implied bound inequalities is similar to
the one for the node packing problem with respect to the measure Nodes.

Valid inequalities for the 0-1 single node flow problem can also be obtained
as c-MIR inequalities (see Chapter 5). Therefore, it is not surprising that the
importance of the cutting plane separator for the 0-1 single node flow problem
decreases when it is used in connection with all other cutting plane separators
provided by Scip. But the results obtained here also show that this separator
is still important for improving the overall performance of Scip when it is used
in connection with the one for the class of c-MIR inequalities. Also note that
three instances in the solvable test set cannot be solved to optimality anymore
when the separator for the 0-1 single node flow problem is disabled.

Furthermore, in our implementation, the cutting plane separator for the class
of GMI inequalities seems to be more important for improving the overall
performance when it is used in connection with other cutting plane separators.

Difference between solvable and unsolvable test set As for enabling individ-
ual cutting plane separators, we can observe that the general cutting plane
separators, i.e., the separators for the classes of c-MIR inequalities, GMI in-
equalities, and implied bound inequalities, seem to be more important for
improving the performance of Scip on the unsolvable test set than on the
solvable test set. Furthermore, the cutting plane separator for the 0-1 knap-
sack problem seems again to be more important for the solvable test set than
for the unsolvable test set. Concerning the separator for the 0-1 single node
flow problem the results are different to the ones obtained for using the sep-
arator without any other separators. Here, its importance for improving the
performance of Scip on the unsolvable test set is not similar anymore to the
one on the solvable test set. The separator seems to be more important for
the solvable test set.

Comparison to the results of Bixby et al. [15] Bixby et al. [15] performed
the following test for CPlex 8.0 on a test set of 106 instances which were
solvable by CPlex 8.0 in less than 1,000 seconds and were not solvable by
CPlex 5.0 (with disabled generation of clique cuts and knapsack cover cuts)
in 100,000 seconds or less. For each of the eight kinds of default cutting plane
separators, they disabled that one kind of separators, compared the results
with the default running time, and calculated the geometric mean over these
ratios. Note that in [15] the geometric mean is calculated over all instances in
the test set, i.e., the instances which could not be solved to optimality within
the time limit of 100,000 seconds by one of the test runs are included in the
geometric mean. This may explain, why the magnitude of their degradation
factors is greater than the ones obtained here. Their results show that the sep-
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arator for the class of GMI inequalities is the most important one for improving
the performance, followed by the one for the class of MIR inequalities. The
separators for knapsack cover cuts, flow cover cuts, and implied bound cuts are
in the middle field, and the one for the clique cuts is one of the least important
ones for improving the performance. Thus, the main difference between our
results obtain for Scip and the ones obtained by Bixby et al. is that in Scip

the separator for the class of c-MIR inequalities is more important than the
one for the class of GMI inequalities and that in CPlex 8.0 the opposite case
is true.

7.3 Conclusion

The results of our computational study concerning the comparison with Cplex and
Cbc have shown the following. For two of the tested cutting plane separators,
namely the ones for the class of c-MIR inequalities and the 0-1 single node flow
problem, Scip is competitive to both Cplex and Cbc and performs even better
than both of them.

For the cutting plane separator for the class of GMI inequalities, Scip is not
competitive to neither Cplex nor Cbc. This should be improved in one of the next
versions of Scip since this cutting plane separator is one of the most important
ones in Scip and Cplex for improving the overall performance of the MIP solver.
Finally, our cutting plane separator for the 0-1 knapsack problem is superior to the
one of Cbc, but Cplex provides a more effective separator than Scip with respect
to the initial gap closed.

From the results of our second study, where we evaluated the impact of the
individual cutting plane separators on the overall performance of Scip, we conclude
that the cutting plane separator for the class of c-MIR inequalities is the most
important one and the one for the node packing problem is the least important one.

Furthermore, each tested cutting plane separator is clearly efficient when it is
used as the only cutting plane separator in Scip. When we apply the individ-
ual cutting plane separators in connection with all other separators provided by
Scip they are still efficient with respect to the number of nodes evaluated in the
branch-and-cut tree. But, their impact on improving the overall solution time de-
creases. These results indicate that in order to further improve the performance of
Scip with respect to the overall solution time, further investigations should be done
concerning methods which manage the application of the cutting plane separators.

Finally, the results of both computational studies suggest that using the c-MIR ap-
proach for our cutting plane separator for the 0-1 single node flow problem leads to
good results in practice. The cutting plane separator is very efficient when it is
applied as the only one in Scip. Used in connection with all other cutting plane
separators, in particular, in addition to the one for the class of c-MIR inequalities,
the efficiency decreases, but the separator is still important for improving the overall
performance of Scip.



Appendix A

Zusammenfassung

In dieser Diplomarbeit haben wir uns mit der Implementierung von effizienten
Schnittebenenverfahren für gemischt-ganzzahlige Programme (MIPs) befasst. Da
das Lösen eines MIPs NP-schwer ist, verwenden moderne MIP Löser heute auf li-
nearer Programmierung basierende Branch-und-Cut Algorithmen. Schnittebenen-
verfahren sind ein wichtiger Bestandteil dieser Lösungsmethode. Die hier vorgestell-
ten Verfahren wurden in den MIP Löser Scip integriert, welcher am Zuse Institute
Berlin entwickelt wurde.

Im Hauptteil dieser Arbeit beschäftigten wir uns mit Schnittebenenverfahren für

• die Klasse der c-MIR Ungleichungen,

• das 0-1 Knapsack Problem, und

• das 0-1 Single Node Flow Problem.

Wir haben jeweils einen Literaturüberblick über die zugrundeliegende Theorie
und eine Übersicht über bereits in der Literatur diskutierte Algorithmen gegeben.
Desweiteren haben wir die Klassen der gültigen Ungleichungen vorgestellt, die wir
separieren wollten. Für das 0-1 Knapsack Problem und das 0-1 Single Node Flow
Problem kamen mehrere Klassen in Frage.

Für das erste Problem haben unsere Experimente gezeigt, dass eine Kombination
von Schnittebenenverfahren für zwei der drei untersuchten Klassen zu den besten
Ergebnissen in der Praxis führt.

Für das zweite Problem ist bekannt, dass verschiedene Klassen von gültigen
Ungleichungen auch als c-MIR Ungleichungen generiert werden können. Die Un-
tersuchungen in unserem Abschlussexperiment haben ergeben, dass es sich in der
Praxis lohnt, neben dem allgemeinen Separierer für die Klasse der c-MIR Unglei-
chungen zusätzlich einen Algorithmus zu verwenden, der diese speziellen c-MIR
Ungleichungen gezielt separiert.

Für die Implementierung von effizienten Schnittebenenverfahren muss eine
Vielzahl an Entscheidungen getroffen werden bezüglich der verwendeten Heuristiken.
Für die untersuchten Schnittebenenverfahren haben wir verschiedene Varianten
zunächst theoretisch diskutiert. In einer experimentellen Untersuchung analysierten
wir dann welche Aspekte der Algorithmen für die Effizienz der Schnittebenenver-
fahren massgebend sind und welche Heuristiken zu den besten Ergebnissen führen.
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Hierbei sind wird auch auf Methoden zur Reduzierung der benötigten Rechenzeit
eingegangen. In diesen Experimente wurden die einzelnen Schnittebenenverfahren
ohne Interaktion mit anderen Bestandteilen des MIP Lösers verwendet.

Die Arbeit wurde durch ein Abschlussexperiment ergänzt, in welches wir drei
weitere Schnittebenenverfahren aus Scip einbezogen haben. In dieser Untersuchung
haben wir gezeigt, dass unsere Schnittebenenverfahren für die Klasse der c-MIR Un-
gleichungen und für das 0-1 Single Node Flow Problem jeweils wettbewerbsfähig sind
zu denen anderer moderner MIP Löser. Auch dieses Ergebniss bezieht sich auf die
Verwendung der einzelnen Verfahren ohne Interaktion mit anderen Bestandteilen des
MIP Lösers. Zum Schluss, haben wir analysiert welchen Einfluss die sechs Schnitt-
ebenenverfahren jeweils auf den Gesamtlösungsprozess von Scip haben. Es hat
sich herausgestellt, dass der Separierer für die Klasse der c-MIR Ungleichungen am
wichtigsten ist, um die Leistung von Scip zu steigern.
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Tables

B.1 Cutting Plane Separator for the Class of C-MIR

Inequalities

Name Type Conss Vars zLP zMIP

a1c1s1 BMIP 3312 3648 997.529583 11566.5904
aflow30a BMIP 479 842 983.167425 1158
aflow40b BMIP 1442 2728 1005.66482 1168
arki001 MIP 1048 1388 7579621.83 7580814.51
atlanta-ip MIP 21732 48738 81.2455967 95.0095497
bc1 BMIP 1913 1751 2.18877397 3.33836255
bell3a MIP 123 133 866171.733 878430.316
bell5 MIP 91 104 8908552.45 8966406.49
bienst1 BMIP 576 505 11.7241379 46.75
bienst2 BMIP 576 505 11.7241379 54.6
binkar10 1 BMIP 1026 2298 6637.18803 6742.20002
blend2 MIP 274 353 6.91567511 7.598985
dano3 4 BMIP 3202 13873 576.23162 576.435225
dano3 5 BMIP 3202 13873 576.23162 576.924916
dano3mip BMIP 3202 13873 576.23162 705.941176
danoint BMIP 664 521 62.6372804 65.67
dcmulti BMIP 290 548 184466.891 188182
egout BMIP 98 141 511.61784 568.1007
fiber BMIP 363 1298 198107.358 405935.18
fixnet6 BMIP 478 878 3192.042 3983
flugpl MIP 18 18 1167185.73 1201500
gen MIP 780 870 112271.463 112313.363
gesa2 MIP 1392 1224 25492512.1 25779856.4
gesa2-o MIP 1248 1224 25476489.7 25779856.4
gesa3 MIP 1368 1152 27846437.5 27991042.6
gesa3 o MIP 1224 1152 27833632.5 27991042.6
gt2 IP 29 188 20146.7613 21166
harp2 BIP 112 2993 -74325169.3 -73899597
khb05250 BMIP 101 1350 95919464 106940226
lseu BIP 28 89 947.957237 1120
mitre BIP 2054 10724 114782.467 115155
mkc BMIP 3411 5325 -611.85 -563.212
mod008 BIP 6 319 290.931073 307
mod010 BIP 146 2655 6532.08333 6548
mod011 BMIP 4480 10958 -62081950.3 -54558535
modglob BMIP 291 422 20430947.6 20740508
momentum1 BMIP 42680 5174 82424.4594 109143.493
momentum2 MIP 24237 3732 10696.1116 12314.2196
msc98-ip MIP 15850 21143 19520966.2 23271298

continued on the next page
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Name Type Conss Vars zLP zMIP

neos1 BIP 5020 2112 5.6 19
neos2 BMIP 1103 2101 -4407.09724 454.864697
neos3 BMIP 1442 2747 -6158.20911 368.842751
neos616206 BMIP 534 480 787.721258 937.6
neos632659 BMIP 244 420 -119.47619 -94
neos7 MIP 1994 1556 562977.43 721934
neos8 IP 46324 23228 -3725 -3719
neos14 BMIP 552 792 32734.1148 74333.3433
neos15 BMIP 552 792 33463.7701 80851.6678
neos16 IP 1018 377 429 450
neos22 BMIP 5208 3240 777191.429 779715
neos23 BMIP 1568 477 56 137
net12 BMIP 14021 14115 68.3978758 214
nsrand-ipx BMIP 735 6621 49667.8923 51520
p0033 BIP 16 33 2828.33136 3089
p0282 BIP 241 282 180000.3 258411
p0548 BIP 176 548 4790.57713 8691
p2756 BIP 755 2756 2701.14437 3124
pp08a BMIP 136 240 2748.34524 7350
pp08aCUTS BMIP 246 240 5480.60616 7350
prod1 BMIP 208 250 -84.4158719 -56
qnet1 MIP 503 1541 14274.1027 16029.6927
qnet1 o MIP 456 1541 12557.2479 16029.6927
ran10x26 BMIP 296 520 3857.02278 4270
ran12x21 BMIP 285 504 3157.37744 3664
ran13x13 BMIP 195 338 2691.43947 3252
ran14x18 1 BMIP 284 504 3016.94435 3714
ran8x32 BMIP 296 512 4937.58453 5247
rentacar BMIP 6803 9557 28928379.6 30356761
rgn BMIP 24 180 48.7999986 82.1999992
roll3000 MIP 2295 1166 11097.2754 12899
set1ch BMIP 492 712 35118.1098 54537.75
sp97ar BIP 1761 14101 652560391 663164724
swath BMIP 884 6805 334.496858 477.34101
timtab1 MIP 171 397 157896.037 764772
timtab2 MIP 294 675 210652.471 1184230
tr12-30 BMIP 750 1080 18124.1745 130596
vpm1 BMIP 234 378 16.4333333 20
vpm2 BMIP 234 378 10.303297 13.75

Table B.1: Summary of the main test set for the cutting plane separator for the class of c-MIR
inequalities.
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Name Type Conss Vars zLP zMIP

10teams BMIP 230 2025 917 924
30:70:4 5:0 5:100 BMIP 12050 10772 8.1 9
30:70:4 5:0 95:98 BMIP 12471 10990 11.5 12
air03 BIP 124 10757 338864.25 340160
air04 BIP 823 8904 55535.4364 56137
air05 BIP 426 7195 25877.6093 26374
cap6000 BIP 2176 6000 -2451537.33 -2451377
dano3 3 BMIP 3202 13873 576.23162 576.344633
ds BIP 656 67732 57.2347263 468.645
eilD76 BIP 75 1898 680.538997 885.411847
fast0507 BIP 507 63009 172.145567 174
glass4 BMIP 396 322 800002400 1.6000134e+09
irp BIP 39 20315 12123.5302 12159.4928
l152lav BIP 97 1989 4656.36364 4722
liu BMIP 2178 1156 560 1146
manna81 IP 6480 3321 -13297 -13164
markshare1 BMIP 6 62 0 1
markshare2 BMIP 7 74 0 1
mas284 BMIP 68 151 86195.863 91405.7237
mas74 BMIP 13 151 10482.7953 11801.1857
mas76 BMIP 12 151 38893.9036 40005.0541
misc03 BMIP 96 160 1910 3360
misc06 BMIP 820 1808 12841.6894 12850.8607
misc07 BMIP 212 260 1415 2810
mkc1 BMIP 3411 5325 -611.85 -607.207
mzzv11 IP 9499 10240 -22944.9875 -21718
mzzv42z IP 10460 11717 -21622.9985 -20540
neos648910 BMIP 1491 814 16 32
neos9 BMIP 31600 81408 780 798
neos10 IP 46793 23489 -1196.33333 -1135
neos11 BMIP 2706 1220 6 9
neos12 BMIP 8317 3983 9.41161243 13
neos13 BMIP 20852 1827 -126.178378 -95.4748066
neos17 BMIP 486 535 0.000681498501 0.150002577
neos18 BIP 11402 3312 7 16
neos19 BMIP 34082 103789 -1611 -1499
neos20 MIP 2446 1165 -475 -434
neos21 BMIP 1085 614 2.21648352 7
noswot MIP 182 128 -43 -41
nug08 BIP 912 1632 203.5 214
nw04 BIP 36 87482 16310.6667 16862
opt1217 BMIP 64 769 -20.0213904 -16
p0201 BIP 133 201 7125 7615
pk1 BMIP 45 86 0 11
protfold BIP 2112 1835 -41.9574468 -23
qap10 BIP 1820 4150 332.566228 340
qiu BMIP 1192 840 -931.638854 -132.873137
rout MIP 291 556 981.864286 1077.56
seymour BIP 4944 1372 403.846474 423
seymour1 BMIP 4944 1372 403.846474 410.763701
stein27 BIP 118 27 13 18
stein45 BIP 331 45 22 30
swath1 BMIP 884 6805 334.496858 379.071296
swath2 BMIP 884 6805 334.496858 385.199693
swath3 BMIP 884 6805 334.496858 397.761344
t1717 BIP 551 73885 134531.021 288658

Table B.2: Summary of the remaining test set for the cutting plane separator for the class of
c-MIR inequalities.
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

a1c1s1 48.34 1432 520.8 14.9
aflow30a 46.36 408 39.2 1.3
aflow40b 31.65 428 186.6 7.2
arki001 2.40 156 4.9 0.8
atlanta-ip 0.17 60 3500.6 583.4
bc1 0.00 0 0.0 0.0
bell3a 60.20 15 0.0 0.0
bell5 45.63 38 0.1 0.0
bienst1 0.00 0 0.0 0.0
bienst2 0.00 0 0.0 0.0
binkar10 1 55.01 52 0.4 0.1
blend2 11.50 20 0.4 0.0
dano3 4 0.00 0 3.3 3.3
dano3 5 0.00 0 4.5 4.5
dano3mip 0.00 1 52.3 26.2
danoint 0.51 14 1.0 0.2
dcmulti 30.07 115 0.7 0.1
egout 90.80 69 0.2 0.0
fiber 88.69 58 0.2 0.0
fixnet6 73.75 1227 35.6 0.4
flugpl 2.01 2 0.0 0.0
gen 100.00 23 0.0 0.0
gesa2 74.60 161 1.3 0.2
gesa2-o 69.13 323 4.9 0.3
gesa3 57.91 114 1.8 0.3
gesa3 o 61.15 184 2.7 0.3
gt2 48.50 18 0.0 0.0
harp2 11.11 3 0.0 0.0
khb05250 4.70 1 0.0 0.0
lseu 46.23 29 0.0 0.0
mitre 10.78 819 37.5 6.3
mkc 13.37 171 19.8 1.1
mod008 40.41 13 0.1 0.0
mod010 18.32 2 0.2 0.1
mod011 88.63 3374 465.2 7.6
modglob 27.00 109 0.1 0.0
momentum1 0.00 11 317.0 79.2
momentum2 0.02 16 732.5 146.5
msc98-ip 0.97 378 856.4 107.0
neos1 0.00 186 0.4 0.1
neos2 9.48 500 70.0 2.3
neos3 10.39 740 164.6 3.7
neos616206 0.14 78 0.4 0.1
neos632659 54.38 549 1.5 0.1
neos7 71.72 473 20.6 0.8
neos8 4.17 5 59.9 30.0
neos14 67.85 638 20.9 0.4
neos15 71.64 1164 40.3 0.8
neos16 9.52 139 0.4 0.1
neos22 94.20 30 2.7 0.9
neos23 9.49 291 2.6 0.2
net12 2.92 167 930.0 54.7
nsrand-ipx 11.71 61 8.3 1.4
p0033 63.37 22 0.0 0.0
p0282 92.80 124 0.3 0.0
p0548 88.96 125 0.1 0.0
p2756 72.98 242 0.9 0.1
pp08a 93.98 209 0.6 0.0
pp08aCUTS 89.91 115 0.3 0.0
prod1 0.85 97 0.7 0.1
qnet1 71.96 70 0.3 0.0
qnet1 o 88.98 99 0.5 0.0
ran10x26 44.85 73 0.5 0.0

continued on the next page
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

ran12x21 34.49 49 0.3 0.0
ran13x13 27.10 31 0.1 0.0
ran14x18 1 33.09 75 0.6 0.0
ran8x32 42.26 95 0.9 0.1
rentacar 0.00 0 0.0 0.0
rgn 95.77 220 0.9 0.0
roll3000 57.34 266 54.8 3.4
set1ch 99.26 267 0.6 0.1
sp97ar 0.75 8 12.1 6.0
swath 0.00 0 0.2 0.2
timtab1 30.81 323 1.5 0.1
timtab2 18.37 704 7.2 0.5
tr12-30 93.60 1420 62.2 1.8
vpm1 100.00 44 0.0 0.0
vpm2 74.15 197 0.6 0.0

Total 3093.17 19740 8259.5 1099.3
Geom. Mean 16.29 59 4.5 1.9

Table B.3: Computational results for the cutting plane separator for the class of c-MIR inequalities
on the main test set. Default algorithm.
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 78.99 30.65 3406 1974 1250.5 729.7 19.8 4.9
aflow30a 45.62 -0.74 381 -27 36.0 -3.2 1.4 0.1
aflow40b 35.56 3.91 429 1 261.6 75.0 9.3 2.1
arki001 15.05 12.65 265 109 7.2 2.3 1.2 0.4
atlanta-ip 0.17 0.00 64 4 4162.9 662.3 832.6 249.2
bc1 37.93 37.93 17 17 1.3 1.3 0.2 0.2
bell3a 59.02 -1.18 15 0 0.0 0.0 0.0 0.0
bell5 47.29 1.66 48 10 0.1 0.0 0.0 0.0
bienst1 6.82 6.82 136 136 2.0 2.0 0.1 0.1
bienst2 7.57 7.57 206 206 3.0 3.0 0.2 0.2
binkar10 1 55.01 0.00 52 0 0.3 -0.1 0.1 0.0
blend2 10.49 -1.01 25 5 0.4 0.0 0.0 0.0
dano3 4 1.46 1.46 2 2 6.9 3.6 3.5 0.2
dano3 5 1.44 1.44 6 6 20.0 15.5 5.0 0.5
dano3mip 0.01 0.01 6 5 91.5 39.2 30.5 4.3
danoint 0.93 0.42 60 46 2.2 1.2 0.4 0.2
dcmulti 50.84 20.77 192 77 1.5 0.8 0.1 0.0
egout 100.00 9.20 95 26 0.1 -0.1 0.0 0.0
fiber 88.69 0.00 58 0 0.2 0.0 0.0 0.0
fixnet6 69.05 -4.70 1030 -197 44.3 8.7 0.7 0.3
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 23 0 0.1 0.1 0.0 0.0
gesa2 99.64 25.04 277 116 3.3 2.0 0.3 0.1
gesa2-o 91.26 22.13 404 81 5.4 0.5 0.4 0.1
gesa3 79.12 21.21 161 47 3.7 1.9 0.5 0.2
gesa3 o 82.73 21.58 266 82 4.8 2.1 0.5 0.2
gt2 48.50 0.00 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 94.42 89.72 982 981 19.9 19.9 0.4 0.4
lseu 46.23 0.00 29 0 0.0 0.0 0.0 0.0
mitre 10.78 0.00 819 0 37.5 0.0 6.3 0.0
mkc 13.37 0.00 171 0 19.8 0.0 1.1 0.0
mod008 40.41 0.00 13 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 86.54 -2.09 2260 -1114 294.3 -170.9 5.5 -2.1
modglob 36.30 9.30 177 68 0.2 0.1 0.0 0.0
momentum1 0.00 0.00 19 8 367.3 50.3 91.8 12.6
momentum2 0.02 0.00 58 42 1157.6 425.1 192.9 46.4
msc98-ip 1.03 0.06 392 14 904.0 47.6 113.0 6.0
neos1 0.00 0.00 186 0 0.4 0.0 0.1 0.0
neos2 18.72 9.24 1425 925 825.6 755.6 6.8 4.5
neos3 13.58 3.19 1277 537 1138.4 973.8 9.4 5.7
neos616206 0.00 -0.14 125 47 0.5 0.1 0.1 0.0
neos632659 0.00 -54.38 114 -435 0.1 -1.4 0.0 -0.1
neos7 72.10 0.38 505 32 22.9 2.3 1.0 0.2
neos8 4.17 0.00 5 0 59.6 -0.3 29.8 -0.2
neos14 76.43 8.58 1370 732 64.7 43.8 0.9 0.5
neos15 80.94 9.30 2000 836 101.6 61.3 1.2 0.4
neos16 9.52 0.00 139 0 0.4 0.0 0.1 0.0
neos22 100.00 5.80 27 -3 2.7 0.0 0.9 0.0
neos23 12.28 2.79 468 177 4.0 1.4 0.2 0.0
net12 2.92 0.00 167 0 929.5 -0.5 54.7 0.0
nsrand-ipx 11.71 0.00 61 0 8.3 0.0 1.4 0.0
p0033 63.37 0.00 22 0 0.0 0.0 0.0 0.0
p0282 92.80 0.00 124 0 0.3 0.0 0.0 0.0
p0548 88.96 0.00 125 0 0.2 0.1 0.0 0.0
p2756 72.98 0.00 242 0 0.9 0.0 0.1 0.0
pp08a 97.23 3.25 366 157 3.1 2.5 0.1 0.1
pp08aCUTS 92.21 2.30 181 66 1.4 1.1 0.1 0.1
prod1 0.85 0.00 97 0 0.7 0.0 0.1 0.0
qnet1 71.96 0.00 70 0 0.3 0.0 0.0 0.0
qnet1 o 88.98 0.00 99 0 0.5 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 52.18 7.33 167 94 6.5 6.0 0.3 0.3
ran12x21 57.12 22.63 202 153 6.3 6.0 0.2 0.2
ran13x13 52.40 25.30 180 149 3.7 3.6 0.1 0.1
ran14x18 1 46.48 13.39 232 157 5.9 5.3 0.2 0.2
ran8x32 72.89 30.63 168 73 5.0 4.1 0.2 0.1
rentacar 18.10 18.10 62 62 3.4 3.4 0.1 0.1
rgn 98.80 3.03 137 -83 0.6 -0.3 0.0 0.0
roll3000 57.34 0.00 266 0 79.5 24.7 5.0 1.6
set1ch 99.90 0.64 269 2 0.4 -0.2 0.1 0.0
sp97ar 0.75 0.00 8 0 12.0 -0.1 6.0 0.0
swath 5.45 5.45 1 1 0.5 0.3 0.3 0.1
timtab1 64.43 33.62 826 503 10.4 8.9 0.3 0.2
timtab2 32.90 14.53 1540 836 33.3 26.1 1.0 0.5
tr12-30 96.11 2.51 2487 1067 165.6 103.4 3.1 1.3
vpm1 100.00 0.00 33 -11 0.0 0.0 0.0 0.0
vpm2 75.56 1.41 221 24 0.9 0.3 0.1 0.1

Total 3575.89 482.72 28563 8823 12210.5 3951.0 1441.8 342.5
Geom. Mean 21.46 5.17 107 48 7.2 2.7 2.0 0.1

Table B.4: Computational results for the cutting plane separator for the class of c-MIR inequalities
on the main test set. Aggregation heuristic. Use Score Type 3. (4 with respect to the default
algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 77.42 29.08 3646 2214 1211.5 690.7 19.5 4.6
aflow30a 45.30 -1.06 396 -12 22.8 -16.4 0.9 -0.4
aflow40b 33.22 1.57 472 44 216.1 29.5 6.0 -1.2
arki001 3.28 0.88 171 15 3.0 -1.9 0.5 -0.3
atlanta-ip 0.17 0.00 58 -2 3694.9 194.3 615.8 32.4
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 52.67 -7.53 11 -4 0.0 0.0 0.0 0.0
bell5 45.06 -0.57 41 3 0.0 -0.1 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.0 0.0 0.0 0.0
binkar10 1 55.01 0.00 52 0 0.3 -0.1 0.1 0.0
blend2 9.55 -1.95 32 12 0.3 -0.1 0.0 0.0
dano3 4 0.00 0.00 2 2 5.2 1.9 2.6 -0.7
dano3 5 0.19 0.19 3 3 7.1 2.6 3.5 -1.0
dano3mip 0.03 0.03 38 37 103.5 51.2 17.3 -8.9
danoint 0.95 0.44 49 35 1.2 0.2 0.2 0.0
dcmulti 38.30 8.23 194 79 1.4 0.7 0.1 0.0
egout 100.00 9.20 30 -39 0.0 -0.2 0.0 0.0
fiber 88.69 0.00 58 0 0.2 0.0 0.0 0.0
fixnet6 68.62 -5.13 925 -302 48.2 12.6 0.6 0.2
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 22 -1 0.1 0.1 0.0 0.0
gesa2 72.69 -1.91 160 -1 1.1 -0.2 0.1 -0.1
gesa2-o 39.96 -29.17 235 -88 1.4 -3.5 0.2 -0.1
gesa3 57.89 -0.02 112 -2 1.7 -0.1 0.2 -0.1
gesa3 o 61.07 -0.08 185 1 2.5 -0.2 0.3 0.0
gt2 48.50 0.00 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 46.23 0.00 29 0 0.0 0.0 0.0 0.0
mitre 10.78 0.00 819 0 38.1 0.6 6.3 0.0
mkc 13.37 0.00 171 0 21.5 1.7 1.2 0.1
mod008 40.41 0.00 13 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 56.30 -32.33 651 -2723 41.7 -423.5 1.2 -6.4
modglob 17.81 -9.19 101 -8 0.1 0.0 0.0 0.0
momentum1 0.00 0.00 13 2 332.9 15.9 66.6 -12.6
momentum2 0.02 0.00 16 0 720.0 -12.5 144.0 -2.5
msc98-ip 1.04 0.07 392 14 1196.7 340.3 119.7 12.7
neos1 0.00 0.00 186 0 0.4 0.0 0.1 0.0
neos2 0.74 -8.74 32 -468 2.2 -67.8 0.3 -2.0
neos3 1.03 -9.36 59 -681 6.1 -158.5 0.7 -3.0
neos616206 0.04 -0.10 76 -2 0.4 0.0 0.1 0.0
neos632659 28.04 -26.34 218 -331 0.3 -1.2 0.0 -0.1
neos7 71.44 -0.28 608 135 25.1 4.5 0.8 0.0
neos8 4.17 0.00 5 0 68.1 8.2 34.1 4.1
neos14 66.47 -1.38 608 -30 17.9 -3.0 0.4 0.0
neos15 65.53 -6.11 1097 -67 40.6 0.3 0.7 -0.1
neos16 9.52 0.00 139 0 0.4 0.0 0.1 0.0
neos22 24.51 -69.69 44 14 2.9 0.2 0.6 -0.3
neos23 9.49 0.00 315 24 2.5 -0.1 0.1 -0.1
net12 2.92 0.00 167 0 937.0 7.0 55.1 0.4
nsrand-ipx 11.71 0.00 61 0 8.2 -0.1 1.4 0.0
p0033 63.37 0.00 22 0 0.0 0.0 0.0 0.0
p0282 92.80 0.00 124 0 0.3 0.0 0.0 0.0
p0548 88.96 0.00 125 0 0.2 0.1 0.0 0.0
p2756 72.98 0.00 242 0 0.9 0.0 0.1 0.0
pp08a 94.35 0.37 250 41 0.7 0.1 0.0 0.0
pp08aCUTS 86.86 -3.05 147 32 0.3 0.0 0.0 0.0
prod1 0.85 0.00 97 0 0.7 0.0 0.1 0.0
qnet1 71.96 0.00 70 0 0.3 0.0 0.0 0.0
qnet1 o 88.98 0.00 99 0 0.5 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 6.07 -38.78 2 -71 0.0 -0.5 0.0 0.0
ran12x21 29.35 -5.14 21 -28 0.0 -0.3 0.0 0.0
ran13x13 27.10 0.00 31 0 0.1 0.0 0.0 0.0
ran14x18 1 19.97 -13.12 20 -55 0.1 -0.5 0.0 0.0
ran8x32 38.71 -3.55 3 -92 0.0 -0.9 0.0 -0.1
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 98.88 3.11 179 -41 0.9 0.0 0.0 0.0
roll3000 57.34 0.00 266 0 56.1 1.3 3.5 0.1
set1ch 99.13 -0.13 275 8 0.6 0.0 0.1 0.0
sp97ar 0.75 0.00 8 0 12.0 -0.1 6.0 0.0
swath 5.45 5.45 1 1 0.5 0.3 0.2 0.0
timtab1 36.52 5.71 317 -6 0.8 -0.7 0.1 0.0
timtab2 20.64 2.27 706 2 4.7 -2.5 0.3 -0.2
tr12-30 95.11 1.51 1751 331 93.4 31.2 2.3 0.5
vpm1 100.00 0.00 26 -18 0.0 0.0 0.0 0.0
vpm2 74.75 0.60 211 14 1.0 0.4 0.0 0.0

Total 2887.19 -205.98 17731 -2009 8960.3 700.8 1114.6 15.3
Geom. Mean 14.69 -1.60 52 -7 4.1 -0.4 1.8 -0.1

Table B.5: Computational results for the cutting plane separator for the class of c-MIR inequalities
on the main test set. Aggregation heuristic. Use Score Type 4. (4 with respect to the default
algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 24.09 -24.25 282 -1150 43.8 -477.0 4.9 -10.0
aflow30a 31.17 -15.19 194 -214 3.0 -36.2 0.2 -1.1
aflow40b 23.93 -7.72 377 -51 19.5 -167.1 0.8 -6.4
arki001 10.48 8.08 94 -62 4.0 -0.9 0.8 0.0
atlanta-ip 0.17 0.00 66 6 2968.3 -532.3 593.7 10.3
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 60.20 0.00 15 0 0.0 0.0 0.0 0.0
bell5 34.49 -11.14 31 -7 0.0 -0.1 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.0 0.0 0.0 0.0
binkar10 1 55.01 0.00 52 0 0.3 -0.1 0.1 0.0
blend2 4.46 -7.04 13 -7 0.1 -0.3 0.0 0.0
dano3 4 0.00 0.00 0 0 2.9 -0.4 2.9 -0.4
dano3 5 0.00 0.00 0 0 3.9 -0.6 3.9 -0.6
dano3mip 0.00 0.00 0 -1 16.2 -36.1 16.2 -10.0
danoint 0.09 -0.42 6 -8 0.5 -0.5 0.1 -0.1
dcmulti 9.07 -21.00 35 -80 0.2 -0.5 0.0 -0.1
egout 13.27 -77.53 14 -55 0.0 -0.2 0.0 0.0
fiber 88.69 0.00 58 0 0.2 0.0 0.0 0.0
fixnet6 45.56 -28.19 217 -1010 2.4 -33.2 0.1 -0.3
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 34 11 0.1 0.1 0.0 0.0
gesa2 71.05 -3.55 125 -36 1.2 -0.1 0.2 0.0
gesa2-o 42.60 -26.53 181 -142 1.6 -3.3 0.2 -0.1
gesa3 56.64 -1.27 111 -3 1.6 -0.2 0.3 0.0
gesa3 o 59.47 -1.68 133 -51 2.7 0.0 0.3 0.0
gt2 48.50 0.00 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 0.00 -4.70 0 -1 0.0 0.0 0.0 0.0
lseu 46.23 0.00 29 0 0.0 0.0 0.0 0.0
mitre 10.78 0.00 819 0 37.4 -0.1 6.2 -0.1
mkc 13.37 0.00 171 0 19.8 0.0 1.1 0.0
mod008 40.41 0.00 13 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 34.68 -53.95 1439 -1935 76.3 -388.9 2.5 -5.1
modglob 35.53 8.53 70 -39 0.1 0.0 0.0 0.0
momentum1 0.00 0.00 3 -8 69.0 -248.0 34.5 -44.7
momentum2 0.02 0.00 23 7 264.8 -467.7 53.0 -93.5
msc98-ip 1.02 0.05 698 320 861.5 5.1 123.1 16.1
neos1 0.00 0.00 186 0 0.4 0.0 0.1 0.0
neos2 1.12 -8.36 11 -489 0.5 -69.5 0.1 -2.2
neos3 0.83 -9.56 10 -730 0.7 -163.9 0.1 -3.6
neos616206 0.93 0.79 67 -11 0.7 0.3 0.1 0.0
neos632659 0.00 -54.38 87 -462 0.1 -1.4 0.0 -0.1
neos7 6.96 -64.76 16 -457 0.8 -19.8 0.3 -0.5
neos8 4.17 0.00 5 0 59.6 -0.3 29.8 -0.2
neos14 69.89 2.04 432 -206 6.6 -14.3 0.4 0.0
neos15 65.73 -5.91 518 -646 8.8 -31.5 0.5 -0.3
neos16 9.52 0.00 139 0 0.4 0.0 0.1 0.0
neos22 1.88 -92.32 75 45 7.7 5.0 1.1 0.2
neos23 0.00 -9.49 13 -278 0.3 -2.3 0.1 -0.1
net12 2.67 -0.25 122 -45 585.6 -344.4 48.8 -5.9
nsrand-ipx 11.71 0.00 61 0 8.2 -0.1 1.4 0.0
p0033 63.37 0.00 22 0 0.0 0.0 0.0 0.0
p0282 92.80 0.00 124 0 0.3 0.0 0.0 0.0
p0548 88.96 0.00 125 0 0.2 0.1 0.0 0.0
p2756 72.98 0.00 242 0 0.9 0.0 0.1 0.0
pp08a 95.28 1.30 243 34 0.7 0.1 0.0 0.0
pp08aCUTS 88.28 -1.63 187 72 1.1 0.8 0.1 0.1
prod1 0.85 0.00 97 0 0.7 0.0 0.1 0.0
qnet1 71.96 0.00 70 0 0.3 0.0 0.0 0.0
qnet1 o 88.98 0.00 99 0 0.5 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 40.56 -4.29 249 176 2.1 1.6 0.1 0.1
ran12x21 29.53 -4.96 366 317 3.1 2.8 0.1 0.1
ran13x13 26.90 -0.20 161 130 0.6 0.5 0.0 0.0
ran14x18 1 27.88 -5.21 582 507 6.2 5.6 0.1 0.1
ran8x32 31.25 -11.01 169 74 1.1 0.2 0.1 0.0
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 100.00 4.23 119 -101 0.4 -0.5 0.0 0.0
roll3000 57.34 0.00 266 0 56.1 1.3 3.5 0.1
set1ch 96.36 -2.90 508 241 3.4 2.8 0.2 0.1
sp97ar 0.75 0.00 8 0 12.0 -0.1 6.0 0.0
swath 0.00 0.00 0 0 0.2 0.0 0.2 0.0
timtab1 16.30 -14.51 127 -196 0.4 -1.1 0.0 -0.1
timtab2 6.91 -11.46 186 -518 1.0 -6.2 0.1 -0.4
tr12-30 96.47 2.87 914 -506 17.9 -44.3 0.9 -0.9
vpm1 100.00 0.00 148 104 0.1 0.1 0.0 0.0
vpm2 67.23 -6.92 169 -28 0.4 -0.2 0.0 0.0

Total 2528.79 -564.38 12251 -7489 5191.8 -3067.7 939.7 -159.6
Geom. Mean 11.52 -4.77 44 -15 3.0 -1.5 1.7 -0.2

Table B.6: Computational results for the cutting plane separator for the class of c-MIR inequalities
on the main test set. Bound substitution heuristic. Use Criterium F1 in the first step. (4 with
respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 5.07 -43.27 88 -1344 68.2 -452.6 3.8 -11.1
aflow30a 28.55 -17.81 175 -233 16.4 -22.8 0.7 -0.6
aflow40b 27.12 -4.53 256 -172 178.5 -8.1 5.1 -2.1
arki001 2.55 0.15 130 -26 4.6 -0.3 0.8 0.0
atlanta-ip 0.17 0.00 53 -7 3712.2 211.6 618.7 35.3
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 39.74 -20.46 9 -6 0.0 0.0 0.0 0.0
bell5 58.29 12.66 28 -10 0.0 -0.1 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.0 0.0 0.0 0.0
binkar10 1 55.01 0.00 52 0 0.3 -0.1 0.1 0.0
blend2 11.50 0.00 20 0 0.4 0.0 0.0 0.0
dano3 4 0.00 0.00 0 0 3.4 0.1 3.4 0.1
dano3 5 0.00 0.00 0 0 4.7 0.2 4.7 0.2
dano3mip 0.00 0.00 0 -1 29.4 -22.9 29.4 3.2
danoint 0.53 0.02 12 -2 1.2 0.2 0.2 0.0
dcmulti 42.85 12.78 95 -20 0.8 0.1 0.1 0.0
egout 77.60 -13.20 38 -31 0.1 -0.1 0.0 0.0
fiber 88.69 0.00 58 0 0.2 0.0 0.0 0.0
fixnet6 17.17 -56.58 45 -1182 0.3 -35.3 0.0 -0.4
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 14 -9 0.0 0.0 0.0 0.0
gesa2 70.54 -4.06 147 -14 1.1 -0.2 0.1 -0.1
gesa2-o 56.52 -12.61 222 -101 2.4 -2.5 0.2 -0.1
gesa3 57.45 -0.46 112 -2 1.9 0.1 0.3 0.0
gesa3 o 58.37 -2.78 152 -32 1.6 -1.1 0.3 0.0
gt2 48.50 0.00 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 46.23 0.00 29 0 0.0 0.0 0.0 0.0
mitre 10.78 0.00 819 0 37.7 0.2 6.3 0.0
mkc 13.37 0.00 171 0 20.3 0.5 1.1 0.0
mod008 40.41 0.00 13 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 69.07 -19.56 1465 -1909 134.2 -331.0 2.4 -5.2
modglob 31.20 4.20 112 3 0.1 0.0 0.0 0.0
momentum1 0.00 0.00 5 -6 239.8 -77.2 79.9 0.7
momentum2 0.01 -0.01 8 -8 449.1 -283.4 149.7 3.2
msc98-ip 0.97 0.00 333 -45 969.9 113.5 121.2 14.2
neos1 0.00 0.00 186 0 0.4 0.0 0.1 0.0
neos2 4.41 -5.07 91 -409 31.7 -38.3 1.1 -1.2
neos3 3.89 -6.50 168 -572 43.4 -121.2 1.4 -2.3
neos616206 0.04 -0.10 66 -12 0.4 0.0 0.1 0.0
neos632659 18.69 -35.69 98 -451 0.2 -1.3 0.0 -0.1
neos7 10.25 -61.47 13 -460 1.0 -19.6 0.3 -0.5
neos8 4.17 0.00 5 0 59.7 -0.2 29.8 -0.2
neos14 0.28 -67.57 16 -622 0.2 -20.7 0.1 -0.3
neos15 0.24 -71.40 16 -1148 0.3 -40.0 0.1 -0.7
neos16 9.52 0.00 139 0 0.4 0.0 0.1 0.0
neos22 94.20 0.00 21 -9 2.1 -0.6 1.0 0.1
neos23 0.00 -9.49 0 -291 0.1 -2.5 0.1 -0.1
net12 2.67 -0.25 116 -51 567.7 -362.3 51.6 -3.1
nsrand-ipx 11.71 0.00 61 0 8.2 -0.1 1.4 0.0
p0033 63.37 0.00 22 0 0.0 0.0 0.0 0.0
p0282 92.80 0.00 124 0 0.3 0.0 0.0 0.0
p0548 88.96 0.00 125 0 0.2 0.1 0.0 0.0
p2756 72.98 0.00 242 0 0.9 0.0 0.1 0.0
pp08a 92.35 -1.63 183 -26 0.4 -0.2 0.0 0.0
pp08aCUTS 89.91 0.00 114 -1 0.3 0.0 0.0 0.0
prod1 0.85 0.00 97 0 0.7 0.0 0.1 0.0
qnet1 71.96 0.00 70 0 0.3 0.0 0.0 0.0
qnet1 o 88.98 0.00 99 0 0.5 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 43.44 -1.41 71 -2 0.6 0.1 0.0 0.0
ran12x21 34.12 -0.37 54 5 0.4 0.1 0.0 0.0
ran13x13 26.91 -0.19 30 -1 0.1 0.0 0.0 0.0
ran14x18 1 30.81 -2.28 62 -13 0.4 -0.2 0.0 0.0
ran8x32 38.81 -3.45 74 -21 0.7 -0.2 0.0 -0.1
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 40.68 -55.09 41 -179 0.1 -0.8 0.0 0.0
roll3000 53.63 -3.71 249 -17 51.2 -3.6 3.2 -0.2
set1ch 11.33 -87.93 7 -260 0.1 -0.5 0.0 -0.1
sp97ar 0.75 0.00 8 0 12.0 -0.1 6.0 0.0
swath 0.00 0.00 0 0 0.2 0.0 0.2 0.0
timtab1 30.47 -0.34 221 -102 0.8 -0.7 0.1 0.0
timtab2 8.97 -9.40 185 -519 1.6 -5.6 0.1 -0.4
tr12-30 2.83 -90.77 17 -1403 2.3 -59.9 0.2 -1.6
vpm1 100.00 0.00 26 -18 0.0 0.0 0.0 0.0
vpm2 72.65 -1.50 162 -35 0.3 -0.3 0.0 0.0

Total 2412.05 -681.12 7966 -11774 6669.4 -1590.1 1126.4 27.1
Geom. Mean 11.40 -4.89 31 -28 3.1 -1.4 1.8 -0.1

Table B.7: Computational results for the cutting plane separator for the class of c-MIR inequalities
on the main test set. Bound substitution heuristic. Use Criterium S1 in the second step. (4 with
respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 41.22 -7.12 814 -618 321.1 -199.7 12.8 -2.1
aflow30a 27.11 -19.25 127 -281 7.8 -31.4 0.6 -0.7
aflow40b 23.62 -8.03 195 -233 89.2 -97.4 3.9 -3.3
arki001 6.72 4.32 158 2 5.0 0.1 0.8 0.0
atlanta-ip 0.17 0.00 58 -2 2899.4 -601.2 579.9 -3.5
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 60.20 0.00 13 -2 0.0 0.0 0.0 0.0
bell5 19.21 -26.42 26 -12 0.0 -0.1 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.0 0.0 0.0 0.0
binkar10 1 55.01 0.00 52 0 0.3 -0.1 0.1 0.0
blend2 11.50 0.00 20 0 0.4 0.0 0.0 0.0
dano3 4 0.00 0.00 0 0 3.2 -0.1 3.2 -0.1
dano3 5 0.00 0.00 0 0 4.6 0.1 4.6 0.1
dano3mip 0.00 0.00 0 -1 25.6 -26.7 25.6 -0.6
danoint 0.57 0.06 19 5 1.0 0.0 0.2 0.0
dcmulti 20.36 -9.71 96 -19 0.7 0.0 0.1 0.0
egout 42.56 -48.24 33 -36 0.1 -0.1 0.0 0.0
fiber 88.69 0.00 58 0 0.2 0.0 0.0 0.0
fixnet6 66.35 -7.40 830 -397 27.4 -8.2 0.4 0.0
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 19 -4 0.0 0.0 0.0 0.0
gesa2 72.17 -2.43 148 -13 1.2 -0.1 0.2 0.0
gesa2-o 43.65 -25.48 213 -110 2.0 -2.9 0.2 -0.1
gesa3 58.08 0.17 113 -1 2.0 0.2 0.3 0.0
gesa3 o 60.84 -0.31 176 -8 2.7 0.0 0.3 0.0
gt2 48.50 0.00 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 46.23 0.00 29 0 0.0 0.0 0.0 0.0
mitre 10.78 0.00 819 0 37.5 0.0 6.2 -0.1
mkc 13.37 0.00 171 0 19.9 0.1 1.1 0.0
mod008 40.41 0.00 13 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 27.63 -61.00 385 -2989 25.9 -439.3 0.8 -6.8
modglob 26.31 -0.69 152 43 0.2 0.1 0.0 0.0
momentum1 0.00 0.00 4 -7 236.8 -80.2 79.0 -0.2
momentum2 0.01 -0.01 25 9 907.3 174.8 151.2 4.7
msc98-ip 0.36 -0.61 203 -175 779.0 -77.4 111.3 4.3
neos1 0.00 0.00 186 0 0.4 0.0 0.1 0.0
neos2 1.84 -7.64 85 -415 23.7 -46.3 1.2 -1.1
neos3 1.11 -9.28 51 -689 15.1 -149.5 1.4 -2.3
neos616206 0.00 -0.14 95 17 0.4 0.0 0.1 0.0
neos632659 60.75 6.37 371 -178 0.9 -0.6 0.0 -0.1
neos7 69.24 -2.48 330 -143 8.2 -12.4 0.6 -0.2
neos8 4.17 0.00 5 0 62.5 2.6 31.2 1.2
neos14 13.77 -54.08 154 -484 12.9 -8.0 0.2 -0.2
neos15 22.70 -48.94 235 -929 11.6 -28.7 0.2 -0.6
neos16 9.52 0.00 139 0 0.4 0.0 0.1 0.0
neos22 94.20 0.00 30 0 2.4 -0.3 0.8 -0.1
neos23 0.00 -9.49 0 -291 0.1 -2.5 0.1 -0.1
net12 2.67 -0.25 129 -38 811.7 -118.3 54.1 -0.6
nsrand-ipx 11.71 0.00 61 0 8.3 0.0 1.4 0.0
p0033 63.37 0.00 22 0 0.0 0.0 0.0 0.0
p0282 92.80 0.00 124 0 0.3 0.0 0.0 0.0
p0548 88.96 0.00 125 0 0.2 0.1 0.0 0.0
p2756 72.98 0.00 242 0 0.9 0.0 0.1 0.0
pp08a 89.64 -4.34 191 -18 0.3 -0.3 0.0 0.0
pp08aCUTS 89.91 0.00 116 1 0.3 0.0 0.0 0.0
prod1 0.85 0.00 97 0 0.7 0.0 0.1 0.0
qnet1 71.96 0.00 70 0 0.3 0.0 0.0 0.0
qnet1 o 88.98 0.00 99 0 0.5 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 46.53 1.68 87 14 1.1 0.6 0.0 0.0
ran12x21 35.09 0.60 66 17 0.6 0.3 0.0 0.0
ran13x13 27.09 -0.01 28 -3 0.1 0.0 0.0 0.0
ran14x18 1 33.65 0.56 76 1 0.5 -0.1 0.0 0.0
ran8x32 42.37 0.11 96 1 0.7 -0.2 0.0 -0.1
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 98.80 3.03 107 -113 0.3 -0.6 0.0 0.0
roll3000 57.34 0.00 266 0 56.3 1.5 3.5 0.1
set1ch 7.76 -91.50 55 -212 0.5 -0.1 0.0 -0.1
sp97ar 0.75 0.00 8 0 12.0 -0.1 6.0 0.0
swath 0.00 0.00 0 0 0.2 0.0 0.2 0.0
timtab1 22.42 -8.39 223 -100 0.8 -0.7 0.1 0.0
timtab2 13.31 -5.06 432 -272 5.3 -1.9 0.3 -0.2
tr12-30 72.62 -20.98 1232 -188 48.3 -13.9 0.9 -0.9
vpm1 100.00 0.00 44 0 0.0 0.0 0.0 0.0
vpm2 74.95 0.80 182 -15 0.5 -0.1 0.0 0.0

Total 2631.61 -461.56 10854 -8886 6490.2 -1769.3 1086.0 -13.3
Geom. Mean 13.27 -3.02 43 -16 3.7 -0.8 1.7 -0.2

Table B.8: Computational results for the cutting plane separator for the class of c-MIR inequalities
on the main test set. Bound substitution heuristic. Use Criterium S2 in the second step. (4 with
respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 6.78 -41.56 193 -1239 156.7 -364.1 4.7 -10.2
aflow30a 44.11 -2.25 320 -88 23.7 -15.5 1.0 -0.3
aflow40b 35.83 4.18 463 35 261.8 75.2 7.7 0.5
arki001 2.56 0.16 160 4 5.0 0.1 0.8 0.0
atlanta-ip 0.17 0.00 60 0 3532.0 31.4 588.7 5.3
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 60.20 0.00 15 0 0.0 0.0 0.0 0.0
bell5 45.63 0.00 37 -1 0.1 0.0 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.0 0.0 0.0 0.0
binkar10 1 55.01 0.00 52 0 0.3 -0.1 0.1 0.0
blend2 11.50 0.00 20 0 0.4 0.0 0.0 0.0
dano3 4 0.00 0.00 0 0 3.3 0.0 3.3 0.0
dano3 5 0.00 0.00 0 0 4.5 0.0 4.5 0.0
dano3mip 0.00 0.00 0 -1 26.2 -26.1 26.2 0.0
danoint 0.42 -0.09 14 0 0.9 -0.1 0.2 0.0
dcmulti 43.74 13.67 144 29 0.8 0.1 0.1 0.0
egout 78.12 -12.68 45 -24 0.1 -0.1 0.0 0.0
fiber 88.69 0.00 58 0 0.2 0.0 0.0 0.0
fixnet6 37.77 -35.98 317 -910 8.9 -26.7 0.2 -0.2
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 22 -1 0.1 0.1 0.0 0.0
gesa2 96.77 22.17 224 63 3.2 1.9 0.2 0.0
gesa2-o 69.47 0.34 267 -56 2.9 -2.0 0.2 -0.1
gesa3 57.41 -0.50 116 2 1.9 0.1 0.3 0.0
gesa3 o 59.05 -2.10 159 -25 2.4 -0.3 0.3 0.0
gt2 48.50 0.00 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 46.23 0.00 29 0 0.0 0.0 0.0 0.0
mitre 10.78 0.00 819 0 37.5 0.0 6.2 -0.1
mkc 13.37 0.00 171 0 19.6 -0.2 1.1 0.0
mod008 40.41 0.00 13 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 60.00 -28.63 938 -2436 75.0 -390.2 1.7 -5.9
modglob 31.85 4.85 112 3 0.2 0.1 0.0 0.0
momentum1 0.00 0.00 10 -1 314.0 -3.0 78.5 -0.7
momentum2 0.02 0.00 16 0 745.8 13.3 149.2 2.7
msc98-ip 0.97 0.00 378 0 855.2 -1.2 106.9 -0.1
neos1 0.00 0.00 186 0 0.4 0.0 0.1 0.0
neos2 4.80 -4.68 81 -419 15.0 -55.0 0.9 -1.4
neos3 5.46 -4.93 194 -546 51.6 -113.0 1.8 -1.9
neos616206 0.14 0.00 78 0 0.4 0.0 0.1 0.0
neos632659 14.02 -40.36 71 -478 0.1 -1.4 0.0 -0.1
neos7 67.02 -4.70 425 -48 14.5 -6.1 0.5 -0.3
neos8 4.17 0.00 5 0 59.6 -0.3 29.8 -0.2
neos14 64.96 -2.89 473 -165 7.7 -13.2 0.4 0.0
neos15 73.19 1.55 1240 76 45.1 4.8 0.8 0.0
neos16 9.52 0.00 139 0 0.5 0.1 0.1 0.0
neos22 94.20 0.00 30 0 2.5 -0.2 0.8 -0.1
neos23 9.21 -0.28 301 10 2.1 -0.5 0.1 -0.1
net12 2.67 -0.25 116 -51 564.8 -365.2 51.3 -3.4
nsrand-ipx 11.71 0.00 61 0 8.2 -0.1 1.4 0.0
p0033 63.37 0.00 22 0 0.0 0.0 0.0 0.0
p0282 92.80 0.00 124 0 0.3 0.0 0.0 0.0
p0548 88.96 0.00 125 0 0.2 0.1 0.0 0.0
p2756 72.98 0.00 242 0 0.9 0.0 0.1 0.0
pp08a 93.86 -0.12 211 2 0.6 0.0 0.0 0.0
pp08aCUTS 89.91 0.00 114 -1 0.3 0.0 0.0 0.0
prod1 0.85 0.00 97 0 0.7 0.0 0.1 0.0
qnet1 71.96 0.00 70 0 0.3 0.0 0.0 0.0
qnet1 o 88.98 0.00 99 0 0.5 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 44.85 0.00 73 0 0.6 0.1 0.0 0.0
ran12x21 34.49 0.00 49 0 0.3 0.0 0.0 0.0
ran13x13 27.10 0.00 31 0 0.1 0.0 0.0 0.0
ran14x18 1 33.09 0.00 75 0 0.6 0.0 0.0 0.0
ran8x32 42.26 0.00 95 0 1.0 0.1 0.1 0.0
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 95.53 -0.24 130 -90 0.4 -0.5 0.0 0.0
roll3000 57.34 0.00 266 0 55.5 0.7 3.5 0.1
set1ch 99.26 0.00 263 -4 0.6 0.0 0.1 0.0
sp97ar 0.75 0.00 8 0 12.0 -0.1 6.0 0.0
swath 0.00 0.00 0 0 0.2 0.0 0.2 0.0
timtab1 29.62 -1.19 286 -37 1.3 -0.2 0.1 0.0
timtab2 17.96 -0.41 586 -118 5.2 -2.0 0.4 -0.1
tr12-30 93.00 -0.60 1191 -229 47.6 -14.6 1.5 -0.3
vpm1 100.00 0.00 44 0 0.0 0.0 0.0 0.0
vpm2 73.95 -0.20 185 -12 0.6 0.0 0.0 0.0

Total 2955.44 -137.73 12984 -6756 6985.2 -1274.3 1082.9 -16.4
Geom. Mean 15.23 -1.06 50 -9 3.9 -0.6 1.8 -0.1

Table B.9: Computational results for the cutting plane separator for the class of c-MIR inequalities
on the main test set. Bound substitution heuristic. Use Criterium S4 in the second step. (4 with
respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 47.77 -0.57 1300 -132 693.6 172.8 22.4 7.5
aflow30a 44.57 -1.79 380 -28 54.4 15.2 2.2 0.9
aflow40b 32.17 0.52 397 -31 319.2 132.6 12.3 5.1
arki001 2.56 0.16 158 2 7.8 2.9 1.3 0.5
atlanta-ip 0.17 0.00 60 0 5854.8 2354.2 975.8 392.4
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 60.20 0.00 15 0 0.0 0.0 0.0 0.0
bell5 46.72 1.09 41 3 0.1 0.0 0.0 0.0
bienst1 0.00 0.00 0 0 0.1 0.1 0.1 0.1
bienst2 0.00 0.00 0 0 0.1 0.1 0.1 0.1
binkar10 1 55.01 0.00 52 0 0.5 0.1 0.1 0.0
blend2 11.12 -0.38 25 5 1.3 0.9 0.1 0.1
dano3 4 0.00 0.00 0 0 4.9 1.6 4.9 1.6
dano3 5 0.00 0.00 0 0 6.8 2.3 6.8 2.3
dano3mip 0.00 0.00 1 0 85.9 33.6 42.9 16.7
danoint 0.51 0.00 17 3 1.4 0.4 0.2 0.0
dcmulti 29.98 -0.09 111 -4 1.2 0.5 0.1 0.0
egout 90.08 -0.72 71 2 0.3 0.1 0.0 0.0
fiber 88.69 0.00 56 -2 0.3 0.1 0.0 0.0
fixnet6 72.83 -0.92 1081 -146 46.4 10.8 0.6 0.2
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 26 3 0.1 0.1 0.0 0.0
gesa2 74.60 0.00 162 1 1.9 0.6 0.2 0.0
gesa2-o 79.19 10.06 341 18 7.7 2.8 0.5 0.2
gesa3 57.96 0.05 111 -3 2.2 0.4 0.3 0.0
gesa3 o 60.75 -0.40 179 -5 4.2 1.5 0.5 0.2
gt2 48.50 0.00 20 2 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 46.23 0.00 29 0 0.0 0.0 0.0 0.0
mitre 11.92 1.14 785 -34 41.9 4.4 7.0 0.7
mkc 10.64 -2.73 157 -14 25.0 5.2 1.5 0.4
mod008 40.41 0.00 14 1 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.3 0.1 0.1 0.0
mod011 91.29 2.66 4272 898 1185.5 720.3 14.8 7.2
modglob 19.63 -7.37 91 -18 0.1 0.0 0.0 0.0
momentum1 0.00 0.00 11 0 688.3 371.3 137.7 58.5
momentum2 0.02 0.00 16 0 1321.3 588.8 264.3 117.8
msc98-ip 0.99 0.02 408 30 1439.4 583.0 143.9 36.9
neos1 0.00 0.00 184 -2 0.4 0.0 0.1 0.0
neos2 12.04 2.56 713 213 200.2 130.2 4.4 2.1
neos3 12.07 1.68 1058 318 476.1 311.5 6.2 2.5
neos616206 0.14 0.00 78 0 0.5 0.1 0.1 0.0
neos632659 0.00 -54.38 128 -421 0.2 -1.3 0.0 -0.1
neos7 71.43 -0.29 541 68 36.0 15.4 1.3 0.5
neos8 4.17 0.00 5 0 86.0 26.1 43.0 13.0
neos14 69.77 1.92 659 21 25.4 4.5 0.7 0.3
neos15 72.69 1.05 1190 26 58.1 17.8 1.4 0.6
neos16 9.52 0.00 97 -42 1.2 0.8 0.2 0.1
neos22 94.20 0.00 30 0 3.7 1.0 1.2 0.3
neos23 0.00 -9.49 175 -116 0.8 -1.8 0.1 -0.1
net12 2.88 -0.04 165 -2 944.2 14.2 72.6 17.9
nsrand-ipx 12.03 0.32 66 5 11.3 3.0 1.9 0.5
p0033 70.09 6.72 36 14 0.0 0.0 0.0 0.0
p0282 92.80 0.00 132 8 0.4 0.1 0.0 0.0
p0548 88.99 0.03 140 15 0.2 0.1 0.0 0.0
p2756 72.98 0.00 251 9 1.3 0.4 0.1 0.0
pp08a 94.26 0.28 211 2 0.8 0.2 0.0 0.0
pp08aCUTS 89.91 0.00 115 0 0.5 0.2 0.0 0.0
prod1 0.85 0.00 97 0 1.2 0.5 0.2 0.1
qnet1 75.08 3.12 82 12 0.6 0.3 0.1 0.1
qnet1 o 88.97 -0.01 98 -1 0.7 0.2 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 44.85 0.00 72 -1 0.9 0.4 0.1 0.1
ran12x21 34.49 0.00 48 -1 0.5 0.2 0.0 0.0
ran13x13 27.10 0.00 31 0 0.1 0.0 0.0 0.0
ran14x18 1 33.09 0.00 76 1 0.9 0.3 0.1 0.1
ran8x32 42.26 0.00 98 3 1.6 0.7 0.1 0.0
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 100.00 4.23 212 -8 1.3 0.4 0.0 0.0
roll3000 57.77 0.43 277 11 140.1 85.3 7.0 3.6
set1ch 99.26 0.00 267 0 0.8 0.2 0.1 0.0
sp97ar 0.75 0.00 8 0 14.3 2.2 7.1 1.1
swath 0.00 0.00 0 0 0.3 0.1 0.3 0.1
timtab1 29.46 -1.35 276 -47 1.6 0.1 0.2 0.1
timtab2 18.49 0.12 773 69 12.1 4.9 0.8 0.3
tr12-30 93.32 -0.28 1243 -177 80.1 17.9 2.8 1.0
vpm1 100.00 0.00 36 -8 0.0 0.0 0.0 0.0
vpm2 73.91 -0.24 176 -21 0.8 0.2 0.1 0.1

Total 3050.27 -42.90 20239 499 13902.3 5642.8 1793.0 693.7
Geom. Mean 15.10 -1.19 58 -1 5.5 1.0 2.1 0.2

Table B.10: Computational results for the cutting plane separator for the class of c-MIR inequal-
ities on the main test set. Bound substitution heuristic. Multiply the given single mixed integer
constraint by minus one in addition. (4 with respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 42.00 -6.34 1160 -272 383.2 -137.6 12.0 -2.9
aflow30a 35.68 -10.68 202 -206 21.7 -17.5 0.9 -0.4
aflow40b 21.37 -10.28 173 -255 89.5 -97.1 4.5 -2.7
arki001 2.45 0.05 137 -19 4.8 -0.1 0.8 0.0
atlanta-ip 0.15 -0.02 38 -22 2255.7 -1244.9 451.1 -132.3
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 58.26 -1.94 14 -1 0.0 0.0 0.0 0.0
bell5 37.98 -7.65 35 -3 0.0 -0.1 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.0 0.0 0.0 0.0
binkar10 1 47.14 -7.87 27 -25 0.4 0.0 0.1 0.0
blend2 3.04 -8.46 8 -12 0.1 -0.3 0.0 0.0
dano3 4 0.00 0.00 0 0 3.1 -0.2 3.1 -0.2
dano3 5 0.00 0.00 0 0 4.3 -0.2 4.3 -0.2
dano3mip 0.00 0.00 1 0 50.2 -2.1 25.1 -1.1
danoint 0.41 -0.10 16 2 0.8 -0.2 0.1 -0.1
dcmulti 40.88 10.81 159 44 1.2 0.5 0.1 0.0
egout 56.12 -34.68 43 -26 0.0 -0.2 0.0 0.0
fiber 84.66 -4.03 37 -21 0.1 -0.1 0.0 0.0
fixnet6 61.76 -11.99 575 -652 26.8 -8.8 0.3 -0.1
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 27 4 0.1 0.1 0.0 0.0
gesa2 71.32 -3.28 124 -37 1.2 -0.1 0.1 -0.1
gesa2-o 44.38 -24.75 207 -116 1.8 -3.1 0.2 -0.1
gesa3 54.35 -3.56 80 -34 1.3 -0.5 0.2 -0.1
gesa3 o 55.66 -5.49 124 -60 2.8 0.1 0.3 0.0
gt2 56.43 7.93 21 3 0.0 0.0 0.0 0.0
harp2 11.11 0.00 4 1 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 40.72 -5.51 14 -15 0.0 0.0 0.0 0.0
mitre 2.05 -8.73 612 -207 33.2 -4.3 5.5 -0.8
mkc 8.54 -4.83 133 -38 15.6 -4.2 1.0 -0.1
mod008 23.34 -17.07 12 -1 0.0 -0.1 0.0 0.0
mod010 18.32 0.00 2 0 0.1 -0.1 0.0 -0.1
mod011 75.51 -13.12 1588 -1786 165.8 -299.4 3.8 -3.8
modglob 19.42 -7.58 109 0 0.1 0.0 0.0 0.0
momentum1 0.00 0.00 0 -11 76.6 -240.4 76.6 -2.6
momentum2 0.03 0.01 17 1 711.5 -21.0 142.3 -4.2
msc98-ip 0.86 -0.11 274 -104 671.7 -184.7 111.9 4.9
neos1 0.00 0.00 179 -7 0.3 -0.1 0.1 0.0
neos2 10.35 0.87 467 -33 70.2 0.2 1.9 -0.4
neos3 10.81 0.42 648 -92 124.4 -40.2 3.5 -0.2
neos616206 0.14 0.00 78 0 0.3 -0.1 0.1 0.0
neos632659 0.00 -54.38 119 -430 0.1 -1.4 0.0 -0.1
neos7 62.32 -9.40 498 25 15.4 -5.2 0.7 -0.1
neos8 0.00 -4.17 0 -5 33.7 -26.2 33.7 3.7
neos14 61.49 -6.36 776 138 23.4 2.5 0.4 0.0
neos15 56.10 -15.54 760 -404 18.0 -22.3 0.6 -0.2
neos16 9.52 0.00 170 31 0.5 0.1 0.1 0.0
neos22 94.20 0.00 30 0 2.7 0.0 0.9 0.0
neos23 8.51 -0.98 242 -49 2.5 -0.1 0.1 -0.1
net12 2.91 -0.01 128 -39 721.7 -208.3 51.6 -3.1
nsrand-ipx 11.77 0.06 41 -20 6.9 -1.4 1.4 0.0
p0033 9.56 -53.81 8 -14 0.0 0.0 0.0 0.0
p0282 95.28 2.48 102 -22 0.2 -0.1 0.0 0.0
p0548 87.18 -1.78 100 -25 0.1 0.0 0.0 0.0
p2756 85.16 12.18 244 2 1.1 0.2 0.1 0.0
pp08a 89.80 -4.18 236 27 0.8 0.2 0.0 0.0
pp08aCUTS 88.55 -1.36 140 25 0.5 0.2 0.0 0.0
prod1 0.11 -0.74 3 -94 0.1 -0.6 0.0 -0.1
qnet1 22.11 -49.85 26 -44 0.2 -0.1 0.0 0.0
qnet1 o 65.14 -23.84 53 -46 0.3 -0.2 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 36.96 -7.89 34 -39 0.2 -0.3 0.0 0.0
ran12x21 31.16 -3.33 41 -8 0.2 -0.1 0.0 0.0
ran13x13 26.72 -0.38 27 -4 0.0 -0.1 0.0 0.0
ran14x18 1 29.52 -3.57 55 -20 0.2 -0.4 0.0 0.0
ran8x32 33.18 -9.08 49 -46 0.3 -0.6 0.0 -0.1
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 96.04 0.27 196 -24 0.8 -0.1 0.0 0.0
roll3000 32.54 -24.80 199 -67 21.7 -33.1 2.0 -1.4
set1ch 93.42 -5.84 464 197 3.8 3.2 0.2 0.1
sp97ar 0.00 -0.75 2 -6 7.9 -4.2 4.0 -2.0
swath 0.00 0.00 0 0 0.2 0.0 0.2 0.0
timtab1 28.64 -2.17 281 -42 1.0 -0.5 0.1 0.0
timtab2 16.32 -2.05 603 -101 4.6 -2.6 0.4 -0.1
tr12-30 80.41 -13.19 2144 724 88.4 26.2 2.4 0.6
vpm1 100.00 0.00 27 -17 0.0 0.0 0.0 0.0
vpm2 67.79 -6.36 111 -86 0.2 -0.4 0.0 0.0

Total 2624.35 -468.82 15257 -4483 5677.0 -2582.5 949.2 -150.1
Geom. Mean 13.01 -3.28 42 -17 4.0 -0.5 1.8 -0.1

Table B.11: Computational results for the cutting plane separator for the class of c-MIR inequal-
ities on the main test set. Cut generation heuristic. Use Procedure 2. (4 with respect to the
default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 49.48 1.14 1145 -287 429.2 -91.6 12.6 -2.3
aflow30a 36.54 -9.82 284 -124 21.3 -17.9 0.9 -0.4
aflow40b 25.64 -6.01 341 -87 236.6 50.0 5.8 -1.4
arki001 8.80 6.40 137 -19 5.1 0.2 0.8 0.0
atlanta-ip 0.10 -0.07 37 -23 1814.4 -1686.2 453.6 -129.8
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 60.20 0.00 15 0 0.0 0.0 0.0 0.0
bell5 45.81 0.18 33 -5 0.0 -0.1 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.0 0.0 0.0 0.0
binkar10 1 39.33 -15.68 30 -22 0.3 -0.1 0.0 -0.1
blend2 6.88 -4.62 12 -8 0.2 -0.2 0.0 0.0
dano3 4 0.00 0.00 0 0 3.3 0.0 3.3 0.0
dano3 5 0.00 0.00 0 0 4.5 0.0 4.5 0.0
dano3mip 0.00 0.00 1 0 51.8 -0.5 25.9 -0.3
danoint 0.24 -0.27 9 -5 0.6 -0.4 0.2 0.0
dcmulti 28.98 -1.09 107 -8 0.8 0.1 0.1 0.0
egout 89.01 -1.79 75 6 0.2 0.0 0.0 0.0
fiber 87.87 -0.82 46 -12 0.1 -0.1 0.0 0.0
fixnet6 70.30 -3.45 964 -263 38.6 3.0 0.4 0.0
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 22 -1 0.1 0.1 0.0 0.0
gesa2 73.64 -0.96 177 16 1.7 0.4 0.2 0.0
gesa2-o 54.93 -14.20 280 -43 4.1 -0.8 0.3 0.0
gesa3 51.23 -6.68 71 -43 1.1 -0.7 0.2 -0.1
gesa3 o 51.79 -9.36 123 -61 1.7 -1.0 0.2 -0.1
gt2 11.96 -36.54 20 2 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 43.97 -2.26 16 -13 0.0 0.0 0.0 0.0
mitre 22.22 11.44 339 -480 20.9 -16.6 2.3 -4.0
mkc 2.51 -10.86 104 -67 8.3 -11.5 0.8 -0.3
mod008 19.15 -21.26 10 -3 0.0 -0.1 0.0 0.0
mod010 18.32 0.00 2 0 0.3 0.1 0.1 0.0
mod011 90.65 2.02 2890 -484 522.4 57.2 7.5 -0.1
modglob 27.35 0.35 111 2 0.1 0.0 0.0 0.0
momentum1 0.00 0.00 15 4 460.6 143.6 76.8 -2.4
momentum2 0.00 -0.02 18 2 800.9 68.4 160.2 13.7
msc98-ip 0.75 -0.22 371 -7 764.9 -91.5 95.6 -11.4
neos1 55.22 55.22 628 442 2.4 2.0 0.1 0.0
neos2 10.05 0.57 475 -25 92.9 22.9 2.5 0.2
neos3 9.32 -1.07 586 -154 229.2 64.6 3.5 -0.2
neos616206 0.14 0.00 78 0 0.3 -0.1 0.0 -0.1
neos632659 50.65 -3.73 797 248 2.6 1.1 0.1 0.0
neos7 69.64 -2.08 388 -85 15.0 -5.6 0.6 -0.2
neos8 0.00 -4.17 6 1 51.6 -8.3 25.8 -4.2
neos14 64.61 -3.24 524 -114 11.4 -9.5 0.4 0.0
neos15 73.00 1.36 1162 -2 34.4 -5.9 0.9 0.1
neos16 9.52 0.00 109 -30 0.3 -0.1 0.1 0.0
neos22 94.20 0.00 30 0 2.6 -0.1 0.9 0.0
neos23 8.98 -0.51 276 -15 1.9 -0.7 0.1 -0.1
net12 1.17 -1.75 99 -68 529.4 -400.6 35.3 -19.4
nsrand-ipx 11.73 0.02 34 -27 6.1 -2.2 1.2 -0.2
p0033 46.48 -16.89 11 -11 0.0 0.0 0.0 0.0
p0282 94.66 1.86 98 -26 0.2 -0.1 0.0 0.0
p0548 87.27 -1.69 107 -18 0.1 0.0 0.0 0.0
p2756 59.56 -13.42 245 3 1.1 0.2 0.1 0.0
pp08a 92.01 -1.97 194 -15 0.3 -0.3 0.0 0.0
pp08aCUTS 89.97 0.06 118 3 0.2 -0.1 0.0 0.0
prod1 0.49 -0.36 66 -31 0.2 -0.5 0.1 0.0
qnet1 79.25 7.29 109 39 0.6 0.3 0.0 0.0
qnet1 o 92.04 3.06 106 7 0.6 0.1 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 43.26 -1.59 65 -8 0.4 -0.1 0.0 0.0
ran12x21 29.82 -4.67 36 -13 0.2 -0.1 0.0 0.0
ran13x13 23.68 -3.42 27 -4 0.1 0.0 0.0 0.0
ran14x18 1 31.46 -1.63 48 -27 0.2 -0.4 0.0 0.0
ran8x32 40.83 -1.43 64 -31 0.5 -0.4 0.0 -0.1
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 97.66 1.89 136 -84 0.5 -0.4 0.0 0.0
roll3000 55.04 -2.30 211 -55 41.4 -13.4 2.3 -1.1
set1ch 99.34 0.08 267 0 0.6 0.0 0.1 0.0
sp97ar 0.75 0.00 8 0 12.1 0.0 6.0 0.0
swath 0.00 0.00 0 0 0.3 0.1 0.3 0.1
timtab1 29.68 -1.13 272 -51 1.1 -0.4 0.1 0.0
timtab2 18.05 -0.32 556 -148 5.8 -1.4 0.4 -0.1
tr12-30 93.11 -0.49 1200 -220 48.4 -13.8 1.6 -0.2
vpm1 100.00 0.00 42 -2 0.0 0.0 0.0 0.0
vpm2 75.64 1.49 190 -7 0.7 0.1 0.0 0.0

Total 2973.78 -119.39 17179 -2561 6290.1 -1969.4 935.5 -163.8
Geom. Mean 15.65 -0.64 51 -8 4.3 -0.2 1.8 -0.1

Table B.12: Computational results for the cutting plane separator for the class of c-MIR inequal-
ities on the main test set. Cut generation heuristic. Use Procedure 3. (4 with respect to the
default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 49.10 0.76 1362 -70 488.9 -31.9 16.9 2.0
aflow30a 44.81 -1.55 394 -14 29.7 -9.5 1.3 0.0
aflow40b 31.53 -0.12 421 -7 251.3 64.7 7.6 0.4
arki001 2.80 0.40 163 7 5.7 0.8 0.9 0.1
atlanta-ip 0.17 0.00 59 -1 3754.3 253.7 625.7 42.3
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 60.20 0.00 15 0 0.0 0.0 0.0 0.0
bell5 45.63 0.00 40 2 0.1 0.0 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.1 0.1 0.1 0.1
binkar10 1 56.09 1.08 53 1 0.3 -0.1 0.1 0.0
blend2 11.50 0.00 20 0 0.5 0.1 0.1 0.1
dano3 4 0.00 0.00 0 0 3.9 0.6 3.9 0.6
dano3 5 0.00 0.00 0 0 5.3 0.8 5.3 0.8
dano3mip 0.00 0.00 1 0 60.0 7.7 30.0 3.8
danoint 0.51 0.00 14 0 1.1 0.1 0.2 0.0
dcmulti 30.06 -0.01 109 -6 0.8 0.1 0.1 0.0
egout 90.60 -0.20 64 -5 0.2 0.0 0.0 0.0
fiber 88.69 0.00 62 4 0.3 0.1 0.0 0.0
fixnet6 71.68 -2.07 1143 -84 36.5 0.9 0.4 0.0
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 38 15 0.1 0.1 0.0 0.0
gesa2 71.93 -2.67 156 -5 1.5 0.2 0.2 0.0
gesa2-o 79.14 10.01 343 20 5.3 0.4 0.4 0.1
gesa3 57.91 0.00 107 -7 2.0 0.2 0.3 0.0
gesa3 o 61.15 0.00 183 -1 3.2 0.5 0.3 0.0
gt2 49.64 1.14 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 5 2 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 44.92 -1.31 31 2 0.0 0.0 0.0 0.0
mitre 12.59 1.81 799 -20 39.6 2.1 6.6 0.3
mkc 9.26 -4.11 184 13 19.5 -0.3 1.2 0.1
mod008 31.69 -8.72 10 -3 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 90.63 2.00 3241 -133 513.7 48.5 8.9 1.3
modglob 26.09 -0.91 109 0 0.1 0.0 0.0 0.0
momentum1 0.00 0.00 25 14 442.8 125.8 88.6 9.4
momentum2 0.04 0.02 47 31 828.6 96.1 165.7 19.2
msc98-ip 1.04 0.07 383 5 1251.2 394.8 125.1 18.1
neos1 55.22 55.22 572 386 2.8 2.4 0.2 0.1
neos2 11.07 1.59 601 101 152.8 82.8 3.0 0.7
neos3 10.38 -0.01 734 -6 228.0 63.4 4.5 0.8
neos616206 0.14 0.00 78 0 0.4 0.0 0.1 0.0
neos632659 48.39 -5.99 687 138 2.2 0.7 0.1 0.0
neos7 82.68 10.96 553 80 25.1 4.5 0.7 -0.1
neos8 4.17 0.00 5 0 75.6 15.7 37.8 7.8
neos14 73.61 5.76 704 66 22.2 1.3 0.7 0.3
neos15 75.90 4.26 1326 162 55.2 14.9 1.1 0.3
neos16 9.52 0.00 139 0 0.5 0.1 0.1 0.0
neos22 94.20 0.00 30 0 3.2 0.5 1.1 0.2
neos23 9.44 -0.05 325 34 3.5 0.9 0.2 0.0
net12 3.10 0.18 137 -30 796.5 -133.5 61.3 6.6
nsrand-ipx 12.63 0.92 61 0 9.2 0.9 1.5 0.1
p0033 67.84 4.47 28 6 0.0 0.0 0.0 0.0
p0282 93.13 0.33 144 20 0.5 0.2 0.0 0.0
p0548 88.97 0.01 123 -2 0.2 0.1 0.0 0.0
p2756 72.98 0.00 243 1 1.1 0.2 0.1 0.0
pp08a 94.31 0.33 246 37 1.3 0.7 0.0 0.0
pp08aCUTS 89.96 0.05 119 4 0.4 0.1 0.0 0.0
prod1 0.85 0.00 98 1 0.7 0.0 0.1 0.0
qnet1 77.04 5.08 92 22 0.7 0.4 0.0 0.0
qnet1 o 85.55 -3.43 97 -2 0.4 -0.1 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 45.80 0.95 64 -9 0.5 0.0 0.0 0.0
ran12x21 33.80 -0.69 69 20 0.7 0.4 0.0 0.0
ran13x13 27.10 0.00 31 0 0.1 0.0 0.0 0.0
ran14x18 1 30.66 -2.43 61 -14 0.4 -0.2 0.0 0.0
ran8x32 42.29 0.03 98 3 1.2 0.3 0.1 0.0
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 96.70 0.93 207 -13 0.9 0.0 0.0 0.0
roll3000 57.93 0.59 267 1 63.8 9.0 3.5 0.1
set1ch 99.26 0.00 270 3 0.7 0.1 0.1 0.0
sp97ar 0.75 0.00 8 0 12.8 0.7 6.4 0.4
swath 0.00 0.00 17 17 0.8 0.6 0.4 0.2
timtab1 29.58 -1.23 306 -17 1.4 -0.1 0.1 0.0
timtab2 18.30 -0.07 651 -53 7.3 0.1 0.6 0.1
tr12-30 99.55 5.95 1079 -341 33.8 -28.4 1.1 -0.7
vpm1 100.00 0.00 33 -11 0.0 0.0 0.0 0.0
vpm2 74.39 0.24 212 15 0.8 0.2 0.1 0.1

Total 3172.73 79.56 20119 379 9255.2 995.7 1215.2 115.9
Geom. Mean 17.22 0.93 65 6 4.9 0.4 1.9 0.0

Table B.13: Computational results for the cutting plane separator for the class of c-MIR inequal-
ities on the main test set. Cut generation heuristic. Use the extended candidate set for the value
of δ. (4 with respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 48.08 -0.26 1521 89 588.5 67.7 9.1 -5.8
aflow30a 46.68 0.32 452 44 45.1 5.9 1.4 0.1
aflow40b 30.81 -0.84 492 64 228.0 41.4 7.6 0.4
arki001 2.40 0.00 155 -1 4.9 0.0 0.8 0.0
atlanta-ip 0.08 -0.09 34 -26 1974.2 -1526.4 394.8 -188.6
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 60.20 0.00 15 0 0.0 0.0 0.0 0.0
bell5 45.63 0.00 38 0 0.0 -0.1 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.0 0.0 0.0 0.0
binkar10 1 54.47 -0.54 47 -5 0.3 -0.1 0.0 -0.1
blend2 10.42 -1.08 30 10 0.7 0.3 0.1 0.1
dano3 4 0.00 0.00 0 0 3.1 -0.2 3.1 -0.2
dano3 5 0.00 0.00 0 0 4.2 -0.3 4.2 -0.3
dano3mip 0.00 0.00 1 0 50.7 -1.6 25.4 -0.8
danoint 0.51 0.00 14 0 0.8 -0.2 0.1 -0.1
dcmulti 44.82 14.75 170 55 0.8 0.1 0.1 0.0
egout 86.19 -4.61 78 9 0.2 0.0 0.0 0.0
fiber 88.21 -0.48 52 -6 0.2 0.0 0.0 0.0
fixnet6 74.49 0.74 1484 257 39.9 4.3 0.4 0.0
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 20 -3 0.1 0.1 0.0 0.0
gesa2 72.34 -2.26 164 3 1.1 -0.2 0.1 -0.1
gesa2-o 68.61 -0.52 311 -12 4.1 -0.8 0.2 -0.1
gesa3 57.61 -0.30 103 -11 1.4 -0.4 0.2 -0.1
gesa3 o 61.16 0.01 184 0 3.0 0.3 0.3 0.0
gt2 48.50 0.00 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 46.23 0.00 29 0 0.0 0.0 0.0 0.0
mitre 10.77 -0.01 804 -15 23.6 -13.9 3.9 -2.4
mkc 9.24 -4.13 141 -30 11.6 -8.2 0.8 -0.3
mod008 39.69 -0.72 14 1 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.1 -0.1 0.0 -0.1
mod011 91.43 2.80 4414 1040 677.5 212.3 8.4 0.8
modglob 27.09 0.09 105 -4 0.1 0.0 0.0 0.0
momentum1 0.00 0.00 11 0 302.6 -14.4 75.6 -3.6
momentum2 0.01 -0.01 10 -6 439.3 -293.2 146.4 -0.1
msc98-ip 0.55 -0.42 298 -80 525.9 -330.5 87.6 -19.4
neos1 0.00 0.00 164 -22 0.2 -0.2 0.0 -0.1
neos2 8.99 -0.49 406 -94 94.0 24.0 2.1 -0.2
neos3 10.28 -0.11 591 -149 178.6 14.0 3.4 -0.3
neos616206 0.14 0.00 78 0 0.2 -0.2 0.0 -0.1
neos632659 28.04 -26.34 290 -259 0.6 -0.9 0.0 -0.1
neos7 67.46 -4.26 450 -23 18.2 -2.4 0.5 -0.3
neos8 4.17 0.00 5 0 48.5 -11.4 24.3 -5.7
neos14 67.50 -0.35 642 4 14.3 -6.6 0.4 0.0
neos15 70.30 -1.34 1031 -133 28.1 -12.2 0.8 0.0
neos16 9.52 0.00 127 -12 0.2 -0.2 0.1 0.0
neos22 94.20 0.00 30 0 2.4 -0.3 0.8 -0.1
neos23 0.00 -9.49 149 -142 0.5 -2.1 0.1 -0.1
net12 2.40 -0.52 91 -76 420.9 -509.1 35.1 -19.6
nsrand-ipx 11.71 0.00 61 0 6.5 -1.8 1.1 -0.3
p0033 68.03 4.66 36 14 0.0 0.0 0.0 0.0
p0282 93.19 0.39 118 -6 0.3 0.0 0.0 0.0
p0548 88.96 0.00 124 -1 0.1 0.0 0.0 0.0
p2756 72.58 -0.40 231 -11 0.8 -0.1 0.1 0.0
pp08a 93.84 -0.14 207 -2 0.5 -0.1 0.0 0.0
pp08aCUTS 89.91 0.00 113 -2 0.3 0.0 0.0 0.0
prod1 0.85 0.00 96 -1 0.7 0.0 0.1 0.0
qnet1 72.80 0.84 80 10 0.5 0.2 0.0 0.0
qnet1 o 82.15 -6.83 66 -33 0.2 -0.3 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 43.42 -1.43 59 -14 0.3 -0.2 0.0 0.0
ran12x21 33.81 -0.68 55 6 0.4 0.1 0.0 0.0
ran13x13 25.30 -1.80 17 -14 0.0 -0.1 0.0 0.0
ran14x18 1 33.51 0.42 73 -2 0.5 -0.1 0.0 0.0
ran8x32 42.03 -0.23 83 -12 0.8 -0.1 0.0 -0.1
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 95.16 -0.61 186 -34 0.7 -0.2 0.0 0.0
roll3000 57.86 0.52 215 -51 59.4 4.6 3.1 -0.3
set1ch 99.26 0.00 263 -4 0.5 -0.1 0.1 0.0
sp97ar 0.75 0.00 8 0 6.1 -6.0 3.1 -2.9
swath 0.00 0.00 0 0 0.2 0.0 0.2 0.0
timtab1 30.35 -0.46 297 -26 1.5 0.0 0.1 0.0
timtab2 18.27 -0.10 683 -21 6.3 -0.9 0.5 0.0
tr12-30 93.84 0.24 1366 -54 60.6 -1.6 1.8 0.0
vpm1 100.00 0.00 44 0 0.0 0.0 0.0 0.0
vpm2 73.89 -0.26 181 -16 0.4 -0.2 0.0 0.0

Total 3046.82 -46.35 19933 193 5886.7 -2372.8 849.2 -250.1
Geom. Mean 15.56 -0.73 55 -4 4.2 -0.3 1.8 -0.1

Table B.14: Computational results for the cutting plane separator for the class of c-MIR inequal-
ities on the main test set. Cut generation heuristic. If fβ = 0 for all δ ∈ N∗, do not complement
additional integer variables xj , j ∈ T lying strictly between their bounds. (4 with respect to the
default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 47.47 -0.87 1407 -25 453.2 -67.6 14.6 -0.3
aflow30a 45.74 -0.62 373 -35 24.2 -15.0 1.2 -0.1
aflow40b 34.17 2.52 458 30 323.7 137.1 7.7 0.5
arki001 2.40 0.00 156 0 4.8 -0.1 0.8 0.0
atlanta-ip 0.17 0.00 61 1 3530.7 30.1 588.5 5.1
bc1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell3a 60.20 0.00 15 0 0.0 0.0 0.0 0.0
bell5 45.63 0.00 38 0 0.1 0.0 0.0 0.0
bienst1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bienst2 0.00 0.00 0 0 0.0 0.0 0.0 0.0
binkar10 1 55.56 0.55 60 8 0.4 0.0 0.1 0.0
blend2 8.25 -3.25 27 7 0.3 -0.1 0.0 0.0
dano3 4 0.00 0.00 0 0 3.3 0.0 3.3 0.0
dano3 5 0.00 0.00 0 0 4.5 0.0 4.5 0.0
dano3mip 0.00 0.00 1 0 51.8 -0.5 25.9 -0.3
danoint 0.51 0.00 14 0 0.9 -0.1 0.2 0.0
dcmulti 30.86 0.79 131 16 0.8 0.1 0.1 0.0
egout 87.06 -3.74 64 -5 0.1 -0.1 0.0 0.0
fiber 88.69 0.00 57 -1 0.2 0.0 0.0 0.0
fixnet6 74.18 0.43 1294 67 42.4 6.8 0.5 0.1
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 23 0 0.1 0.1 0.0 0.0
gesa2 74.58 -0.02 162 1 1.2 -0.1 0.2 0.0
gesa2-o 69.41 0.28 323 0 4.4 -0.5 0.3 0.0
gesa3 58.02 0.11 111 -3 1.7 -0.1 0.2 -0.1
gesa3 o 61.15 0.00 185 1 2.7 0.0 0.3 0.0
gt2 52.10 3.60 22 4 0.0 0.0 0.0 0.0
harp2 11.11 0.00 3 0 0.0 0.0 0.0 0.0
khb05250 4.70 0.00 1 0 0.0 0.0 0.0 0.0
lseu 44.42 -1.81 19 -10 0.0 0.0 0.0 0.0
mitre 12.17 1.39 819 0 37.2 -0.3 6.2 -0.1
mkc 2.92 -10.45 143 -28 10.3 -9.5 1.0 -0.1
mod008 30.75 -9.66 13 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 88.38 -0.25 3174 -200 414.5 -50.7 6.9 -0.7
modglob 30.63 3.63 134 25 0.2 0.1 0.0 0.0
momentum1 0.00 0.00 11 0 313.6 -3.4 78.4 -0.8
momentum2 0.02 0.00 16 0 732.1 -0.4 146.4 -0.1
msc98-ip 1.04 0.07 338 -40 806.2 -50.2 100.8 -6.2
neos1 0.00 0.00 186 0 0.4 0.0 0.1 0.0
neos2 11.16 1.68 553 53 158.6 88.6 2.6 0.3
neos3 9.38 -1.01 760 20 187.1 22.5 3.6 -0.1
neos616206 0.14 0.00 78 0 0.3 -0.1 0.1 0.0
neos632659 44.45 -9.93 666 117 1.7 0.2 0.1 0.0
neos7 70.88 -0.84 533 60 20.6 0.0 0.8 0.0
neos8 4.17 0.00 5 0 59.6 -0.3 29.8 -0.2
neos14 65.74 -2.11 466 -172 9.2 -11.7 0.4 0.0
neos15 71.08 -0.56 1154 -10 32.0 -8.3 0.9 0.1
neos16 9.52 0.00 139 0 0.4 0.0 0.1 0.0
neos22 94.20 0.00 30 0 2.5 -0.2 0.8 -0.1
neos23 9.49 0.00 354 63 3.2 0.6 0.2 0.0
net12 3.01 0.09 157 -10 868.9 -61.1 51.1 -3.6
nsrand-ipx 11.71 0.00 61 0 8.2 -0.1 1.4 0.0
p0033 9.56 -53.81 11 -11 0.0 0.0 0.0 0.0
p0282 93.00 0.20 140 16 0.4 0.1 0.0 0.0
p0548 89.01 0.05 137 12 0.2 0.1 0.0 0.0
p2756 72.98 0.00 241 -1 0.8 -0.1 0.1 0.0
pp08a 91.97 -2.01 166 -43 0.2 -0.4 0.0 0.0
pp08aCUTS 89.57 -0.34 113 -2 0.2 -0.1 0.0 0.0
prod1 0.88 0.03 104 7 0.6 -0.1 0.1 0.0
qnet1 68.64 -3.32 83 13 0.6 0.3 0.0 0.0
qnet1 o 88.31 -0.67 83 -16 0.2 -0.3 0.0 0.0

continued on the next page
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 43.92 -0.93 72 -1 0.6 0.1 0.0 0.0
ran12x21 34.62 0.13 55 6 0.4 0.1 0.0 0.0
ran13x13 27.19 0.09 35 4 0.1 0.0 0.0 0.0
ran14x18 1 32.34 -0.75 74 -1 0.6 0.0 0.0 0.0
ran8x32 41.20 -1.06 86 -9 1.0 0.1 0.1 0.0
rentacar 0.00 0.00 0 0 0.0 0.0 0.0 0.0
rgn 96.78 1.01 151 -69 0.6 -0.3 0.0 0.0
roll3000 57.42 0.08 269 3 58.9 4.1 3.5 0.1
set1ch 99.26 0.00 269 2 0.5 -0.1 0.1 0.0
sp97ar 0.75 0.00 8 0 12.0 -0.1 6.0 0.0
swath 0.00 0.00 0 0 0.2 0.0 0.2 0.0
timtab1 30.95 0.14 295 -28 1.5 0.0 0.1 0.0
timtab2 18.54 0.17 672 -32 6.5 -0.7 0.5 0.0
tr12-30 93.93 0.33 1476 56 74.1 11.9 2.0 0.2
vpm1 100.00 0.00 43 -1 0.0 0.0 0.0 0.0
vpm2 74.00 -0.15 186 -11 0.5 -0.1 0.0 0.0

Total 3002.39 -90.78 19568 -172 8279.5 20.0 1092.9 -6.4
Geom. Mean 15.49 -0.80 58 -1 4.5 0.0 1.9 0.0

Table B.15: Computational results for the cutting plane separator for the class of c-MIR inequal-
ities on the main test set. Cut generation heuristic. Do not try to improve the violation of the
c-MIR inequality by successively complementing each integer variable xj , j ∈ T lying strictly be-
tween its bounds. (4 with respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 79.84 31.50 2890 1458 1037.1 516.3 19.2 4.3
aflow30a 45.90 -0.46 370 -38 34.1 -5.1 1.2 -0.1
aflow40b 34.63 2.98 425 -3 236.1 49.5 7.4 0.2
arki001 15.26 12.86 258 102 6.6 1.7 1.1 0.3
atlanta-ip 0.17 0.00 62 2 5260.2 1759.6 876.7 293.3
bc1 32.69 32.69 12 12 0.6 0.6 0.1 0.1
bell3a 59.02 -1.18 15 0 0.0 0.0 0.0 0.0
bell5 42.02 -3.61 44 6 0.1 0.0 0.0 0.0
bienst1 6.82 6.82 138 138 2.2 2.2 0.1 0.1
bienst2 7.57 7.57 226 226 2.9 2.9 0.2 0.2
binkar10 1 56.09 1.08 53 1 0.3 -0.1 0.1 0.0
blend2 6.96 -4.54 15 -5 0.2 -0.2 0.0 0.0
dano3 4 1.46 1.46 2 2 7.4 4.1 3.7 0.4
dano3 5 1.44 1.44 5 5 14.8 10.3 5.0 0.5
dano3mip 0.01 0.01 6 5 84.4 32.1 28.1 1.9
danoint 0.92 0.41 62 48 2.1 1.1 0.3 0.1
dcmulti 52.42 22.35 196 81 2.2 1.5 0.1 0.0
egout 99.97 9.17 87 18 0.1 -0.1 0.0 0.0
fiber 88.69 0.00 62 4 0.3 0.1 0.0 0.0
fixnet6 74.36 0.61 1428 201 80.2 44.6 1.0 0.6
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 38 15 0.1 0.1 0.0 0.0
gesa2 97.84 23.24 289 128 4.5 3.2 0.3 0.1
gesa2-o 95.24 26.11 475 152 8.8 3.9 0.4 0.1
gesa3 79.24 21.33 168 54 5.3 3.5 0.5 0.2
gesa3 o 81.99 20.84 251 67 4.1 1.4 0.5 0.2
gt2 49.64 1.14 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 5 2 0.0 0.0 0.0 0.0
khb05250 99.65 94.95 1011 1010 25.8 25.8 0.3 0.3
lseu 44.92 -1.31 31 2 0.0 0.0 0.0 0.0
mitre 12.59 1.81 799 -20 39.6 2.1 6.6 0.3
mkc 9.26 -4.11 184 13 19.6 -0.2 1.2 0.1
mod008 31.69 -8.72 10 -3 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 85.99 -2.64 2105 -1269 257.4 -207.8 4.9 -2.7
modglob 30.84 3.84 143 34 0.2 0.1 0.0 0.0
momentum1 0.00 0.00 34 23 518.3 201.3 86.4 7.2
momentum2 0.04 0.02 105 89 1054.0 321.5 175.7 29.2
msc98-ip 1.00 0.03 564 186 1403.6 547.2 140.4 33.4
neos1 55.22 55.22 572 386 2.7 2.3 0.2 0.1
neos2 14.93 5.45 1057 557 502.6 432.6 5.2 2.9
neos3 3.54 -6.85 594 -146 210.3 45.7 6.2 2.5
neos616206 0.00 -0.14 114 36 0.5 0.1 0.1 0.0
neos632659 22.43 -31.95 172 -377 0.2 -1.3 0.0 -0.1
neos7 72.17 0.45 447 -26 17.1 -3.5 0.9 0.1
neos8 4.17 0.00 5 0 76.1 16.2 38.0 8.0
neos14 74.13 6.28 786 148 21.3 0.4 0.8 0.4
neos15 74.67 3.03 1211 47 44.7 4.4 1.0 0.2
neos16 9.52 0.00 139 0 0.5 0.1 0.1 0.0
neos22 100.00 5.80 27 -3 3.0 0.3 1.0 0.1
neos23 13.94 4.45 541 250 6.8 4.2 0.3 0.1
net12 3.10 0.18 137 -30 794.1 -135.9 61.1 6.4
nsrand-ipx 12.63 0.92 61 0 9.2 0.9 1.5 0.1
p0033 67.84 4.47 28 6 0.0 0.0 0.0 0.0
p0282 93.13 0.33 144 20 0.5 0.2 0.0 0.0
p0548 88.97 0.01 123 -2 0.2 0.1 0.0 0.0
p2756 72.98 0.00 243 1 1.1 0.2 0.1 0.0
pp08a 95.48 1.50 306 97 1.4 0.8 0.1 0.1
pp08aCUTS 92.47 2.56 185 70 1.1 0.8 0.1 0.1
prod1 0.85 0.00 98 1 0.7 0.0 0.1 0.0
qnet1 77.04 5.08 92 22 0.7 0.4 0.0 0.0
qnet1 o 85.55 -3.43 97 -2 0.5 0.0 0.0 0.0

continued on the next page
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 47.78 2.93 127 54 2.8 2.3 0.2 0.2
ran12x21 56.59 22.10 214 165 5.1 4.8 0.2 0.2
ran13x13 54.56 27.46 174 143 3.1 3.0 0.1 0.1
ran14x18 1 47.08 13.99 233 158 6.3 5.7 0.2 0.2
ran8x32 57.27 15.01 118 23 2.1 1.2 0.1 0.0
rentacar 8.38 8.38 19 19 0.7 0.7 0.1 0.1
rgn 98.80 3.03 141 -79 0.6 -0.3 0.0 0.0
roll3000 57.93 0.59 267 1 72.2 17.4 4.0 0.6
set1ch 99.90 0.64 269 2 0.5 -0.1 0.1 0.0
sp97ar 0.75 0.00 8 0 13.6 1.5 6.8 0.8
swath 17.12 17.12 133 133 22.5 22.3 1.6 1.4
timtab1 60.78 29.97 905 582 9.4 7.9 0.3 0.2
timtab2 30.27 11.90 1362 658 24.9 17.7 1.0 0.5
tr12-30 99.57 5.97 1034 -386 21.6 -40.6 1.1 -0.7
vpm1 100.00 0.00 34 -10 0.0 0.0 0.0 0.0
vpm2 76.15 2.00 236 39 0.9 0.3 0.1 0.1

Total 3605.32 512.15 25043 5303 11995.6 3736.1 1494.4 395.1
Geom. Mean 22.78 6.49 112 53 6.8 2.3 1.9 0.0

Table B.16: Computational results for the cutting plane separator for the class of c-MIR inequali-
ties on the main test set. Resulting algorithm (slow version). Use MAXAGGR = 5. Use Score Type 3.
Use the extended candidate set for the value of δ. (4 with respect to the default algorithm)



162 Appendix B. Tables

Name Gap Closed % Cuts Sepa Time Average Sepa Time

10teams 0.00 0 0.1 0.1
30:70:4 5:0 5:100 0.00 0 60.9 60.9
30:70:4 5:0 95:98 0.00 0 60.1 60.1
air03 0.00 0 0.6 0.6
air04 0.00 0 3.3 3.3
air05 0.00 0 1.8 1.8
cap6000 0.00 0 0.1 0.1
dano3 3 0.00 0 2.3 2.3
ds 0.00 0 168.7 168.7
eilD76 0.00 0 0.1 0.1
fast0507 0.00 0 26.2 26.2
glass4 0.00 215 0.1 0.0
irp 0.00 0 0.8 0.8
l152lav 0.00 0 0.1 0.1
liu 0.00 62 3.2 0.5
manna81 0.00 0 5.1 5.1
markshare1 0.00 7 0.0 0.0
markshare2 0.00 11 0.0 0.0
mas284 0.00 0 0.1 0.1
mas74 0.00 0 0.0 0.0
mas76 0.00 0 0.0 0.0
misc03 0.00 0 0.0 0.0
misc06 0.00 0 0.0 0.0
misc07 0.00 0 0.0 0.0
mkc1 0.00 23 46.3 7.7
mzzv11 0.00 2 146.1 48.7
mzzv42z 0.00 0 53.2 53.2
neos648910 0.00 496 0.7 0.1
neos9 0.00 0 21.7 21.7
neos10 0.00 10 77.7 38.9
neos11 0.00 0 13.6 13.6
neos12 0.00 0 323.2 323.2
neos13 0.00 0 21.5 21.5
neos17 0.00 0 0.1 0.1
neos18 0.00 0 1.9 1.9
neos19 0.00 18972 2628.8 525.8
neos20 0.00 45 0.7 0.2
neos21 0.00 0 0.3 0.3
noswot 0.00 51 0.0 0.0
nug08 0.00 0 0.4 0.4
nw04 0.00 0 3.2 3.2
opt1217 0.00 0 0.0 0.0
p0201 0.00 9 0.0 0.0
pk1 0.00 0 0.0 0.0
protfold 0.00 0 1.8 1.8
qap10 0.00 0 4.4 4.4
qiu 0.00 0 1.8 1.8
rout 0.00 123 0.3 0.0
seymour 0.00 0 11.6 11.6
seymour1 0.00 0 2.2 2.2
stein27 0.00 0 0.0 0.0
stein45 0.00 0 0.0 0.0
swath1 5.91 24 5.7 0.8
swath2 5.20 26 6.5 0.9
swath3 4.16 28 6.6 0.9
t1717 0.00 0 64.0 64.0

Total 15.27 20104 3778.1 1480.0
Geom. Mean 1.09 2 4.1 3.3

Table B.17: Computational results for the cutting plane separator for the class of c-MIR in-
equalities on the remaining test set. Resulting algorithm (slow version). Use MAXAGGR = 5. Use
Score Type 3. Use the extended candidate set for the value of δ.
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 53.53 -26.31 1069 -1821 13.5 -1023.6 0.9 -18.3
aflow30a 42.84 -3.06 325 -45 10.4 -23.7 0.7 -0.5
aflow40b 27.75 -6.88 287 -138 50.9 -185.2 3.4 -4.0
arki001 16.01 0.75 246 -12 5.1 -1.5 0.9 -0.2
atlanta-ip 0.16 -0.01 16 -46 59.0 -5201.2 11.8 -864.9
bc1 32.69 0.00 12 0 0.6 0.0 0.1 0.0
bell3a 59.02 0.00 15 0 0.0 0.0 0.0 0.0
bell5 42.02 0.00 44 0 0.1 0.0 0.0 0.0
bienst1 6.82 0.00 138 0 2.1 -0.1 0.1 0.0
bienst2 7.57 0.00 222 -4 2.9 0.0 0.2 0.0
binkar10 1 56.09 0.00 53 0 0.3 0.0 0.1 0.0
blend2 6.96 0.00 15 0 0.2 0.0 0.0 0.0
dano3 4 1.46 0.00 2 0 2.2 -5.2 1.1 -2.6
dano3 5 1.47 0.03 7 2 6.5 -8.3 1.6 -3.4
dano3mip 0.01 0.00 4 -2 7.4 -77.0 2.5 -25.6
danoint 0.83 -0.09 59 -3 1.7 -0.4 0.3 0.0
dcmulti 51.90 -0.52 174 -22 1.4 -0.8 0.1 0.0
egout 85.52 -14.45 61 -26 0.1 0.0 0.0 0.0
fiber 88.68 -0.01 61 -1 0.3 0.0 0.0 0.0
fixnet6 45.53 -28.83 275 -1153 1.9 -78.3 0.1 -0.9
flugpl 2.01 0.00 2 0 0.0 0.0 0.0 0.0
gen 100.00 0.00 38 0 0.1 0.0 0.0 0.0
gesa2 97.84 0.00 287 -2 4.5 0.0 0.3 0.0
gesa2-o 93.89 -1.35 421 -54 5.7 -3.1 0.4 0.0
gesa3 79.21 -0.03 165 -3 4.1 -1.2 0.5 0.0
gesa3 o 80.92 -1.07 219 -32 3.8 -0.3 0.5 0.0
gt2 49.64 0.00 18 0 0.0 0.0 0.0 0.0
harp2 11.11 0.00 5 0 0.0 0.0 0.0 0.0
khb05250 32.53 -67.12 135 -876 0.6 -25.2 0.0 -0.3
lseu 44.92 0.00 31 0 0.0 0.0 0.0 0.0
mitre 4.99 -7.60 529 -270 15.1 -24.5 2.5 -4.1
mkc 9.26 0.00 184 0 16.7 -2.9 1.1 -0.1
mod008 31.69 0.00 10 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.2 0.0 0.1 0.0
mod011 60.34 -25.65 500 -1605 10.6 -246.8 0.7 -4.2
modglob 30.84 0.00 143 0 0.2 0.0 0.0 0.0
momentum1 0.00 0.00 1 -33 17.4 -500.9 8.7 -77.7
momentum2 0.03 -0.01 37 -68 33.5 -1020.5 5.6 -170.1
msc98-ip 0.36 -0.64 76 -488 47.5 -1356.1 7.9 -132.5
neos1 55.04 -0.18 554 -18 2.2 -0.5 0.1 -0.1
neos2 3.61 -11.32 253 -804 43.2 -459.4 2.9 -2.3
neos3 2.25 -1.29 313 -281 72.5 -137.8 4.8 -1.4
neos616206 0.00 0.00 114 0 0.5 0.0 0.1 0.0
neos632659 22.43 0.00 172 0 0.2 0.0 0.0 0.0
neos7 70.64 -1.53 421 -26 12.7 -4.4 0.8 -0.1
neos8 4.17 0.00 5 0 3.4 -72.7 1.7 -36.3
neos14 73.03 -1.10 691 -95 9.4 -11.9 0.6 -0.2
neos15 69.68 -4.99 765 -446 9.6 -35.1 0.6 -0.4
neos16 9.52 0.00 128 -11 0.2 -0.3 0.1 0.0
neos22 100.00 0.00 27 0 3.0 0.0 1.0 0.0
neos23 13.58 -0.36 446 -95 3.6 -3.2 0.2 -0.1
net12 2.62 -0.48 153 16 92.2 -701.9 6.1 -55.0
nsrand-ipx 12.63 0.00 61 0 8.3 -0.9 1.4 -0.1
p0033 67.84 0.00 28 0 0.0 0.0 0.0 0.0
p0282 92.93 -0.20 115 -29 0.2 -0.3 0.0 0.0
p0548 88.92 -0.05 121 -2 0.2 0.0 0.0 0.0
p2756 72.99 0.01 241 -2 1.0 -0.1 0.1 0.0
pp08a 95.45 -0.03 301 -5 1.0 -0.4 0.1 0.0
pp08aCUTS 92.20 -0.27 166 -19 1.0 -0.1 0.1 0.0
prod1 0.85 0.00 98 0 0.5 -0.2 0.1 0.0
qnet1 77.04 0.00 92 0 0.7 0.0 0.0 0.0
qnet1 o 85.55 0.00 97 0 0.5 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

ran10x26 47.59 -0.19 122 -5 1.8 -1.0 0.1 -0.1
ran12x21 50.27 -6.32 168 -46 1.9 -3.2 0.1 -0.1
ran13x13 48.29 -6.27 106 -68 0.7 -2.4 0.0 -0.1
ran14x18 1 43.14 -3.94 166 -67 1.7 -4.6 0.1 -0.1
ran8x32 56.09 -1.18 102 -16 1.1 -1.0 0.1 0.0
rentacar 8.38 0.00 19 0 0.7 0.0 0.1 0.0
rgn 98.80 0.00 141 0 0.6 0.0 0.0 0.0
roll3000 56.23 -1.70 252 -15 25.1 -47.1 1.7 -2.3
set1ch 99.89 -0.01 267 -2 0.4 -0.1 0.1 0.0
sp97ar 0.75 0.00 8 0 9.1 -4.5 4.6 -2.2
swath 17.12 0.00 133 0 22.7 0.2 1.6 0.0
timtab1 52.66 -8.12 605 -300 4.0 -5.4 0.3 0.0
timtab2 31.80 1.53 957 -405 6.9 -18.0 0.5 -0.5
tr12-30 70.58 -28.99 797 -237 5.1 -16.5 0.3 -0.8
vpm1 100.00 0.00 34 0 0.0 0.0 0.0 0.0
vpm2 76.15 0.00 236 0 0.8 -0.1 0.1 0.0

Total 3345.51 -259.81 15363 -9680 675.4 -11320.2 82.8 -1411.6
Geom. Mean 20.90 -1.88 85 -27 3.1 -3.7 1.3 -0.6

Table B.18: Computational results for the cutting plane separator for the class of c-MIR inequal-
ities on the main test set. Resulting algorithm (fast version). Use MAXTESTDELTA = 10. Select
starting constraints i ∈ P by nonincreasing value of CONSSCOREi. Use MAXFAILS = 150, MAXCONTS = 20,
MAXCUTS = 100 and MAXROUNDS = 15. (4 with respect to the resulting algorithm (slow version))
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

10teams 0.00 0.00 0 0 0.1 0.0 0.1 0.0
30:70:4 5:0 5:100 0.00 0.00 0 0 3.4 -57.5 3.4 -57.5
30:70:4 5:0 95:98 0.00 0.00 0 0 3.5 -56.6 3.5 -56.6
air03 0.00 0.00 0 0 0.6 0.0 0.6 0.0
air04 0.00 0.00 0 0 1.9 -1.4 1.9 -1.4
air05 0.00 0.00 0 0 1.6 -0.2 1.6 -0.2
cap6000 0.00 0.00 0 0 0.1 0.0 0.1 0.0
dano3 3 0.00 0.00 0 0 0.8 -1.5 0.8 -1.5
ds 0.00 0.00 0 0 74.4 -94.3 74.4 -94.3
eilD76 0.00 0.00 0 0 0.1 0.0 0.1 0.0
fast0507 0.00 0.00 0 0 19.7 -6.5 19.7 -6.5
glass4 0.00 0.00 215 0 0.1 0.0 0.0 0.0
irp 0.00 0.00 0 0 0.8 0.0 0.8 0.0
l152lav 0.00 0.00 0 0 0.1 0.0 0.1 0.0
liu 0.00 0.00 51 -11 0.7 -2.5 0.1 -0.4
manna81 0.00 0.00 0 0 0.8 -4.3 0.8 -4.3
markshare1 0.00 0.00 7 0 0.0 0.0 0.0 0.0
markshare2 0.00 0.00 11 0 0.0 0.0 0.0 0.0
mas284 0.00 0.00 0 0 0.0 -0.1 0.0 -0.1
mas74 0.00 0.00 0 0 0.0 0.0 0.0 0.0
mas76 0.00 0.00 0 0 0.0 0.0 0.0 0.0
misc03 0.00 0.00 0 0 0.0 0.0 0.0 0.0
misc06 0.00 0.00 0 0 0.0 0.0 0.0 0.0
misc07 0.00 0.00 0 0 0.0 0.0 0.0 0.0
mkc1 0.00 0.00 23 0 1.3 -45.0 0.2 -7.5
mzzv11 0.00 0.00 0 -2 3.0 -143.1 3.0 -45.7
mzzv42z 0.00 0.00 0 0 3.6 -49.6 3.6 -49.6
neos648910 0.00 0.00 327 -169 0.3 -0.4 0.0 -0.1
neos9 0.00 0.00 0 0 16.8 -4.9 16.8 -4.9
neos10 0.00 0.00 10 0 4.1 -73.6 2.1 -36.8
neos11 0.00 0.00 0 0 5.0 -8.6 5.0 -8.6
neos12 0.00 0.00 0 0 85.7 -237.5 85.7 -237.5
neos13 0.00 0.00 0 0 16.3 -5.2 16.3 -5.2
neos17 0.00 0.00 0 0 0.1 0.0 0.1 0.0
neos18 0.00 0.00 0 0 0.1 -1.8 0.1 -1.8
neos19 0.00 0.00 0 -18972 7.8 -2621.0 7.8 -518.0
neos20 0.00 0.00 45 0 0.4 -0.3 0.1 -0.1
neos21 0.00 0.00 0 0 0.1 -0.2 0.1 -0.2
noswot 0.00 0.00 51 0 0.0 0.0 0.0 0.0
nug08 0.00 0.00 0 0 0.1 -0.3 0.1 -0.3
nw04 0.00 0.00 0 0 3.2 0.0 3.2 0.0
opt1217 0.00 0.00 0 0 0.0 0.0 0.0 0.0
p0201 0.00 0.00 9 0 0.0 0.0 0.0 0.0
pk1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
protfold 0.00 0.00 0 0 0.4 -1.4 0.4 -1.4
qap10 0.00 0.00 0 0 0.9 -3.5 0.9 -3.5
qiu 0.00 0.00 0 0 0.1 -1.7 0.1 -1.7
rout 0.00 0.00 123 0 0.3 0.0 0.0 0.0
seymour 0.00 0.00 0 0 0.6 -11.0 0.6 -11.0
seymour1 0.00 0.00 0 0 0.4 -1.8 0.4 -1.8
stein27 0.00 0.00 0 0 0.0 0.0 0.0 0.0
stein45 0.00 0.00 0 0 0.0 0.0 0.0 0.0
swath1 5.91 0.00 24 0 5.7 0.0 0.8 0.0
swath2 5.20 0.00 26 0 5.4 -1.1 0.8 -0.1
swath3 4.16 0.00 28 0 6.6 0.0 0.9 0.0
t1717 0.00 0.00 0 0 33.6 -30.4 33.6 -30.4

Total 15.27 0.00 950 -19154 310.8 -3467.3 291.0 -1189.0
Geom. Mean 1.09 0.00 2 0 2.0 -2.1 1.8 -1.5

Table B.19: Computational results for the cutting plane separator for the class of c-MIR inequal-
ities on the remaining test set. Resulting algorithm (fast version). Use MAXTESTDELTA = 10. Select
starting constraints i ∈ P by nonincreasing value of CONSSCOREi. Use MAXFAILS = 150, MAXCONTS = 20,
MAXCUTS = 100 and MAXROUNDS = 15. (4 with respect to the resulting algorithm (slow version))
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B.2 Cutting Plane Separator for the 0-1 Knapsack Prob-

lem

Name Type Conss Vars zLP zMIP

cnr dual mip1 MIP 52170 19370 58802732.7 59803578.3
dfn3free BIP 70668 137581 54345.2812 58019.386
dfn3orig BIP 38134 37849 59870.6949 67143.015
dfn-stop-1 BIP 817 6116 113006094 119265705
dfn-stop-2 BIP 817 6088 101183673 102475418
ep1a BIP 382 10255 23865985.2 33211910
ep5b BIP 382 10255 44966343.5 48013065
rlp2 BMIP 68 451 10.2110412 19
rococoC11-010100 IP 4010 12321 8773.20654 25586
rococoC11-011100 IP 2367 6491 9024.20541 22906
tasncp285 IP 43272 12310 16074786 18594200
umts MIP 4465 2947 29129565.2 30124085

atlanta-ip MIP 21732 48738 81.2455967 95.0095497
cap6000 BIP 2176 6000 -2451537.33 -2451377
fiber BMIP 363 1298 198107.358 405935.18
gen MIP 780 870 112271.463 112313.363
harp2 BIP 112 2993 -74325169.3 -73899597
lseu BIP 28 89 947.957237 1120
mitre BIP 2054 10724 114782.467 115155
mkc BMIP 3411 5325 -611.85 -563.212
mod008 BIP 6 319 290.931073 307
mod010 BIP 146 2655 6532.08333 6548
nsrand-ipx BMIP 735 6621 49667.8923 51520
p0033 BIP 16 33 2828.33136 3089
p0282 BIP 241 282 180000.3 258411
p0548 BIP 176 548 4790.57713 8691
p2756 BIP 755 2756 2701.14437 3124
roll3000 MIP 2295 1166 11097.2754 12899
sp97ar BIP 1761 14101 652560391 663164724

Table B.20: Summary of the main test set for the cutting plane separator for the 0-1 knapsack
problem.
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Name Type Conss Vars zLP zMIP

tkat3 IP 14300 12552 64752921.3 66845312.1
tkatTV5 IP 2580 2332 28045750.6 28117644.2

10teams BMIP 230 2025 917 924
a1c1s1 BMIP 3312 3648 997.529583 11566.5904
30:70:4 5:0 5:100 BMIP 12050 10772 8.1 9
30:70:4 5:0 95:98 BMIP 12471 10990 11.5 12
aflow30a BMIP 479 842 983.167425 1158
aflow40b BMIP 1442 2728 1005.66482 1168
air03 BIP 124 10757 338864.25 340160
air04 BIP 823 8904 55535.4364 56137
air05 BIP 426 7195 25877.6093 26374
arki001 MIP 1048 1388 7579621.83 7580814.51
bc1 BMIP 1913 1751 2.18877397 3.33836255
bell3a MIP 123 133 866171.733 878430.316
bell5 MIP 91 104 8908552.45 8966406.49
bienst1 BMIP 576 505 11.7241379 46.75
bienst2 BMIP 576 505 11.7241379 54.6
binkar10 1 BMIP 1026 2298 6637.18803 6742.20002
blend2 MIP 274 353 6.91567511 7.598985
dano3 3 BMIP 3202 13873 576.23162 576.344633
dano3 4 BMIP 3202 13873 576.23162 576.435225
dano3 5 BMIP 3202 13873 576.23162 576.924916
dano3mip BMIP 3202 13873 576.23162 705.941176
danoint BMIP 664 521 62.6372804 65.67
dcmulti BMIP 290 548 184466.891 188182
ds BIP 656 67732 57.2347263 468.645
egout BMIP 98 141 511.61784 568.1007
eilD76 BIP 75 1898 680.538997 885.411847
fast0507 BIP 507 63009 172.145567 174
fixnet6 BMIP 478 878 3192.042 3983
flugpl MIP 18 18 1167185.73 1201500
gesa2 MIP 1392 1224 25492512.1 25779856.4
gesa2-o MIP 1248 1224 25476489.7 25779856.4
gesa3 MIP 1368 1152 27846437.5 27991042.6
gesa3 o MIP 1224 1152 27833632.5 27991042.6
glass4 BMIP 396 322 800002400 1.6000134e+09
gt2 IP 29 188 20146.7613 21166
irp BIP 39 20315 12123.5302 12159.4928
khb05250 BMIP 101 1350 95919464 106940226
l152lav BIP 97 1989 4656.36364 4722
liu BMIP 2178 1156 560 1146
manna81 IP 6480 3321 -13297 -13164
markshare1 BMIP 6 62 0 1
markshare2 BMIP 7 74 0 1
mas284 BMIP 68 151 86195.863 91405.7237
mas74 BMIP 13 151 10482.7953 11801.1857
mas76 BMIP 12 151 38893.9036 40005.0541
misc03 BMIP 96 160 1910 3360
misc06 BMIP 820 1808 12841.6894 12850.8607
misc07 BMIP 212 260 1415 2810
mkc1 BMIP 3411 5325 -611.85 -607.207
mod011 BMIP 4480 10958 -62081950.3 -54558535
modglob BMIP 291 422 20430947.6 20740508
momentum1 BMIP 42680 5174 82424.4594 109143.493
momentum2 MIP 24237 3732 10696.1116 12314.2196
msc98-ip MIP 15850 21143 19520966.2 23271298
mzzv11 IP 9499 10240 -22944.9875 -21718
mzzv42z IP 10460 11717 -21622.9985 -20540
neos1 BIP 5020 2112 5.6 19
neos2 BMIP 1103 2101 -4407.09724 454.864697
neos3 BMIP 1442 2747 -6158.20911 368.842751
neos616206 BMIP 534 480 787.721258 937.6
neos632659 BMIP 244 420 -119.47619 -94

continued on the next page
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Name Type Conss Vars zLP zMIP

neos648910 BMIP 1491 814 16 32
neos7 MIP 1994 1556 562977.43 721934
neos8 IP 46324 23228 -3725 -3719
neos9 BMIP 31600 81408 780 798
neos10 IP 46793 23489 -1196.33333 -1135
neos11 BMIP 2706 1220 6 9
neos12 BMIP 8317 3983 9.41161243 13
neos13 BMIP 20852 1827 -126.178378 -95.4748066
neos14 BMIP 552 792 32734.1148 74333.3433
neos15 BMIP 552 792 33463.7701 80851.6678
neos16 IP 1018 377 429 450
neos17 BMIP 486 535 0.000681498501 0.150002577
neos18 BIP 11402 3312 7 16
neos19 BMIP 34082 103789 -1611 -1499
neos20 MIP 2446 1165 -475 -434
neos21 BMIP 1085 614 2.21648352 7
neos22 BMIP 5208 3240 777191.429 779715
neos23 BMIP 1568 477 56 137
net12 BMIP 14021 14115 68.3978758 214
noswot MIP 182 128 -43 -41
nug08 BIP 912 1632 203.5 214
nw04 BIP 36 87482 16310.6667 16862
opt1217 BMIP 64 769 -20.0213904 -16
p0201 BIP 133 201 7125 7615
pk1 BMIP 45 86 0 11
pp08a BMIP 136 240 2748.34524 7350
pp08aCUTS BMIP 246 240 5480.60616 7350
prod1 BMIP 208 250 -84.4158719 -56
protfold BIP 2112 1835 -41.9574468 -23
qap10 BIP 1820 4150 332.566228 340
qiu BMIP 1192 840 -931.638854 -132.873137
qnet1 MIP 503 1541 14274.1027 16029.6927
qnet1 o MIP 456 1541 12557.2479 16029.6927
ran10x26 BMIP 296 520 3857.02278 4270
ran12x21 BMIP 285 504 3157.37744 3664
ran13x13 BMIP 195 338 2691.43947 3252
ran14x18 1 BMIP 284 504 3016.94435 3714
ran8x32 BMIP 296 512 4937.58453 5247
rentacar BMIP 6803 9557 28928379.6 30356761
rgn BMIP 24 180 48.7999986 82.1999992
rout MIP 291 556 981.864286 1077.56
set1ch BMIP 492 712 35118.1098 54537.75
seymour BIP 4944 1372 403.846474 423
seymour1 BMIP 4944 1372 403.846474 410.763701
stein27 BIP 118 27 13 18
stein45 BIP 331 45 22 30
swath BMIP 884 6805 334.496858 477.34101
swath1 BMIP 884 6805 334.496858 379.071296
swath2 BMIP 884 6805 334.496858 385.199693
swath3 BMIP 884 6805 334.496858 397.761344
t1717 BIP 551 73885 134531.021 288658
timtab1 MIP 171 397 157896.037 764772
timtab2 MIP 294 675 210652.471 1184230
tr12-30 BMIP 750 1080 18124.1745 130596
vpm1 BMIP 234 378 16.4333333 20
vpm2 BMIP 234 378 10.303297 13.75

Table B.21: Summary of the remaining test set for the cutting plane separator for the 0-1 knapsack
problem.
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

cnr dual mip1 1.72 5 0.1 0.0
dfn3free 26.89 149 422.2 35.2
dfn3orig 90.29 148 7.3 0.3
dfn-stop-1 52.30 575 8.9 0.3
dfn-stop-2 38.91 247 1.2 0.1
ep1a 94.89 1935 176.0 3.9
ep5b 60.48 2553 681.2 13.4
rlp2 43.11 19 0.0 0.0
rococoC11-010100 36.29 1842 0.9 0.0
rococoC11-011100 42.47 910 0.6 0.0
tasncp285 49.42 492 0.1 0.0
umts 0.00 0 0.0 0.0
atlanta-ip 0.09 12 0.1 0.0
cap6000 2.16 6 0.1 0.0
fiber 88.73 99 0.0 0.0
gen 97.02 7 0.0 0.0
harp2 20.98 50 53.0 7.6
lseu 33.11 13 0.0 0.0
mitre 0.24 1156 0.2 0.0
mkc 0.76 91 0.6 0.1
mod008 15.71 27 0.1 0.0
mod010 18.32 3 0.0 0.0
nsrand-ipx 11.96 108 2.0 0.2
p0033 28.89 9 0.0 0.0
p0282 95.68 201 0.0 0.0
p0548 85.78 137 0.0 0.0
p2756 85.67 332 0.1 0.0
roll3000 0.06 5 0.0 0.0
sp97ar 0.77 9 1.4 0.7

Total 1122.67 11140 1355.9 62.0
Geom. Mean 16.31 67 2.5 1.4

Table B.22: Computational results for the separation algorithm for the class of LMCI1 on the
main test set. Default algorithm.
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.0 0.0
dfn3free 23.05 -3.84 130 -19 2.3 -419.9 0.2 -35.0
dfn3orig 90.17 -0.12 150 2 0.8 -6.5 0.0 -0.3
dfn-stop-1 49.27 -3.03 395 -180 9.1 0.2 0.5 0.2
dfn-stop-2 38.91 0.00 247 0 1.4 0.2 0.1 0.0
ep1a 93.32 -1.57 1315 -620 3.1 -172.9 0.1 -3.8
ep5b 49.17 -11.31 1228 -1325 2.7 -678.5 0.1 -13.3
rlp2 43.11 0.00 19 0 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1842 0 0.9 0.0 0.0 0.0
rococoC11-011100 42.47 0.00 910 0 0.6 0.0 0.0 0.0
tasncp285 49.42 0.00 492 0 0.1 0.0 0.0 0.0
umts 0.00 0.00 0 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.1 0.0 0.0 0.0
cap6000 2.16 0.00 6 0 0.1 0.0 0.0 0.0
fiber 88.73 0.00 99 0 0.0 0.0 0.0 0.0
gen 97.02 0.00 7 0 0.0 0.0 0.0 0.0
harp2 13.30 -7.68 38 -12 0.0 -53.0 0.0 -7.6
lseu 33.11 0.00 13 0 0.0 0.0 0.0 0.0
mitre 0.24 0.00 1156 0 0.2 0.0 0.0 0.0
mkc 0.76 0.00 91 0 0.2 -0.4 0.0 -0.1
mod008 15.71 0.00 27 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 3 0 0.0 0.0 0.0 0.0
nsrand-ipx 11.96 0.00 108 0 2.0 0.0 0.3 0.1
p0033 28.89 0.00 9 0 0.0 0.0 0.0 0.0
p0282 95.68 0.00 201 0 0.0 0.0 0.0 0.0
p0548 85.78 0.00 137 0 0.0 0.0 0.0 0.0
p2756 85.67 0.00 332 0 0.1 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 1.6 0.2 0.8 0.1

Total 1095.13 -27.54 8986 -2154 25.3 -1330.6 2.3 -59.7
Geom. Mean 15.81 -0.50 63 -4 1.3 -1.2 1.0 -0.4

Table B.23: Computational results for the separation algorithm for the class of LMCI1 on the
main test set. Initial cover. Solve KP1BKmax exactly using Algorithm 4.1 if nc is not greater than
1,000,000 and approximately using Algorithm 4.2 otherwise. (4 with respect to the default algo-
rithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.0 0.0
dfn3free 1.66 -25.23 9 -140 59.6 -362.6 19.9 -15.3
dfn3orig 91.68 1.39 68 -80 4.3 -3.0 0.4 0.1
dfn-stop-1 57.85 5.55 269 -306 8.0 -0.9 0.5 0.2
dfn-stop-2 75.68 36.77 157 -90 2.0 0.8 0.2 0.1
ep1a 55.44 -39.45 870 -1065 48.1 -127.9 1.7 -2.2
ep5b 27.26 -33.22 668 -1885 39.4 -641.8 2.5 -10.9
rlp2 43.11 0.00 17 -2 0.0 0.0 0.0 0.0
rococoC11-010100 27.15 -9.14 615 -1227 0.3 -0.6 0.0 0.0
rococoC11-011100 34.75 -7.72 403 -507 0.3 -0.3 0.0 0.0
tasncp285 47.56 -1.86 390 -102 0.1 0.0 0.0 0.0
umts 0.00 0.00 2 2 0.0 0.0 0.0 0.0
atlanta-ip 0.00 -0.09 10 -2 0.1 0.0 0.0 0.0
cap6000 0.00 -2.16 6 0 0.1 0.0 0.0 0.0
fiber 88.83 0.10 99 0 0.0 0.0 0.0 0.0
gen 98.17 1.15 8 1 0.0 0.0 0.0 0.0
harp2 31.43 10.45 88 38 90.0 37.0 6.9 -0.7
lseu 33.43 0.32 11 -2 0.0 0.0 0.0 0.0
mitre 0.88 0.64 1126 -30 0.2 0.0 0.0 0.0
mkc 1.45 0.69 103 12 0.2 -0.4 0.0 -0.1
mod008 15.36 -0.35 18 -9 0.1 0.0 0.0 0.0
mod010 18.32 0.00 3 0 0.0 0.0 0.0 0.0
nsrand-ipx 12.26 0.30 105 -3 2.4 0.4 0.3 0.1
p0033 44.70 15.81 17 8 0.0 0.0 0.0 0.0
p0282 94.22 -1.46 127 -74 0.0 0.0 0.0 0.0
p0548 87.74 1.96 135 -2 0.0 0.0 0.0 0.0
p2756 84.74 -0.93 228 -104 0.0 -0.1 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 1.7 0.3 0.9 0.2

Total 1076.23 -46.44 5571 -5569 256.9 -1099.0 33.3 -28.7
Geom. Mean 14.50 -1.81 50 -17 2.1 -0.4 1.2 -0.2

Table B.24: Computational results for the separation algorithm for the class of LMCI1 on the
main test set. Initial cover. Solve KP2BKmax exactly using Algorithm 4.1. (4 with respect to the
default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.1 0.1
dfn3free 7.22 -19.67 18 -131 0.9 -421.3 0.1 -35.1
dfn3orig 91.47 1.18 64 -84 0.0 -7.3 0.0 -0.3
dfn-stop-1 58.86 6.56 310 -265 0.1 -8.8 0.0 -0.3
dfn-stop-2 79.03 40.12 191 -56 0.1 -1.1 0.0 -0.1
ep1a 94.91 0.02 1993 58 0.4 -175.6 0.0 -3.9
ep5b 69.16 8.68 2687 134 0.4 -680.8 0.0 -13.4
rlp2 43.11 0.00 10 -9 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1840 -2 0.4 -0.5 0.0 0.0
rococoC11-011100 42.47 0.00 905 -5 0.2 -0.4 0.0 0.0
tasncp285 48.81 -0.61 424 -68 0.1 0.0 0.0 0.0
umts 0.00 0.00 2 2 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.0 -0.1 0.0 0.0
cap6000 0.00 -2.16 6 0 0.1 0.0 0.0 0.0
fiber 88.65 -0.08 97 -2 0.0 0.0 0.0 0.0
gen 98.17 1.15 8 1 0.0 0.0 0.0 0.0
harp2 31.75 10.77 80 30 0.0 -53.0 0.0 -7.6
lseu 33.43 0.32 11 -2 0.0 0.0 0.0 0.0
mitre 0.95 0.71 1171 15 0.2 0.0 0.0 0.0
mkc 1.59 0.83 102 11 0.0 -0.6 0.0 -0.1
mod008 15.36 -0.35 18 -9 0.0 -0.1 0.0 0.0
mod010 18.32 0.00 3 0 0.0 0.0 0.0 0.0
nsrand-ipx 12.02 0.06 107 -1 2.4 0.4 0.3 0.1
p0033 44.70 15.81 17 8 0.0 0.0 0.0 0.0
p0282 93.93 -1.75 135 -66 0.0 0.0 0.0 0.0
p0548 88.04 2.26 144 7 0.0 0.0 0.0 0.0
p2756 84.97 -0.70 232 -100 0.0 -0.1 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 1.6 0.2 0.8 0.1

Total 1185.86 63.19 10606 -534 7.1 -1348.8 1.4 -60.6
Geom. Mean 16.42 0.11 59 -8 1.0 -1.5 1.0 -0.4

Table B.25: Computational results for the separation algorithm for the class of LMCI1 on the
main test set. Initial cover. Solve KP2BKmax approximately using Algorithm 4.2. (4 with respect
to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.1 0.1
dfn3free 31.40 4.51 164 15 507.4 85.2 39.0 3.8
dfn3orig 95.21 4.92 99 -49 6.2 -1.1 0.4 0.1
dfn-stop-1 59.40 7.10 287 -288 6.9 -2.0 0.5 0.2
dfn-stop-2 79.60 40.69 208 -39 2.4 1.2 0.2 0.1
ep1a 94.91 0.02 1930 -5 214.8 38.8 4.7 0.8
ep5b 69.63 9.15 2851 298 926.9 245.7 16.6 3.2
rlp2 43.11 0.00 10 -9 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1848 6 0.8 -0.1 0.0 0.0
rococoC11-011100 42.46 -0.01 911 1 0.7 0.1 0.0 0.0
tasncp285 49.40 -0.02 470 -22 0.1 0.0 0.0 0.0
umts 0.00 0.00 0 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.1 0.0 0.0 0.0
cap6000 2.07 -0.09 6 0 0.1 0.0 0.0 0.0
fiber 88.65 -0.08 99 0 0.0 0.0 0.0 0.0
gen 97.02 0.00 7 0 0.0 0.0 0.0 0.0
harp2 25.40 4.42 64 14 67.7 14.7 7.5 -0.1
lseu 33.42 0.31 12 -1 0.0 0.0 0.0 0.0
mitre 0.24 0.00 1156 0 0.2 0.0 0.0 0.0
mkc 0.76 0.00 91 0 0.2 -0.4 0.0 -0.1
mod008 13.75 -1.96 20 -7 0.1 0.0 0.0 0.0
mod010 18.32 0.00 3 0 0.0 0.0 0.0 0.0
nsrand-ipx 11.96 0.00 109 1 2.0 0.0 0.2 0.0
p0033 28.89 0.00 9 0 0.0 0.0 0.0 0.0
p0282 95.80 0.12 201 0 0.0 0.0 0.0 0.0
p0548 87.04 1.26 130 -7 0.0 0.0 0.0 0.0
p2756 85.68 0.01 237 -95 0.0 -0.1 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 1.6 0.2 0.8 0.1

Total 1193.05 70.38 10953 -187 1738.2 382.3 70.1 8.1
Geom. Mean 17.02 0.71 62 -5 2.7 0.2 1.4 0.0

Table B.26: Computational results for the separation algorithm for the class of LMCI1 on the
main test set. Minimal cover. Use nonincreasing aj as the second order criterium for removing
variables. (4 with respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.0 0.0
dfn3free 7.22 -19.67 18 -131 1.3 -420.9 0.2 -35.0
dfn3orig 91.47 1.18 64 -84 0.0 -7.3 0.0 -0.3
dfn-stop-1 58.50 6.20 285 -290 0.1 -8.8 0.0 -0.3
dfn-stop-2 77.33 38.42 168 -79 0.1 -1.1 0.0 -0.1
ep1a 94.91 0.02 1993 58 0.4 -175.6 0.0 -3.9
ep5b 69.16 8.68 2687 134 0.4 -680.8 0.0 -13.4
rlp2 43.11 0.00 20 1 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1840 -2 0.4 -0.5 0.0 0.0
rococoC11-011100 42.47 0.00 905 -5 0.2 -0.4 0.0 0.0
tasncp285 48.81 -0.61 424 -68 0.1 0.0 0.0 0.0
umts 0.00 0.00 2 2 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.0 -0.1 0.0 0.0
cap6000 0.00 -2.16 6 0 0.1 0.0 0.0 0.0
fiber 88.65 -0.08 89 -10 0.0 0.0 0.0 0.0
gen 98.17 1.15 6 -1 0.0 0.0 0.0 0.0
harp2 30.00 9.02 77 27 0.0 -53.0 0.0 -7.6
lseu 33.43 0.32 10 -3 0.0 0.0 0.0 0.0
mitre 0.95 0.71 1171 15 0.2 0.0 0.0 0.0
mkc 1.56 0.80 94 3 0.0 -0.6 0.0 -0.1
mod008 15.36 -0.35 18 -9 0.0 -0.1 0.0 0.0
mod010 18.32 0.00 2 -1 0.0 0.0 0.0 0.0
nsrand-ipx 12.02 0.06 107 -1 2.4 0.4 0.3 0.1
p0033 44.70 15.81 17 8 0.0 0.0 0.0 0.0
p0282 94.30 -1.38 143 -58 0.0 0.0 0.0 0.0
p0548 87.80 2.02 139 2 0.0 0.0 0.0 0.0
p2756 84.97 -0.70 232 -100 0.0 -0.1 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 1.6 0.2 0.8 0.1

Total 1182.14 59.47 10548 -592 7.4 -1348.5 1.5 -60.5
Geom. Mean 16.36 0.05 58 -9 1.1 -1.4 1.0 -0.4

Table B.27: Computational results for the separation algorithm for the class of LMCI1 on the
main test set. Resulting algorithm. Solve KP2BKmax approximately using Algorithm 4.2. Set
C2 = {j ∈ C : x∗j = 1} and C1 = C\C2. Change the partition if |C1| = 0. (4 with respect to the
default algorithm)
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

cnr dual mip1 1.72 5 0.1 0.0
dfn3free 27.01 148 254.6 21.2
dfn3orig 87.01 333 14.0 0.5
dfn-stop-1 51.07 902 22.7 0.6
dfn-stop-2 29.40 403 2.8 0.1
ep1a 94.83 1942 184.6 4.4
ep5b 67.01 2888 976.3 15.7
rlp2 43.11 27 0.0 0.0
rococoC11-010100 36.29 1842 0.8 0.0
rococoC11-011100 42.47 910 0.7 0.0
tasncp285 49.42 595 0.1 0.0
umts 0.00 0 0.0 0.0
atlanta-ip 0.09 12 0.1 0.0
cap6000 2.16 6 0.1 0.0
fiber 88.73 92 0.0 0.0
gen 98.17 6 0.0 0.0
harp2 21.19 53 49.6 6.2
lseu 37.05 11 0.0 0.0
mitre 0.24 1156 0.2 0.0
mkc 0.76 89 0.2 0.0
mod008 18.99 26 0.1 0.0
mod010 18.32 2 0.0 0.0
nsrand-ipx 12.26 109 1.9 0.2
p0033 32.64 10 0.0 0.0
p0282 95.94 178 0.0 0.0
p0548 87.48 199 0.0 0.0
p2756 85.64 430 0.1 0.0
roll3000 0.06 5 0.0 0.0
sp97ar 0.77 9 1.5 0.8

Total 1129.83 12388 1510.3 49.9
Geom. Mean 16.45 73 2.8 1.4

Table B.28: Computational results for the separation algorithm for the class of LEWI on the main
test set. Default algorithm
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.0 0.0
dfn3free 9.26 -17.75 43 -105 1.3 -253.3 0.1 -21.1
dfn3orig 86.09 -0.92 316 -17 0.1 -13.9 0.0 -0.5
dfn-stop-1 51.19 0.12 913 11 0.3 -22.4 0.0 -0.6
dfn-stop-2 28.59 -0.81 368 -35 0.1 -2.7 0.0 -0.1
ep1a 93.07 -1.76 1367 -575 0.2 -184.4 0.0 -4.4
ep5b 57.17 -9.84 1528 -1360 0.4 -975.9 0.0 -15.7
rlp2 43.11 0.00 17 -10 0.0 0.0 0.0 0.0
rococoC11-010100 33.93 -2.36 1006 -836 0.3 -0.5 0.0 0.0
rococoC11-011100 40.46 -2.01 605 -305 0.1 -0.6 0.0 0.0
tasncp285 48.73 -0.69 537 -58 0.1 0.0 0.0 0.0
umts 0.00 0.00 2 2 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 9 -3 0.0 -0.1 0.0 0.0
cap6000 2.16 0.00 6 0 0.1 0.0 0.0 0.0
fiber 88.14 -0.59 85 -7 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 13.93 -7.26 40 -13 0.0 -49.6 0.0 -6.2
lseu 41.30 4.25 13 2 0.0 0.0 0.0 0.0
mitre 3.35 3.11 970 -186 0.1 -0.1 0.0 0.0
mkc 1.12 0.36 93 4 0.0 -0.2 0.0 0.0
mod008 13.57 -5.42 13 -13 0.0 -0.1 0.0 0.0
mod010 18.32 0.00 2 0 0.0 0.0 0.0 0.0
nsrand-ipx 11.83 -0.43 103 -6 2.0 0.1 0.3 0.1
p0033 41.40 8.76 13 3 0.0 0.0 0.0 0.0
p0282 94.80 -1.14 115 -63 0.0 0.0 0.0 0.0
p0548 85.30 -2.18 155 -44 0.0 0.0 0.0 0.0
p2756 85.32 -0.32 422 -8 0.0 -0.1 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 10 1 2.1 0.6 0.7 -0.1

Total 1092.94 -36.89 8767 -3621 7.3 -1503.0 1.3 -48.6
Geom. Mean 16.13 -0.32 61 -12 1.1 -1.7 1.0 -0.4

Table B.29: Computational results for the separation algorithm for the class of LEWI on the main
test set. Initial cover. Solve KP1BKmax approximately using Algorithm 4.2. (4 with respect to the
default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.0 0.0
dfn3free 9.26 -17.75 43 -105 1.8 -252.8 0.2 -21.0
dfn3orig 86.85 -0.16 319 -14 1.1 -12.9 0.0 -0.5
dfn-stop-1 52.19 1.12 983 81 4.1 -18.6 0.1 -0.5
dfn-stop-2 29.34 -0.06 381 -22 1.6 -1.2 0.1 0.0
ep1a 93.32 -1.51 1355 -587 2.9 -181.7 0.1 -4.3
ep5b 54.04 -12.97 1441 -1447 2.6 -973.7 0.1 -15.6
rlp2 43.11 0.00 27 0 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1842 0 0.9 0.1 0.0 0.0
rococoC11-011100 42.47 0.00 910 0 0.6 -0.1 0.0 0.0
tasncp285 49.42 0.00 595 0 0.1 0.0 0.0 0.0
umts 0.00 0.00 0 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.1 0.0 0.0 0.0
cap6000 2.16 0.00 6 0 0.1 0.0 0.0 0.0
fiber 88.73 0.00 92 0 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 13.93 -7.26 40 -13 0.1 -49.5 0.0 -6.2
lseu 37.05 0.00 11 0 0.0 0.0 0.0 0.0
mitre 0.24 0.00 1156 0 0.2 0.0 0.0 0.0
mkc 0.76 0.00 89 0 0.5 0.3 0.1 0.1
mod008 18.99 0.00 26 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.0 0.0 0.0 0.0
nsrand-ipx 12.26 0.00 109 0 1.9 0.0 0.2 0.0
p0033 32.64 0.00 10 0 0.0 0.0 0.0 0.0
p0282 95.94 0.00 178 0 0.0 0.0 0.0 0.0
p0548 87.48 0.00 199 0 0.0 0.0 0.0 0.0
p2756 85.64 0.00 430 0 0.1 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 1.5 0.0 0.7 -0.1

Total 1091.23 -38.60 10281 -2107 20.3 -1490.0 1.8 -48.1
Geom. Mean 15.51 -0.94 67 -6 1.2 -1.6 1.0 -0.4

Table B.30: Computational results for the separation algorithm for the class of LEWI on the
main test set. Initial cover. Solve KP1BKmax exactly using Algorithm 4.1 if nc is not greater than
1,000,000 and approximately using Algorithm 4.2 otherwise. (4 with respect to the default algo-
rithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.1 0.1
dfn3free 0.82 -26.19 20 -128 231.8 -22.8 38.6 17.4
dfn3orig 84.95 -2.06 323 -10 18.1 4.1 0.6 0.1
dfn-stop-1 50.05 -1.02 1001 99 30.4 7.7 0.6 0.0
dfn-stop-2 29.40 0.00 386 -17 3.0 0.2 0.1 0.0
ep1a 54.23 -40.60 868 -1074 47.7 -136.9 1.5 -2.9
ep5b 25.92 -41.09 722 -2166 41.4 -934.9 2.1 -13.6
rlp2 43.11 0.00 25 -2 0.0 0.0 0.0 0.0
rococoC11-010100 28.65 -7.64 665 -1177 0.3 -0.5 0.0 0.0
rococoC11-011100 34.33 -8.14 371 -539 0.2 -0.5 0.0 0.0
tasncp285 47.70 -1.72 496 -99 0.1 0.0 0.0 0.0
umts 0.00 0.00 2 2 0.0 0.0 0.0 0.0
atlanta-ip 0.00 -0.09 10 -2 0.1 0.0 0.0 0.0
cap6000 0.00 -2.16 6 0 0.1 0.0 0.0 0.0
fiber 88.02 -0.71 87 -5 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 21.49 0.30 58 5 43.1 -6.5 5.4 -0.8
lseu 42.80 5.75 15 4 0.0 0.0 0.0 0.0
mitre 1.23 0.99 1127 -29 0.2 0.0 0.0 0.0
mkc 1.45 0.69 102 13 0.1 -0.1 0.0 0.0
mod008 18.99 0.00 24 -2 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.0 0.0 0.0 0.0
nsrand-ipx 12.26 0.00 98 -11 2.3 0.4 0.3 0.1
p0033 44.70 12.06 17 7 0.0 0.0 0.0 0.0
p0282 94.23 -1.71 187 9 0.0 0.0 0.0 0.0
p0548 86.15 -1.33 185 -14 0.0 0.0 0.0 0.0
p2756 81.96 -3.68 415 -15 0.1 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 1.6 0.1 0.8 0.0

Total 1011.49 -118.34 7237 -5151 420.8 -1089.5 50.2 0.3
Geom. Mean 13.78 -2.67 61 -12 2.4 -0.4 1.2 -0.2

Table B.31: Computational results for the separation algorithm for the class of LEWI on the main
test set. Initial cover. Solve KP2BKmax exactly using Algorithm 4.1. (4 with respect to the default
algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.1 0.1
dfn3free 4.92 -22.09 9 -139 0.6 -254.0 0.2 -21.0
dfn3orig 82.56 -4.45 320 -13 0.1 -13.9 0.0 -0.5
dfn-stop-1 35.15 -15.92 242 -660 0.1 -22.6 0.0 -0.6
dfn-stop-2 23.93 -5.47 198 -205 0.1 -2.7 0.0 -0.1
ep1a 85.58 -9.25 2058 116 0.4 -184.2 0.0 -4.4
ep5b 69.24 2.23 3887 999 0.7 -975.6 0.0 -15.7
rlp2 30.36 -12.75 29 2 0.0 0.0 0.0 0.0
rococoC11-010100 36.28 -0.01 1898 56 0.4 -0.4 0.0 0.0
rococoC11-011100 42.46 -0.01 906 -4 0.2 -0.5 0.0 0.0
tasncp285 41.75 -7.67 401 -194 0.0 -0.1 0.0 0.0
umts 0.02 0.02 7 7 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 7 -5 0.0 -0.1 0.0 0.0
cap6000 0.00 -2.16 3 -3 0.1 0.0 0.0 0.0
fiber 82.15 -6.58 76 -16 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 18.95 -2.24 55 2 0.0 -49.6 0.0 -6.2
lseu 42.22 5.17 14 3 0.0 0.0 0.0 0.0
mitre 6.08 5.84 869 -287 0.2 0.0 0.0 0.0
mkc 0.50 -0.26 88 -1 0.1 -0.1 0.0 0.0
mod008 22.43 3.44 23 -3 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.0 0.0 0.0 0.0
nsrand-ipx 11.21 -1.05 53 -56 1.3 -0.6 0.3 0.1
p0033 35.56 2.92 12 2 0.0 0.0 0.0 0.0
p0282 89.80 -6.14 72 -106 0.0 0.0 0.0 0.0
p0548 81.06 -6.42 121 -78 0.0 0.0 0.0 0.0
p2756 20.93 -64.71 161 -269 0.0 -0.1 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.75 -0.02 9 0 2.4 0.9 0.8 0.0

Total 982.27 -147.56 11536 -852 6.9 -1503.4 1.4 -48.5
Geom. Mean 14.67 -1.78 56 -17 1.0 -1.8 1.0 -0.4

Table B.32: Computational results for the separation algorithm for the class of LEWI on the main
test set. Initial cover. Solve KP2BKmax approximately using Algorithm 4.2. (4 with respect to the
default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.1 0.1
dfn3free 22.26 -4.75 122 -26 342.1 87.5 28.5 7.3
dfn3orig 0.00 -87.01 0 -333 0.4 -13.6 0.4 -0.1
dfn-stop-1 27.81 -23.26 38 -864 1.2 -21.5 0.1 -0.5
dfn-stop-2 2.07 -27.33 9 -394 0.2 -2.6 0.0 -0.1
ep1a 0.00 -94.83 0 -1942 0.0 -184.6 0.0 -4.4
ep5b 0.00 -67.01 0 -2888 0.1 -976.2 0.1 -15.6
rlp2 24.98 -18.13 98 71 0.0 0.0 0.0 0.0
rococoC11-010100 26.24 -10.05 1385 -457 0.8 0.0 0.0 0.0
rococoC11-011100 5.50 -36.97 78 -832 0.2 -0.5 0.0 0.0
tasncp285 8.52 -40.90 168 -427 0.1 0.0 0.0 0.0
umts 0.00 0.00 0 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 6 -6 0.1 0.0 0.0 0.0
cap6000 0.00 -2.16 0 -6 0.0 -0.1 0.0 0.0
fiber 44.07 -44.66 8 -84 0.0 0.0 0.0 0.0
gen 70.39 -27.78 3 -3 0.0 0.0 0.0 0.0
harp2 11.18 -10.01 13 -40 31.1 -18.5 6.2 0.0
lseu 37.06 0.01 9 -2 0.0 0.0 0.0 0.0
mitre 0.00 -0.24 687 -469 0.1 -0.1 0.0 0.0
mkc 0.00 -0.76 9 -80 0.1 -0.1 0.0 0.0
mod008 17.59 -1.40 20 -6 0.1 0.0 0.0 0.0
mod010 0.00 -18.32 0 -2 0.0 0.0 0.0 0.0
nsrand-ipx 5.83 -6.43 78 -31 1.6 -0.3 0.2 0.0
p0033 0.00 -32.64 4 -6 0.0 0.0 0.0 0.0
p0282 6.67 -89.27 66 -112 0.0 0.0 0.0 0.0
p0548 0.00 -87.48 0 -199 0.0 0.0 0.0 0.0
p2756 0.00 -85.64 1 -429 0.0 -0.1 0.0 0.0
roll3000 0.02 -0.04 4 -1 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 7 -2 1.4 -0.1 0.7 -0.1

Total 312.77 -817.06 2818 -9570 379.9 -1130.4 36.6 -13.3
Geom. Mean 3.79 -12.66 10 -63 1.4 -1.4 1.2 -0.2

Table B.33: Computational results for the separation algorithm for the class of LEWI on the main
test set. Partition. Set T2 = {j ∈ T : x∗j = 1} and T1 = T\T2. Do not change the partition if
|T1| = 0. (4 with respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.0 0.0
dfn3free 26.88 -0.13 145 -3 617.5 362.9 51.5 30.3
dfn3orig 87.01 0.00 331 -2 14.3 0.3 0.5 0.0
dfn-stop-1 51.86 0.79 954 52 23.2 0.5 0.6 0.0
dfn-stop-2 29.40 0.00 403 0 2.8 0.0 0.1 0.0
ep1a 94.92 0.09 1972 30 226.9 42.3 4.5 0.1
ep5b 62.63 -4.38 2547 -341 633.8 -342.5 12.4 -3.3
rlp2 43.11 0.00 27 0 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1839 -3 0.8 0.0 0.0 0.0
rococoC11-011100 42.47 0.00 896 -14 0.6 -0.1 0.0 0.0
tasncp285 49.42 0.00 595 0 0.1 0.0 0.0 0.0
umts 0.00 0.00 0 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.1 0.0 0.0 0.0
cap6000 2.16 0.00 6 0 0.1 0.0 0.0 0.0
fiber 88.73 0.00 92 0 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 21.19 0.00 53 0 48.0 -1.6 6.0 -0.2
lseu 37.05 0.00 11 0 0.0 0.0 0.0 0.0
mitre 0.24 0.00 1156 0 0.2 0.0 0.0 0.0
mkc 0.76 0.00 91 2 0.2 0.0 0.0 0.0
mod008 18.99 0.00 26 0 0.1 0.0 0.0 0.0
mod010 18.32 0.00 2 0 0.0 0.0 0.0 0.0
nsrand-ipx 12.26 0.00 109 0 1.8 -0.1 0.2 0.0
p0033 32.64 0.00 10 0 0.0 0.0 0.0 0.0
p0282 95.94 0.00 178 0 0.0 0.0 0.0 0.0
p0548 86.48 -1.00 197 -2 0.0 0.0 0.0 0.0
p2756 85.64 0.00 430 0 0.1 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 1.4 -0.1 0.7 -0.1

Total 1125.19 -4.64 12107 -281 1572.2 61.9 76.8 26.9
Geom. Mean 16.42 -0.03 73 0 2.8 0.0 1.4 0.0

Table B.34: Computational results for the separation algorithm for the class of LEWI on the
main test set. Lifting sequence. Do not use the restriction to lift first the variable which has been
removed last from the initial cover. (4 with respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.0 0.0
dfn3free 9.02 -17.99 46 -102 1.9 -252.7 0.2 -21.0
dfn3orig 86.87 -0.14 320 -13 0.1 -13.9 0.0 -0.5
dfn-stop-1 50.95 -0.12 883 -19 0.2 -22.5 0.0 -0.6
dfn-stop-2 29.99 0.59 396 -7 0.1 -2.7 0.0 -0.1
ep1a 94.61 -0.22 1972 30 0.4 -184.2 0.0 -4.4
ep5b 60.72 -6.29 2555 -333 0.4 -975.9 0.0 -15.7
rlp2 43.11 0.00 18 -9 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1823 -19 0.4 -0.4 0.0 0.0
rococoC11-011100 42.47 0.00 907 -3 0.3 -0.4 0.0 0.0
tasncp285 48.97 -0.45 549 -46 0.1 0.0 0.0 0.0
umts 0.00 0.00 2 2 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 9 -3 0.0 -0.1 0.0 0.0
cap6000 2.16 0.00 6 0 0.1 0.0 0.0 0.0
fiber 87.95 -0.78 82 -10 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 13.93 -7.26 40 -13 0.0 -49.6 0.0 -6.2
lseu 41.69 4.64 15 4 0.0 0.0 0.0 0.0
mitre 10.91 10.67 968 -188 0.2 0.0 0.0 0.0
mkc 1.12 0.36 98 9 0.0 -0.2 0.0 0.0
mod008 9.71 -9.28 11 -15 0.0 -0.1 0.0 0.0
mod010 18.32 0.00 2 0 0.0 0.0 0.0 0.0
nsrand-ipx 11.83 -0.43 103 -6 1.9 0.0 0.2 0.0
p0033 44.93 12.29 19 9 0.0 0.0 0.0 0.0
p0282 94.76 -1.18 135 -43 0.0 0.0 0.0 0.0
p0548 85.82 -1.66 164 -35 0.0 0.0 0.0 0.0
p2756 85.36 -0.28 425 -5 0.1 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 10 1 2.2 0.7 0.7 -0.1

Total 1112.29 -17.54 11574 -814 8.5 -1501.8 1.4 -48.5
Geom. Mean 16.79 0.34 67 -6 1.1 -1.7 1.0 -0.4

Table B.35: Computational results for the separation algorithm for the class of LEWI on the main
test set. Resulting algorithm. Solve KP1BKmax approximately using Algorithm 4.2. Do not use
the restriction to lift first the variable which has been removed last from the initial cover. (4 with
respect to the default algorithm)
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

cnr dual mip1 1.59 7 0.1 0.0
dfn3free 26.89 149 252.2 21.0
dfn3orig 90.05 147 8.6 0.4
dfn-stop-1 48.39 433 8.3 0.4
dfn-stop-2 37.48 247 1.5 0.1
ep1a 94.86 1923 215.2 5.0
ep5b 60.48 2553 676.6 13.3
rlp2 43.11 12 0.0 0.0
rococoC11-010100 36.29 1842 0.8 0.0
rococoC11-011100 42.47 910 0.6 0.0
tasncp285 49.42 492 0.1 0.0
umts 0.00 0 0.0 0.0
atlanta-ip 0.09 12 0.1 0.0
cap6000 2.16 6 0.1 0.0
fiber 87.19 95 0.0 0.0
gen 98.17 6 0.0 0.0
harp2 20.52 45 54.1 7.7
lseu 14.77 11 0.0 0.0
mitre 0.24 1083 0.2 0.0
mkc 1.13 76 0.2 0.0
mod008 3.17 11 0.0 0.0
mod010 18.32 1 0.0 0.0
nsrand-ipx 4.76 64 0.7 0.1
p0033 28.89 11 0.0 0.0
p0282 94.05 211 0.0 0.0
p0548 82.92 121 0.0 0.0
p2756 85.67 334 0.0 0.0
roll3000 0.06 5 0.0 0.0
sp97ar 0.08 7 0.8 0.4

Total 1073.21 10814 1220.2 48.6
Geom. Mean 14.46 59 2.5 1.4

Table B.36: Computational results for the separation algorithm for the class of LMCI2 on the
main test set. Default algorithm.
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.59 0.00 7 0 0.1 0.0 0.0 0.0
dfn3free 23.05 -3.84 130 -19 1.7 -250.5 0.1 -20.9
dfn3orig 89.93 -0.12 149 2 0.7 -7.9 0.0 -0.4
dfn-stop-1 48.11 -0.28 427 -6 2.7 -5.6 0.1 -0.3
dfn-stop-2 37.48 0.00 247 0 1.3 -0.2 0.1 0.0
ep1a 93.32 -1.54 1315 -608 2.9 -212.3 0.1 -4.9
ep5b 49.17 -11.31 1228 -1325 2.5 -674.1 0.1 -13.2
rlp2 43.11 0.00 12 0 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1842 0 0.8 0.0 0.0 0.0
rococoC11-011100 42.47 0.00 910 0 0.5 -0.1 0.0 0.0
tasncp285 49.42 0.00 492 0 0.0 -0.1 0.0 0.0
umts 0.00 0.00 0 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.1 0.0 0.0 0.0
cap6000 2.16 0.00 6 0 0.1 0.0 0.0 0.0
fiber 87.19 0.00 95 0 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 12.42 -8.10 29 -16 0.0 -54.1 0.0 -7.7
lseu 14.77 0.00 11 0 0.0 0.0 0.0 0.0
mitre 0.24 0.00 1083 0 0.2 0.0 0.0 0.0
mkc 1.13 0.00 76 0 0.2 0.0 0.0 0.0
mod008 3.17 0.00 11 0 0.0 0.0 0.0 0.0
mod010 18.32 0.00 1 0 0.0 0.0 0.0 0.0
nsrand-ipx 4.76 0.00 64 0 0.7 0.0 0.1 0.0
p0033 28.89 0.00 11 0 0.0 0.0 0.0 0.0
p0282 94.05 0.00 211 0 0.0 0.0 0.0 0.0
p0548 82.92 0.00 121 0 0.0 0.0 0.0 0.0
p2756 85.67 0.00 334 0 0.1 0.1 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.08 0.00 7 0 0.6 -0.2 0.3 -0.1

Total 1048.02 -25.19 8842 -1972 15.1 -1205.1 1.1 -47.5
Geom. Mean 14.03 -0.43 56 -3 1.1 -1.4 1.0 -0.4

Table B.37: Computational results for the separation algorithm for the class of LMCI2 on the
main test set. Initial cover. Solve KP1BKmax exactly using Algorithm 4.1 if nc is not greater than
1,000,000 and approximately using Algorithm 4.2 otherwise. (4 with respect to the default algo-
rithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.59 0.00 7 0 0.1 0.0 0.0 0.0
dfn3free 1.66 -25.23 9 -140 35.5 -216.7 11.8 -9.2
dfn3orig 91.44 1.39 67 -80 4.7 -3.9 0.4 0.0
dfn-stop-1 53.26 4.87 165 -268 4.0 -4.3 0.3 -0.1
dfn-stop-2 71.89 34.41 121 -126 1.0 -0.5 0.1 0.0
ep1a 55.44 -39.42 870 -1053 45.5 -169.7 1.6 -3.4
ep5b 27.26 -33.22 668 -1885 37.4 -639.2 2.3 -11.0
rlp2 43.11 0.00 21 9 0.0 0.0 0.0 0.0
rococoC11-010100 27.15 -9.14 615 -1227 0.3 -0.5 0.0 0.0
rococoC11-011100 34.75 -7.72 403 -507 0.2 -0.4 0.0 0.0
tasncp285 47.56 -1.86 390 -102 0.1 0.0 0.0 0.0
umts 0.00 0.00 0 0 0.0 0.0 0.0 0.0
atlanta-ip 0.00 -0.09 10 -2 0.1 0.0 0.0 0.0
cap6000 0.00 -2.16 6 0 0.1 0.0 0.0 0.0
fiber 86.69 -0.50 85 -10 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 26.06 5.54 46 1 50.9 -3.2 7.3 -0.4
lseu 14.68 -0.09 9 -2 0.0 0.0 0.0 0.0
mitre 0.25 0.01 1067 -16 0.2 0.0 0.0 0.0
mkc 2.73 1.60 88 12 0.3 0.1 0.0 0.0
mod008 11.28 8.11 12 1 0.0 0.0 0.0 0.0
mod010 18.32 0.00 1 0 0.0 0.0 0.0 0.0
nsrand-ipx 4.83 0.07 61 -3 0.8 0.1 0.1 0.0
p0033 38.18 9.29 14 3 0.0 0.0 0.0 0.0
p0282 92.70 -1.35 116 -95 0.0 0.0 0.0 0.0
p0548 82.34 -0.58 98 -23 0.0 0.0 0.0 0.0
p2756 84.71 -0.96 228 -106 0.0 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.08 0.00 7 0 0.7 -0.1 0.3 -0.1

Total 1016.20 -57.01 5195 -5619 181.8 -1038.4 24.5 -24.1
Geom. Mean 13.49 -0.97 41 -18 1.9 -0.6 1.2 -0.2

Table B.38: Computational results for the separation algorithm for the class of LMCI2 on the
main test set. Initial cover. Solve KP2BKmax exactly using Algorithm 4.1. (4 with respect to the
default algorithm)



186 Appendix B. Tables

Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.59 0.00 7 0 0.1 0.0 0.0 0.0
dfn3free 7.22 -19.67 18 -131 0.7 -251.5 0.1 -20.9
dfn3orig 91.20 1.15 62 -85 0.0 -8.6 0.0 -0.4
dfn-stop-1 54.82 6.43 221 -212 0.1 -8.2 0.0 -0.4
dfn-stop-2 73.26 35.78 142 -105 0.1 -1.4 0.0 -0.1
ep1a 94.90 0.04 2003 80 0.3 -214.9 0.0 -5.0
ep5b 68.99 8.51 2652 99 0.4 -676.2 0.0 -13.3
rlp2 43.11 0.00 22 10 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1840 -2 0.3 -0.5 0.0 0.0
rococoC11-011100 42.47 0.00 905 -5 0.2 -0.4 0.0 0.0
tasncp285 48.81 -0.61 424 -68 0.1 0.0 0.0 0.0
umts 0.00 0.00 0 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.0 -0.1 0.0 0.0
cap6000 0.00 -2.16 6 0 0.1 0.0 0.0 0.0
fiber 86.40 -0.79 88 -7 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 26.21 5.69 53 8 0.0 -54.1 0.0 -7.7
lseu 14.68 -0.09 9 -2 0.0 0.0 0.0 0.0
mitre 0.24 0.00 1088 5 0.2 0.0 0.0 0.0
mkc 1.85 0.72 86 10 0.0 -0.2 0.0 0.0
mod008 11.28 8.11 12 1 0.0 0.0 0.0 0.0
mod010 18.32 0.00 1 0 0.0 0.0 0.0 0.0
nsrand-ipx 4.76 0.00 61 -3 0.8 0.1 0.1 0.0
p0033 37.85 8.96 15 4 0.0 0.0 0.0 0.0
p0282 92.71 -1.34 132 -79 0.0 0.0 0.0 0.0
p0548 82.50 -0.42 104 -17 0.0 0.0 0.0 0.0
p2756 84.95 -0.72 231 -103 0.0 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.08 0.00 7 0 0.6 -0.2 0.3 -0.1

Total 1122.82 49.61 10212 -602 4.1 -1216.1 0.7 -47.9
Geom. Mean 15.01 0.55 51 -8 1.0 -1.5 1.0 -0.4

Table B.39: Computational results for the separation algorithm for the class of LMCI2 on the
main test set. Initial cover. Solve KP2BKmax approximately using Algorithm 4.2. (4 with respect
to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.59 0.00 7 0 0.1 0.0 0.0 0.0
dfn3free 31.40 4.51 164 15 286.2 34.0 22.0 1.0
dfn3orig 94.97 4.92 98 -49 6.2 -2.4 0.4 0.0
dfn-stop-1 56.99 8.60 298 -135 10.0 1.7 0.6 0.2
dfn-stop-2 76.29 38.81 181 -66 1.7 0.2 0.1 0.0
ep1a 94.91 0.05 1881 -42 194.8 -20.4 4.6 -0.4
ep5b 69.58 9.10 2875 322 945.4 268.8 16.6 3.3
rlp2 43.11 0.00 22 10 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1848 6 0.7 -0.1 0.0 0.0
rococoC11-011100 42.46 -0.01 911 1 0.6 0.0 0.0 0.0
tasncp285 49.40 -0.02 470 -22 0.1 0.0 0.0 0.0
umts 0.00 0.00 0 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.1 0.0 0.0 0.0
cap6000 2.07 -0.09 6 0 0.1 0.0 0.0 0.0
fiber 87.11 -0.08 93 -2 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 23.80 3.28 41 -4 53.5 -0.6 8.9 1.2
lseu 14.77 0.00 11 0 0.0 0.0 0.0 0.0
mitre 0.24 0.00 1083 0 0.2 0.0 0.0 0.0
mkc 1.13 0.00 76 0 0.5 0.3 0.1 0.1
mod008 11.53 8.36 14 3 0.1 0.1 0.0 0.0
mod010 18.32 0.00 1 0 0.0 0.0 0.0 0.0
nsrand-ipx 4.76 0.00 62 -2 0.8 0.1 0.1 0.0
p0033 28.89 0.00 11 0 0.0 0.0 0.0 0.0
p0282 93.99 -0.06 181 -30 0.0 0.0 0.0 0.0
p0548 82.92 0.00 114 -7 0.0 0.0 0.0 0.0
p2756 85.68 0.01 237 -97 0.0 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.08 0.00 7 0 0.7 -0.1 0.4 0.0

Total 1150.62 77.41 10715 -99 1501.8 281.6 54.0 5.4
Geom. Mean 15.83 1.37 58 -1 2.5 0.0 1.4 0.0

Table B.40: Computational results for the separation algorithm for the class of LMCI2 on the
main test set. Minimal cover. Use nonincreasing aj as the second order criterium for removing
variables. (4 with respect to the default algorithm)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.1 0.1
dfn3free 10.38 1.36 59 13 1.9 0.0 0.2 0.0
dfn3orig 94.63 7.76 107 -213 0.0 -0.1 0.0 0.0
dfn-stop-1 61.13 10.18 494 -389 0.1 -0.1 0.0 0.0
dfn-stop-2 77.37 47.38 261 -135 0.1 0.0 0.0 0.0
ep1a 94.88 0.27 2110 138 0.5 0.1 0.0 0.0
ep5b 71.99 11.27 3278 723 0.7 0.3 0.0 0.0
rlp2 43.11 0.00 28 10 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1831 8 0.5 0.1 0.0 0.0
rococoC11-011100 42.46 -0.01 907 0 0.3 0.0 0.0 0.0
tasncp285 49.31 0.34 463 -86 0.1 0.0 0.0 0.0
umts 0.00 0.00 3 1 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 3 0.0 0.0 0.0 0.0
cap6000 2.07 -0.09 8 2 0.1 0.0 0.0 0.0
fiber 88.68 0.73 92 10 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 30.11 16.18 90 50 0.0 0.0 0.0 0.0
lseu 43.02 1.33 18 3 0.0 0.0 0.0 0.0
mitre 0.12 -10.79 692 -276 0.1 -0.1 0.0 0.0
mkc 2.01 0.89 112 14 0.1 0.1 0.0 0.0
mod008 19.17 9.46 26 15 0.1 0.1 0.0 0.0
mod010 18.32 0.00 2 0 0.0 0.0 0.0 0.0
nsrand-ipx 12.29 0.46 96 -7 3.8 1.9 0.5 0.3
p0033 44.70 -0.23 17 -2 0.0 0.0 0.0 0.0
p0282 94.49 -0.27 176 41 0.0 0.0 0.0 0.0
p0548 88.35 2.53 164 0 0.0 0.0 0.0 0.0
p2756 85.68 0.32 299 -126 0.1 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 -1 2.8 0.6 1.4 0.7

Total 1211.39 99.10 11370 -204 11.6 3.1 2.3 0.9
Geom. Mean 17.52 0.73 70 3 1.1 0.0 1.0 0.0

Table B.41: Computational results for the separation algorithm for the classes of LMCI1 and
LEWI on the main test set. (4 with respect to the resulting separation algorithm for the class of
LEWI)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.1 0.0 0.1 0.1
dfn3free 7.22 0.00 18 0 0.9 -0.4 0.2 0.0
dfn3orig 91.47 0.00 65 1 0.0 0.0 0.0 0.0
dfn-stop-1 58.59 0.09 341 56 0.1 0.0 0.0 0.0
dfn-stop-2 77.70 0.37 189 21 0.1 0.0 0.0 0.0
ep1a 94.89 -0.02 2005 12 0.5 0.1 0.0 0.0
ep5b 69.16 0.00 2739 52 0.5 0.1 0.0 0.0
rlp2 43.11 0.00 21 1 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1841 1 0.4 0.0 0.0 0.0
rococoC11-011100 42.47 0.00 905 0 0.3 0.1 0.0 0.0
tasncp285 48.80 -0.01 410 -14 0.1 0.0 0.0 0.0
umts 0.00 0.00 2 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 0 0.0 0.0 0.0 0.0
cap6000 0.00 0.00 6 0 0.1 0.0 0.0 0.0
fiber 88.65 0.00 98 9 0.0 0.0 0.0 0.0
gen 98.17 0.00 7 1 0.0 0.0 0.0 0.0
harp2 29.26 -0.74 79 2 0.0 0.0 0.0 0.0
lseu 33.43 0.00 10 0 0.0 0.0 0.0 0.0
mitre 0.12 -0.83 1010 -161 0.1 -0.1 0.0 0.0
mkc 2.62 1.06 133 39 0.1 0.1 0.0 0.0
mod008 15.36 0.00 18 0 0.0 0.0 0.0 0.0
mod010 18.32 0.00 3 1 0.0 0.0 0.0 0.0
nsrand-ipx 10.98 -1.04 85 -22 2.0 -0.4 0.3 0.0
p0033 44.70 0.00 21 4 0.0 0.0 0.0 0.0
p0282 94.33 0.03 165 22 0.0 0.0 0.0 0.0
p0548 88.14 0.34 153 14 0.0 0.0 0.0 0.0
p2756 84.97 0.00 232 0 0.1 0.1 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 1.7 0.1 0.9 0.1

Total 1181.39 -0.75 10587 39 7.2 -0.2 1.5 0.0
Geom. Mean 16.59 0.23 61 3 1.0 -0.1 1.0 0.0

Table B.42: Computational results for the separation algorithm for the classes of LMCI1 and
LMCI2 on the main test set. (4 with respect to the resulting separation algorithm for the class
of LMCI1)



190 Appendix B. Tables

Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 6 1 0.1 0.0 0.1 0.1
dfn3free 10.38 1.36 59 13 1.7 -0.2 0.2 0.0
dfn3orig 94.63 7.76 104 -216 0.0 -0.1 0.0 0.0
dfn-stop-1 58.95 8.00 480 -403 0.1 -0.1 0.0 0.0
dfn-stop-2 78.34 48.35 264 -132 0.1 0.0 0.0 0.0
ep1a 94.88 0.27 2111 139 0.5 0.1 0.0 0.0
ep5b 69.81 9.09 3114 559 0.7 0.3 0.0 0.0
rlp2 43.11 0.00 20 2 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 1831 8 0.5 0.1 0.0 0.0
rococoC11-011100 42.46 -0.01 907 0 0.3 0.0 0.0 0.0
tasncp285 49.31 0.34 463 -86 0.1 0.0 0.0 0.0
umts 0.00 0.00 2 0 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 3 0.0 0.0 0.0 0.0
cap6000 2.07 -0.09 8 2 0.1 0.0 0.0 0.0
fiber 88.66 0.71 105 23 0.0 0.0 0.0 0.0
gen 98.17 0.00 6 0 0.0 0.0 0.0 0.0
harp2 28.29 14.36 73 33 0.0 0.0 0.0 0.0
lseu 41.69 0.00 16 1 0.0 0.0 0.0 0.0
mitre 0.12 -10.79 793 -175 0.2 0.0 0.0 0.0
mkc 1.21 0.09 112 14 0.0 0.0 0.0 0.0
mod008 18.38 8.67 20 9 0.1 0.1 0.0 0.0
mod010 18.32 0.00 2 0 0.0 0.0 0.0 0.0
nsrand-ipx 11.96 0.13 124 21 2.5 0.6 0.3 0.1
p0033 44.93 0.00 23 4 0.0 0.0 0.0 0.0
p0282 94.19 -0.57 216 81 0.0 0.0 0.0 0.0
p0548 88.18 2.36 166 2 0.0 0.0 0.0 0.0
p2756 85.68 0.32 299 -126 0.0 -0.1 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 -1 1.8 -0.4 0.9 0.2

Total 1202.65 90.36 11350 -224 8.9 0.4 1.6 0.2
Geom. Mean 17.09 0.30 70 3 1.1 0.0 1.0 0.0

Table B.43: Computational results for the separation algorithm for the classes of LEWI and
LMCI2 on the main test set. (4 with respect to the resulting separation algorithm for the class
of LEWI)
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

cnr dual mip1 1.72 0.00 5 0 0.2 0.1 0.1 0.1
dfn3free 10.38 1.36 59 13 2.0 0.1 0.2 0.0
dfn3orig 94.63 7.76 108 -212 0.0 -0.1 0.0 0.0
dfn-stop-1 61.02 10.07 537 -346 0.2 0.0 0.0 0.0
dfn-stop-2 79.94 49.95 318 -78 0.1 0.0 0.0 0.0
ep1a 94.91 0.30 2155 183 0.6 0.2 0.0 0.0
ep5b 71.63 10.91 3185 630 0.8 0.4 0.0 0.0
rlp2 43.11 0.00 28 10 0.0 0.0 0.0 0.0
rococoC11-010100 36.29 0.00 2034 211 0.6 0.2 0.0 0.0
rococoC11-011100 42.46 -0.01 908 1 0.4 0.1 0.0 0.0
tasncp285 49.34 0.37 480 -69 0.1 0.0 0.0 0.0
umts 0.00 0.00 3 1 0.0 0.0 0.0 0.0
atlanta-ip 0.09 0.00 12 3 0.1 0.1 0.0 0.0
cap6000 2.07 -0.09 8 2 0.2 0.1 0.0 0.0
fiber 88.66 0.71 108 26 0.0 0.0 0.0 0.0
gen 98.17 0.00 7 1 0.0 0.0 0.0 0.0
harp2 29.49 15.56 97 57 0.0 0.0 0.0 0.0
lseu 42.80 1.11 19 4 0.0 0.0 0.0 0.0
mitre 1.18 -9.73 722 -246 0.1 -0.1 0.0 0.0
mkc 1.21 0.09 124 26 0.1 0.1 0.0 0.0
mod008 19.17 9.46 26 15 0.1 0.1 0.0 0.0
mod010 18.32 0.00 3 1 0.0 0.0 0.0 0.0
nsrand-ipx 11.37 -0.46 89 -14 3.9 2.0 0.5 0.3
p0033 44.70 -0.23 21 2 0.0 0.0 0.0 0.0
p0282 94.41 -0.35 219 84 0.0 0.0 0.0 0.0
p0548 88.35 2.53 170 6 0.0 0.0 0.0 0.0
p2756 85.68 0.32 277 -148 0.1 0.0 0.0 0.0
roll3000 0.06 0.00 5 0 0.0 0.0 0.0 0.0
sp97ar 0.77 0.00 9 -1 2.9 0.7 1.4 0.7

Total 1211.93 99.64 11736 162 12.5 4.0 2.4 1.0
Geom. Mean 17.27 0.48 74 7 1.1 0.0 1.0 0.0

Table B.44: Computational results for the separation algorithm for the classes of LMCI1, LEWI,
and LMCI2 on the main test set. (4 with respect to the resulting separation algorithm for the
class of LEWI)
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

tkat3 0.00 19 0.1 0.0
tkatTV5 0.00 6 0.0 0.0
10teams 0.00 0 0.0 0.0
a1c1s1 0.00 0 0.0 0.0
30:70:4 5:0 5:100 0.00 0 0.1 0.1
30:70:4 5:0 95:98 0.00 0 0.1 0.1
aflow30a 0.00 0 0.0 0.0
aflow40b 0.00 0 0.0 0.0
air03 0.00 0 0.0 0.0
air04 0.00 0 0.0 0.0
air05 0.00 0 0.0 0.0
arki001 0.00 0 0.0 0.0
bc1 0.00 0 0.0 0.0
bell3a 0.00 0 0.0 0.0
bell5 0.00 0 0.0 0.0
bienst1 0.00 0 0.0 0.0
bienst2 0.00 0 0.0 0.0
binkar10 1 0.00 0 0.0 0.0
blend2 0.00 0 0.0 0.0
dano3 3 0.00 0 0.0 0.0
dano3 4 0.00 0 0.0 0.0
dano3 5 0.00 0 0.0 0.0
dano3mip 0.00 0 0.0 0.0
danoint 0.00 0 0.0 0.0
dcmulti 0.00 0 0.0 0.0
ds 0.00 0 0.0 0.0
egout 0.00 0 0.0 0.0
eilD76 0.00 0 0.0 0.0
fast0507 0.00 0 0.0 0.0
fixnet6 0.00 0 0.0 0.0
flugpl 0.00 0 0.0 0.0
gesa2 0.00 0 0.0 0.0
gesa2-o 0.00 0 0.0 0.0
gesa3 0.00 0 0.0 0.0
gesa3 o 0.00 0 0.0 0.0
glass4 0.00 0 0.0 0.0
gt2 0.00 0 0.0 0.0
irp 0.00 0 0.0 0.0
khb05250 0.00 0 0.0 0.0
l152lav 0.00 0 0.0 0.0
liu 0.00 0 0.0 0.0
manna81 0.00 0 0.0 0.0
markshare1 0.00 17 0.0 0.0
markshare2 0.00 13 0.0 0.0
mas284 0.00 0 0.0 0.0
mas74 0.00 0 0.0 0.0
mas76 0.00 0 0.0 0.0
misc03 0.00 0 0.0 0.0
misc06 0.00 0 0.0 0.0
misc07 0.00 0 0.0 0.0
mkc1 0.00 0 0.0 0.0
mod011 0.00 0 0.0 0.0
modglob 0.00 0 0.0 0.0
momentum1 0.00 0 0.0 0.0
momentum2 0.00 0 0.0 0.0
msc98-ip 0.00 12 0.0 0.0
mzzv11 0.00 1 0.0 0.0
mzzv42z 0.00 0 0.0 0.0
neos1 0.00 176 0.0 0.0
neos2 0.00 0 0.0 0.0
neos3 0.00 0 0.0 0.0
neos616206 0.00 0 0.0 0.0
neos632659 0.00 0 0.0 0.0
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

neos648910 0.00 0 0.0 0.0
neos7 0.00 0 0.0 0.0
neos8 0.00 6 0.0 0.0
neos9 0.00 0 0.0 0.0
neos10 0.00 13 0.1 0.0
neos11 0.00 0 0.0 0.0
neos12 0.00 0 0.0 0.0
neos13 0.00 0 0.0 0.0
neos14 0.00 0 0.0 0.0
neos15 0.00 0 0.0 0.0
neos16 0.00 0 0.0 0.0
neos17 0.00 0 0.0 0.0
neos18 0.00 0 0.0 0.0
neos19 0.00 0 0.0 0.0
neos20 0.00 43 0.0 0.0
neos21 0.00 0 0.0 0.0
neos22 0.00 0 0.0 0.0
neos23 0.00 0 0.0 0.0
net12 0.00 0 0.0 0.0
noswot 0.00 0 0.0 0.0
nug08 0.00 0 0.0 0.0
nw04 0.00 0 0.0 0.0
opt1217 0.00 0 0.0 0.0
p0201 0.00 10 0.0 0.0
pk1 0.00 0 0.0 0.0
pp08a 0.00 0 0.0 0.0
pp08aCUTS 0.00 0 0.0 0.0
prod1 0.00 0 0.0 0.0
protfold 0.00 0 0.0 0.0
qap10 0.00 0 0.0 0.0
qiu 0.00 0 0.0 0.0
qnet1 0.00 0 0.0 0.0
qnet1 o 0.00 0 0.0 0.0
ran10x26 0.00 0 0.0 0.0
ran12x21 0.00 0 0.0 0.0
ran13x13 0.00 0 0.0 0.0
ran14x18 1 0.00 0 0.0 0.0
ran8x32 0.00 0 0.0 0.0
rentacar 0.00 0 0.0 0.0
rgn 0.00 0 0.0 0.0
rout 0.00 0 0.0 0.0
set1ch 0.00 0 0.0 0.0
seymour 0.00 0 0.0 0.0
seymour1 0.00 0 0.0 0.0
stein27 0.00 0 0.0 0.0
stein45 0.00 0 0.0 0.0
swath 0.00 0 0.0 0.0
swath1 0.00 0 0.0 0.0
swath2 0.00 0 0.0 0.0
swath3 0.00 0 0.0 0.0
t1717 0.00 0 0.0 0.0
timtab1 0.00 0 0.0 0.0
timtab2 0.00 0 0.0 0.0
tr12-30 0.00 0 0.0 0.0
vpm1 0.00 0 0.0 0.0
vpm2 0.00 0 0.0 0.0

Total 0.00 316 0.4 0.2
Geom. Mean 1.00 1 1.0 1.0

Table B.45: Computational results for the separation algorithm for the classes of LMCI1 and
LEWI on the remaining test set.
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B.3 Cutting Plane Separator for the 0-1 Single Node

Flow Problem

Name Type Conss Vars zLP zMIP

a1c1s1 BMIP 3312 3648 997.529583 11566.5904
aflow30a BMIP 479 842 983.167425 1158
aflow40b BMIP 1442 2728 1005.66482 1168
arki001 MIP 1048 1388 7579621.83 7580814.51
atlanta-ip MIP 21732 48738 81.2455967 95.0095497
bc1 BMIP 1913 1751 2.18877397 3.33836255
bienst1 BMIP 576 505 11.7241379 46.75
bienst2 BMIP 576 505 11.7241379 54.6
binkar10 1 BMIP 1026 2298 6637.18803 6742.20002
blend2 MIP 274 353 6.91567511 7.598985
cap6000 BIP 2176 6000 -2451537.33 -2451377
dano3mip BMIP 3202 13873 576.23162 705.941176
danoint BMIP 664 521 62.6372804 65.67
dcmulti BMIP 290 548 184466.891 188182
egout BMIP 98 141 511.61784 568.1007
fiber BMIP 363 1298 198107.358 405935.18
fixnet6 BMIP 478 878 3192.042 3983
gen MIP 780 870 112271.463 112313.363
gesa2 MIP 1392 1224 25492512.1 25779856.4
gesa2-o MIP 1248 1224 25476489.7 25779856.4
gesa3 MIP 1368 1152 27846437.5 27991042.6
gesa3 o MIP 1224 1152 27833632.5 27991042.6
gt2 IP 29 188 20146.7613 21166
harp2 BIP 112 2993 -74325169.3 -73899597
khb05250 BMIP 101 1350 95919464 106940226
lseu BIP 28 89 947.957237 1120
mitre BIP 2054 10724 114782.467 115155
mkc BMIP 3411 5325 -611.85 -563.212
mod008 BIP 6 319 290.931073 307
mod010 BIP 146 2655 6532.08333 6548
mod011 BMIP 4480 10958 -62081950.3 -54558535
modglob BMIP 291 422 20430947.6 20740508
momentum2 MIP 24237 3732 10696.1116 12314.2196
msc98-ip MIP 15850 21143 19520966.2 23271298
neos616206 BMIP 534 480 787.721258 937.6
neos8 IP 46324 23228 -3725 -3719
neos14 BMIP 552 792 32734.1148 74333.3433
neos15 BMIP 552 792 33463.7701 80851.6678
neos16 IP 1018 377 429 450
neos22 BMIP 5208 3240 777191.429 779715
net12 BMIP 14021 14115 68.3978758 214
nsrand-ipx BMIP 735 6621 49667.8923 51520
p0033 BIP 16 33 2828.33136 3089
p0282 BIP 241 282 180000.3 258411
p0548 BIP 176 548 4790.57713 8691
p2756 BIP 755 2756 2701.14437 3124
pp08aCUTS BMIP 246 240 5480.60616 7350
prod1 BMIP 208 250 -84.4158719 -56
qnet1 MIP 503 1541 14274.1027 16029.6927
qnet1 o MIP 456 1541 12557.2479 16029.6927
ran10x26 BMIP 296 520 3857.02278 4270
ran12x21 BMIP 285 504 3157.37744 3664
ran13x13 BMIP 195 338 2691.43947 3252
ran14x18 1 BMIP 284 504 3016.94435 3714
ran8x32 BMIP 296 512 4937.58453 5247
rentacar BMIP 6803 9557 28928379.6 30356761
rgn BMIP 24 180 48.7999986 82.1999992
roll3000 MIP 2295 1166 11097.2754 12899
rout MIP 291 556 981.864286 1077.56
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Name Type Conss Vars zLP zMIP

set1ch BMIP 492 712 35118.1098 54537.75
sp97ar BIP 1761 14101 652560391 663164724
timtab1 MIP 171 397 157896.037 764772
timtab2 MIP 294 675 210652.471 1184230
tr12-30 BMIP 750 1080 18124.1745 130596
vpm1 BMIP 234 378 16.4333333 20
vpm2 BMIP 234 378 10.303297 13.75

Table B.46: Summary of the main test set for the cutting plane separator for the 0-1 single node
flow problem.
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Name Type Conss Vars zLP zMIP

10teams BMIP 230 2025 917 924
30:70:4 5:0 5:100 BMIP 12050 10772 8.1 9
30:70:4 5:0 95:98 BMIP 12471 10990 11.5 12
air03 BIP 124 10757 338864.25 340160
air04 BIP 823 8904 55535.4364 56137
air05 BIP 426 7195 25877.6093 26374
bell3a MIP 123 133 866171.733 878430.316
bell5 MIP 91 104 8908552.45 8966406.49
dano3 3 BMIP 3202 13873 576.23162 576.344633
dano3 4 BMIP 3202 13873 576.23162 576.435225
dano3 5 BMIP 3202 13873 576.23162 576.924916
ds BIP 656 67732 57.2347263 468.645
eilD76 BIP 75 1898 680.538997 885.411847
fast0507 BIP 507 63009 172.145567 174
flugpl MIP 18 18 1167185.73 1201500
glass4 BMIP 396 322 800002400 1.6000134e+09
irp BIP 39 20315 12123.5302 12159.4928
l152lav BIP 97 1989 4656.36364 4722
liu BMIP 2178 1156 560 1146
manna81 IP 6480 3321 -13297 -13164
markshare1 BMIP 6 62 0 1
markshare2 BMIP 7 74 0 1
mas284 BMIP 68 151 86195.863 91405.7237
mas74 BMIP 13 151 10482.7953 11801.1857
mas76 BMIP 12 151 38893.9036 40005.0541
misc03 BMIP 96 160 1910 3360
misc06 BMIP 820 1808 12841.6894 12850.8607
misc07 BMIP 212 260 1415 2810
mkc1 BMIP 3411 5325 -611.85 -607.207
momentum1 BMIP 42680 5174 82424.4594 109143.493
mzzv11 IP 9499 10240 -22944.9875 -21718
mzzv42z IP 10460 11717 -21622.9985 -20540
neos1 BIP 5020 2112 5.6 19
neos2 BMIP 1103 2101 -4407.09724 454.864697
neos3 BMIP 1442 2747 -6158.20911 368.842751
neos632659 BMIP 244 420 -119.47619 -94
neos648910 BMIP 1491 814 16 32
neos7 MIP 1994 1556 562977.43 721934
neos9 BMIP 31600 81408 780 784
neos10 IP 46793 23489 -1196.33333 -1135
neos11 BMIP 2706 1220 6 9
neos12 BMIP 8317 3983 9.41161243 13
neos13 BMIP 20852 1827 -126.178378 -95.4748066
neos17 BMIP 486 535 0.000681498501 0.150002577
neos18 BIP 11402 3312 7 16
neos19 BMIP 34082 103789 -1611 -1499
neos20 MIP 2446 1165 -475 -434
neos21 BMIP 1085 614 2.21648352 7
neos23 BMIP 1568 477 56 137
noswot MIP 182 128 -43 -41
nug08 BIP 912 1632 203.5 214
nw04 BIP 36 87482 16310.6667 16862
opt1217 BMIP 64 769 -20.0213904 -16
p0201 BIP 133 201 7125 7615
pk1 BMIP 45 86 0 11
pp08a BMIP 136 240 2748.34524 7350
protfold BIP 2112 1835 -41.9574468 -23
qap10 BIP 1820 4150 332.566228 340
qiu BMIP 1192 840 -931.638854 -132.873137
seymour BIP 4944 1372 403.846474 423
seymour1 BMIP 4944 1372 403.846474 410.763701
stein27 BIP 118 27 13 18
stein45 BIP 331 45 22 30
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Name Type Conss Vars zLP zMIP

swath BMIP 884 6805 334.496858 477.34101
swath1 BMIP 884 6805 334.496858 379.071296
swath2 BMIP 884 6805 334.496858 385.199693
swath3 BMIP 884 6805 334.496858 397.761344
t1717 BIP 551 73885 134531.021 288658

Table B.47: Summary of the remaining test set for the cutting plane separator for the 0-1 single
node flow problem.
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

a1c1s1 27.14 176 10.5 1.5
aflow30a 33.48 90 0.4 0.0
aflow40b 23.74 59 2.2 0.2
arki001 3.54 72 75.1 12.5
atlanta-ip 0.00 16 254.9 51.0
bc1 32.02 14 405.2 50.7
bienst1 6.60 57 0.1 0.0
bienst2 7.43 84 0.1 0.0
binkar10 1 26.14 28 0.5 0.1
blend2 4.59 10 25.7 5.1
cap6000 0.00 0 0.1 0.1
dano3mip 0.01 4 42.0 8.4
danoint 0.58 22 0.3 0.1
dcmulti 21.96 38 0.1 0.0
egout 94.73 13 0.1 0.0
fiber 88.23 74 0.1 0.0
fixnet6 41.06 79 0.8 0.0
gen 98.17 7 0.0 0.0
gesa2 60.53 47 11.1 2.2
gesa2-o 7.46 26 5.2 1.7
gesa3 23.34 14 4.6 2.3
gesa3 o 6.98 11 3.9 1.9
gt2 33.85 6 0.0 0.0
harp2 0.00 0 0.5 0.5
khb05250 97.96 75 9.3 0.8
lseu 36.50 19 0.0 0.0
mitre 6.77 903 5.5 0.9
mkc 0.05 59 69.2 11.5
mod008 29.76 14 1.4 0.1
mod010 18.32 1 0.1 0.1
mod011 49.19 257 167.1 10.4
modglob 24.86 40 1.2 0.2
momentum2 0.00 11 41.6 10.4
msc98-ip 0.74 287 81.3 11.6
neos616206 3.06 195 2.8 0.3
neos8 0.00 6 2.9 1.4
neos14 45.78 76 0.2 0.1
neos15 40.02 76 0.2 0.1
neos16 9.52 132 0.1 0.0
neos22 3.96 111 5.0 0.8
net12 2.67 89 21.0 1.9
nsrand-ipx 4.79 69 1.4 0.2
p0033 9.34 9 0.0 0.0
p0282 93.98 121 0.1 0.0
p0548 73.05 86 0.1 0.0
p2756 72.39 228 1.0 0.1
pp08aCUTS 0.55 4 0.0 0.0
prod1 0.11 12 0.7 0.1
qnet1 29.16 26 0.1 0.0
qnet1 o 54.30 33 0.1 0.0
ran10x26 38.53 49 0.1 0.0
ran12x21 39.45 55 0.1 0.0
ran13x13 39.42 42 0.0 0.0
ran14x18 1 39.21 70 0.0 0.0
ran8x32 62.60 47 0.1 0.0
rentacar 0.00 4 356.7 178.3
rgn 0.00 0 0.0 0.0
roll3000 0.15 64 1.9 0.5
rout 0.27 58 0.3 0.1
set1ch 37.74 127 0.1 0.0
sp97ar 0.08 7 1.5 0.8
timtab1 7.56 40 0.0 0.0
timtab2 5.29 91 0.1 0.0
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

tr12-30 38.34 226 0.9 0.2
vpm1 64.95 22 0.0 0.0
vpm2 69.61 72 0.0 0.0

Total 1791.60 4860 1617.5 369.5
Geom. Mean 10.92 32 2.8 1.7

Table B.48: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the main test set. Default algorithm. Application to all rows of a MIP.
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 17.45 -9.69 124 -52 4.1 -6.4 0.6 -0.9
aflow30a 31.80 -1.68 66 -24 0.1 -0.3 0.0 0.0
aflow40b 19.08 -4.66 45 -14 0.6 -1.6 0.1 -0.1
arki001 3.54 0.00 85 13 0.2 -74.9 0.0 -12.5
atlanta-ip 0.00 0.00 16 0 71.6 -183.3 23.9 -27.1
bc1 30.58 -1.44 30 16 1.9 -403.3 0.2 -50.5
bienst1 6.61 0.01 58 1 0.1 0.0 0.0 0.0
bienst2 7.44 0.01 86 2 0.1 0.0 0.0 0.0
binkar10 1 28.49 2.35 29 1 0.1 -0.4 0.0 -0.1
blend2 3.63 -0.96 3 -7 0.0 -25.7 0.0 -5.1
cap6000 0.00 0.00 0 0 0.1 0.0 0.1 0.0
dano3mip 0.01 0.00 4 0 5.2 -36.8 1.0 -7.4
danoint 0.65 0.07 19 -3 0.0 -0.3 0.0 -0.1
dcmulti 21.96 0.00 38 0 0.0 -0.1 0.0 0.0
egout 91.46 -3.27 11 -2 0.0 -0.1 0.0 0.0
fiber 87.34 -0.89 50 -24 0.1 0.0 0.0 0.0
fixnet6 41.53 0.47 78 -1 0.1 -0.7 0.0 0.0
gen 97.57 -0.60 13 6 0.1 0.1 0.0 0.0
gesa2 57.85 -2.68 38 -9 0.2 -10.9 0.1 -2.1
gesa2-o 7.46 0.00 29 3 0.1 -5.1 0.0 -1.7
gesa3 22.99 -0.35 14 0 0.1 -4.5 0.1 -2.2
gesa3 o 6.98 0.00 11 0 0.1 -3.8 0.0 -1.9
gt2 33.21 -0.64 5 -1 0.0 0.0 0.0 0.0
harp2 0.00 0.00 0 0 0.0 -0.5 0.0 -0.5
khb05250 97.96 0.00 75 0 0.1 -9.2 0.0 -0.8
lseu 36.50 0.00 19 0 0.0 0.0 0.0 0.0
mitre 9.43 2.66 709 -194 2.8 -2.7 0.5 -0.4
mkc 0.00 -0.05 46 -13 0.7 -68.5 0.1 -11.4
mod008 29.00 -0.76 9 -5 0.0 -1.4 0.0 -0.1
mod010 0.00 -18.32 0 -1 0.0 -0.1 0.0 -0.1
mod011 48.47 -0.72 167 -90 5.6 -161.5 0.3 -10.1
modglob 24.90 0.04 37 -3 0.0 -1.2 0.0 -0.2
momentum2 0.00 0.00 11 0 50.3 8.7 12.6 2.2
msc98-ip 0.74 0.00 205 -82 57.4 -23.9 9.6 -2.0
neos616206 3.01 -0.05 199 4 0.1 -2.7 0.0 -0.3
neos8 0.00 0.00 6 0 1.3 -1.6 0.6 -0.8
neos14 14.05 -31.73 23 -53 0.0 -0.2 0.0 -0.1
neos15 12.16 -27.86 23 -53 0.0 -0.2 0.0 -0.1
neos16 9.52 0.00 132 0 0.1 0.0 0.0 0.0
neos22 3.96 0.00 111 0 5.3 0.3 0.9 0.1
net12 1.73 -0.94 66 -23 25.9 4.9 2.0 0.1
nsrand-ipx 4.78 -0.01 62 -7 1.2 -0.2 0.2 0.0
p0033 9.10 -0.24 12 3 0.0 0.0 0.0 0.0
p0282 92.78 -1.20 78 -43 0.0 -0.1 0.0 0.0
p0548 72.12 -0.93 66 -20 0.1 0.0 0.0 0.0
p2756 72.13 -0.26 240 12 0.7 -0.3 0.1 0.0
pp08aCUTS 0.00 -0.55 0 -4 0.0 0.0 0.0 0.0
prod1 0.21 0.10 12 0 0.0 -0.7 0.0 -0.1
qnet1 3.98 -25.18 7 -19 0.0 -0.1 0.0 0.0
qnet1 o 38.25 -16.05 16 -17 0.1 0.0 0.0 0.0
ran10x26 38.81 0.28 31 -18 0.0 -0.1 0.0 0.0
ran12x21 45.11 5.66 56 1 0.0 -0.1 0.0 0.0
ran13x13 39.88 0.46 51 9 0.0 0.0 0.0 0.0
ran14x18 1 37.96 -1.25 63 -7 0.1 0.1 0.0 0.0
ran8x32 64.60 2.00 47 0 0.1 0.0 0.0 0.0
rentacar 0.00 0.00 4 0 0.2 -356.5 0.1 -178.2
rgn 57.49 57.49 32 32 0.0 0.0 0.0 0.0
roll3000 0.15 0.00 64 0 0.3 -1.6 0.1 -0.4
rout 0.00 -0.27 28 -30 0.0 -0.3 0.0 -0.1
set1ch 37.74 0.00 127 0 0.0 -0.1 0.0 0.0
sp97ar 0.00 -0.08 6 -1 1.6 0.1 0.8 0.0
timtab1 7.56 0.00 40 0 0.0 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

timtab2 5.31 0.02 93 2 0.0 -0.1 0.0 0.0
tr12-30 12.83 -25.51 74 -152 0.1 -0.8 0.0 -0.2
vpm1 64.95 0.00 22 0 0.0 0.0 0.0 0.0
vpm2 68.88 -0.73 68 -4 0.0 0.0 0.0 0.0

Total 1683.65 -107.95 3989 -871 239.3 -1378.2 54.3 -315.2
Geom. Mean 10.00 -0.92 28 -4 1.5 -1.3 1.1 -0.6

Table B.49: Computational results for the cutting plane separator for the 0-1 single node flow prob-
lem on the main test set. Flow cover. Always solve KPSNF

rat approximately using Algorithm 5.1.
Application to all rows of a MIP. (4 with respect to the default algorithm (applied to all rows of
a MIP))
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 27.14 0.00 176 0 8.1 -2.4 1.2 -0.3
aflow30a 33.48 0.00 90 0 0.4 0.0 0.0 0.0
aflow40b 23.74 0.00 59 0 2.6 0.4 0.2 0.0
arki001 3.54 0.00 85 13 2.8 -72.3 0.5 -12.0
atlanta-ip 0.00 0.00 16 0 182.3 -72.6 45.6 -5.4
bc1 32.02 0.00 14 0 8.3 -396.9 1.0 -49.7
bienst1 6.60 0.00 57 0 0.1 0.0 0.0 0.0
bienst2 7.43 0.00 84 0 0.1 0.0 0.0 0.0
binkar10 1 26.34 0.20 25 -3 0.6 0.1 0.1 0.0
blend2 3.63 -0.96 3 -7 0.0 -25.7 0.0 -5.1
cap6000 0.00 0.00 0 0 0.1 0.0 0.1 0.0
dano3mip 0.01 0.00 4 0 27.4 -14.6 5.5 -2.9
danoint 0.58 0.00 22 0 0.3 0.0 0.1 0.0
dcmulti 21.96 0.00 38 0 0.1 0.0 0.0 0.0
egout 94.73 0.00 13 0 0.0 -0.1 0.0 0.0
fiber 88.23 0.00 74 0 0.1 0.0 0.0 0.0
fixnet6 41.06 0.00 79 0 1.1 0.3 0.0 0.0
gen 98.17 0.00 7 0 0.0 0.0 0.0 0.0
gesa2 60.53 0.00 45 -2 2.3 -8.8 0.5 -1.7
gesa2-o 7.46 0.00 29 3 0.2 -5.0 0.1 -1.6
gesa3 23.34 0.00 14 0 0.7 -3.9 0.4 -1.9
gesa3 o 6.98 0.00 11 0 0.1 -3.8 0.1 -1.8
gt2 33.85 0.00 6 0 0.0 0.0 0.0 0.0
harp2 0.00 0.00 0 0 0.0 -0.5 0.0 -0.5
khb05250 97.96 0.00 75 0 1.5 -7.8 0.1 -0.7
lseu 36.50 0.00 19 0 0.0 0.0 0.0 0.0
mitre 6.49 -0.28 892 -11 5.1 -0.4 0.9 0.0
mkc 0.05 0.00 64 5 1.0 -68.2 0.2 -11.3
mod008 29.55 -0.21 10 -4 0.3 -1.1 0.0 -0.1
mod010 18.32 0.00 1 0 0.0 -0.1 0.0 -0.1
mod011 49.19 0.00 257 0 21.8 -145.3 1.4 -9.0
modglob 24.86 0.00 40 0 1.6 0.4 0.3 0.1
momentum2 0.00 0.00 11 0 55.2 13.6 13.8 3.4
msc98-ip 0.74 0.00 287 0 96.4 15.1 13.8 2.2
neos616206 3.06 0.00 195 0 4.5 1.7 0.4 0.1
neos8 0.00 0.00 6 0 4.3 1.4 2.2 0.8
neos14 45.78 0.00 76 0 0.2 0.0 0.1 0.0
neos15 40.02 0.00 76 0 0.2 0.0 0.1 0.0
neos16 9.52 0.00 132 0 0.1 0.0 0.0 0.0
neos22 3.96 0.00 111 0 5.6 0.6 0.9 0.1
net12 2.67 0.00 89 0 24.3 3.3 2.2 0.3
nsrand-ipx 4.79 0.00 69 0 1.5 0.1 0.3 0.1
p0033 9.34 0.00 9 0 0.0 0.0 0.0 0.0
p0282 93.98 0.00 121 0 0.1 0.0 0.0 0.0
p0548 73.05 0.00 86 0 0.1 0.0 0.0 0.0
p2756 72.39 0.00 228 0 1.0 0.0 0.1 0.0
pp08aCUTS 0.55 0.00 4 0 0.0 0.0 0.0 0.0
prod1 0.11 0.00 12 0 1.0 0.3 0.2 0.1
qnet1 29.16 0.00 26 0 0.1 0.0 0.0 0.0
qnet1 o 54.30 0.00 33 0 0.1 0.0 0.0 0.0
ran10x26 38.53 0.00 49 0 0.1 0.0 0.0 0.0
ran12x21 39.45 0.00 55 0 0.1 0.0 0.0 0.0
ran13x13 39.42 0.00 42 0 0.0 0.0 0.0 0.0
ran14x18 1 39.21 0.00 70 0 0.0 0.0 0.0 0.0
ran8x32 62.60 0.00 47 0 0.1 0.0 0.0 0.0
rentacar 0.00 0.00 4 0 1.5 -355.2 0.8 -177.5
rgn 0.00 0.00 0 0 0.0 0.0 0.0 0.0
roll3000 0.15 0.00 64 0 0.4 -1.5 0.1 -0.4
rout 0.27 0.00 58 0 0.0 -0.3 0.0 -0.1
set1ch 37.74 0.00 127 0 0.0 -0.1 0.0 0.0
sp97ar 0.08 0.00 7 0 1.7 0.2 0.8 0.0
timtab1 7.56 0.00 40 0 0.0 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

timtab2 5.29 0.00 91 0 0.1 0.0 0.0 0.0
tr12-30 38.34 0.00 226 0 1.0 0.1 0.3 0.1
vpm1 64.95 0.00 22 0 0.0 0.0 0.0 0.0
vpm2 69.61 0.00 72 0 0.0 0.0 0.0 0.0

Total 1790.36 -1.24 4854 -6 469.3 -1148.2 94.3 -275.2
Geom. Mean 10.87 -0.05 31 -1 1.8 -1.0 1.2 -0.5

Table B.50: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the main test set. Flow cover. Solve KPSNF

int exactly using Algorithm 4.1 if the
calculated scaling factor γ is not greater than 1,000 and nc for KPSNF

int is not greater than 1,000,000,
and solve KPSNF

rat approximately using Algorithm 5.1 otherwise. Application to all rows of a MIP.
(4 with respect to the default algorithm (applied to all rows of a MIP))
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 25.91 -1.23 152 -24 1.9 -8.6 0.3 -1.2
aflow30a 33.48 0.00 89 -1 0.1 -0.3 0.0 0.0
aflow40b 26.59 2.85 76 17 1.1 -1.1 0.1 -0.1
arki001 2.48 -1.06 56 -16 0.3 -74.8 0.0 -12.5
atlanta-ip 0.00 0.00 16 0 189.4 -65.5 37.9 -13.1
bc1 32.02 0.00 14 0 1.1 -404.1 0.1 -50.6
bienst1 6.60 0.00 59 2 0.1 0.0 0.0 0.0
bienst2 7.42 -0.01 89 5 0.1 0.0 0.0 0.0
binkar10 1 26.14 0.00 29 1 0.1 -0.4 0.0 -0.1
blend2 4.59 0.00 10 0 3.4 -22.3 0.7 -4.4
cap6000 3.03 3.03 1 1 0.2 0.1 0.1 0.0
dano3mip 0.01 0.00 4 0 2.5 -39.5 0.5 -7.9
danoint 0.58 0.00 22 0 0.0 -0.3 0.0 -0.1
dcmulti 21.70 -0.26 34 -4 0.0 -0.1 0.0 0.0
egout 94.73 0.00 13 0 0.0 -0.1 0.0 0.0
fiber 88.23 0.00 74 0 0.0 -0.1 0.0 0.0
fixnet6 38.22 -2.84 77 -2 0.1 -0.7 0.0 0.0
gen 98.17 0.00 7 0 0.0 0.0 0.0 0.0
gesa2 60.05 -0.48 45 -2 0.1 -11.0 0.0 -2.2
gesa2-o 7.46 0.00 26 0 0.0 -5.2 0.0 -1.7
gesa3 23.34 0.00 14 0 0.0 -4.6 0.0 -2.3
gesa3 o 6.98 0.00 11 0 0.0 -3.9 0.0 -1.9
gt2 33.85 0.00 6 0 0.0 0.0 0.0 0.0
harp2 8.04 8.04 8 8 48.5 48.0 8.1 7.6
khb05250 97.93 -0.03 75 0 0.1 -9.2 0.0 -0.8
lseu 36.50 0.00 19 0 0.0 0.0 0.0 0.0
mitre 6.77 0.00 901 -2 3.2 -2.3 0.5 -0.4
mkc 0.05 0.00 75 16 6.1 -63.1 1.0 -10.5
mod008 29.76 0.00 14 0 0.1 -1.3 0.0 -0.1
mod010 18.32 0.00 2 1 0.0 -0.1 0.0 -0.1
mod011 48.81 -0.38 238 -19 11.9 -155.2 0.7 -9.7
modglob 24.86 0.00 40 0 0.1 -1.1 0.0 -0.2
momentum2 0.00 0.00 12 1 11.3 -30.3 2.8 -7.6
msc98-ip 0.74 0.00 245 -42 33.5 -47.8 5.6 -6.0
neos616206 3.15 0.09 205 10 0.2 -2.6 0.0 -0.3
neos8 0.00 0.00 6 0 0.8 -2.1 0.4 -1.0
neos14 45.78 0.00 76 0 0.0 -0.2 0.0 -0.1
neos15 40.02 0.00 76 0 0.0 -0.2 0.0 -0.1
neos16 9.52 0.00 132 0 0.1 0.0 0.0 0.0
neos22 3.96 0.00 103 -8 2.5 -2.5 0.4 -0.4
net12 2.67 0.00 99 10 22.0 1.0 2.0 0.1
nsrand-ipx 4.79 0.00 69 0 1.1 -0.3 0.2 0.0
p0033 9.34 0.00 9 0 0.0 0.0 0.0 0.0
p0282 93.98 0.00 120 -1 0.1 0.0 0.0 0.0
p0548 73.05 0.00 86 0 0.0 -0.1 0.0 0.0
p2756 72.39 0.00 228 0 0.3 -0.7 0.0 -0.1
pp08aCUTS 0.55 0.00 4 0 0.0 0.0 0.0 0.0
prod1 0.11 0.00 12 0 0.2 -0.5 0.0 -0.1
qnet1 29.16 0.00 26 0 0.1 0.0 0.0 0.0
qnet1 o 54.33 0.03 34 1 0.1 0.0 0.0 0.0
ran10x26 38.22 -0.31 48 -1 0.1 0.0 0.0 0.0
ran12x21 39.45 0.00 55 0 0.0 -0.1 0.0 0.0
ran13x13 39.42 0.00 42 0 0.0 0.0 0.0 0.0
ran14x18 1 39.21 0.00 70 0 0.0 0.0 0.0 0.0
ran8x32 62.60 0.00 47 0 0.0 -0.1 0.0 0.0
rentacar 0.00 0.00 4 0 0.1 -356.6 0.0 -178.3
rgn 0.00 0.00 0 0 0.0 0.0 0.0 0.0
roll3000 0.14 -0.01 44 -20 0.2 -1.7 0.0 -0.5
rout 0.27 0.00 65 7 0.0 -0.3 0.0 -0.1
set1ch 37.74 0.00 127 0 0.0 -0.1 0.0 0.0
sp97ar 0.08 0.00 7 0 1.4 -0.1 0.7 -0.1
timtab1 7.00 -0.56 36 -4 0.0 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

timtab2 5.10 -0.19 80 -11 0.1 0.0 0.0 0.0
tr12-30 38.35 0.01 228 2 0.3 -0.6 0.1 -0.1
vpm1 64.95 0.00 22 0 0.0 0.0 0.0 0.0
vpm2 68.41 -1.20 69 -3 0.0 0.0 0.0 0.0

Total 1797.09 5.49 4782 -78 345.0 -1272.5 62.6 -306.9
Geom. Mean 11.37 0.45 33 1 1.5 -1.3 1.1 -0.6

Table B.51: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the main test set. Flow cover. Apply the fixing strategy suggested in Section 5.3.1 to
KPSNF

int and KPSNF
rat . Application to all rows of a MIP. (4 with respect to the default algorithm

(applied to all rows of a MIP))
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 27.28 0.14 250 74 30.6 20.1 2.8 1.3
aflow30a 33.48 0.00 90 0 0.7 0.3 0.0 0.0
aflow40b 23.74 0.00 59 0 3.9 1.7 0.3 0.1
arki001 3.54 0.00 74 2 97.0 21.9 16.2 3.7
atlanta-ip 0.00 0.00 16 0 641.0 386.1 128.2 77.2
bc1 32.02 0.00 20 6 759.2 354.0 69.0 18.3
bienst1 6.60 0.00 57 0 0.3 0.2 0.0 0.0
bienst2 7.43 0.00 84 0 0.3 0.2 0.0 0.0
binkar10 1 26.14 0.00 28 0 1.0 0.5 0.2 0.1
blend2 4.59 0.00 10 0 50.7 25.0 10.1 5.0
cap6000 0.00 0.00 0 0 0.8 0.7 0.8 0.7
dano3mip 0.01 0.00 4 0 90.0 48.0 18.0 9.6
danoint 0.58 0.00 22 0 0.6 0.3 0.1 0.0
dcmulti 21.96 0.00 38 0 0.1 0.0 0.1 0.1
egout 91.46 -3.27 12 -1 0.1 0.0 0.0 0.0
fiber 88.23 0.00 74 0 0.3 0.2 0.0 0.0
fixnet6 41.06 0.00 79 0 1.7 0.9 0.1 0.1
gen 98.17 0.00 7 0 0.1 0.1 0.0 0.0
gesa2 61.15 0.62 48 1 22.5 11.4 4.5 2.3
gesa2-o 7.58 0.12 30 4 20.8 15.6 3.5 1.8
gesa3 23.34 0.00 14 0 9.2 4.6 4.6 2.3
gesa3 o 6.98 0.00 11 0 7.6 3.7 3.8 1.9
gt2 33.85 0.00 6 0 0.0 0.0 0.0 0.0
harp2 0.00 0.00 0 0 0.8 0.3 0.8 0.3
khb05250 97.96 0.00 75 0 17.8 8.5 1.5 0.7
lseu 36.50 0.00 19 0 0.0 0.0 0.0 0.0
mitre 6.77 0.00 917 14 16.1 10.6 2.7 1.8
mkc 0.05 0.00 59 0 123.1 53.9 20.5 9.0
mod008 29.76 0.00 14 0 2.0 0.6 0.1 0.0
mod010 18.32 0.00 1 0 0.2 0.1 0.1 0.0
mod011 49.10 -0.09 238 -19 273.6 106.5 17.1 6.7
modglob 24.86 0.00 40 0 2.1 0.9 0.4 0.2
momentum2 0.04 0.04 15 4 138.4 96.8 34.6 24.2
msc98-ip 0.74 0.00 298 11 286.9 205.6 47.8 36.2
neos616206 3.06 0.00 195 0 3.7 0.9 0.3 0.0
neos8 4.17 4.17 7 1 33.1 30.2 16.6 15.2
neos14 45.78 0.00 76 0 0.2 0.0 0.1 0.0
neos15 40.02 0.00 76 0 0.2 0.0 0.1 0.0
neos16 9.52 0.00 132 0 0.2 0.1 0.1 0.1
neos22 3.96 0.00 111 0 20.1 15.1 3.4 2.6
net12 2.67 0.00 98 9 301.2 280.2 27.4 25.5
nsrand-ipx 12.13 7.34 80 11 3.9 2.5 0.5 0.3
p0033 9.34 0.00 9 0 0.0 0.0 0.0 0.0
p0282 93.98 0.00 121 0 0.2 0.1 0.0 0.0
p0548 77.75 4.70 89 3 0.2 0.1 0.0 0.0
p2756 72.39 0.00 228 0 1.9 0.9 0.2 0.1
pp08aCUTS 0.55 0.00 4 0 0.0 0.0 0.0 0.0
prod1 0.11 0.00 12 0 1.1 0.4 0.2 0.1
qnet1 31.52 2.36 33 7 0.4 0.3 0.0 0.0
qnet1 o 53.89 -0.41 42 9 0.3 0.2 0.0 0.0
ran10x26 38.47 -0.06 49 0 0.2 0.1 0.0 0.0
ran12x21 45.04 5.59 82 27 0.2 0.1 0.0 0.0
ran13x13 46.03 6.61 58 16 0.1 0.1 0.0 0.0
ran14x18 1 39.45 0.24 89 19 0.2 0.2 0.0 0.0
ran8x32 66.19 3.59 58 11 0.2 0.1 0.0 0.0
rentacar 0.69 0.69 6 2 1069.4 712.7 356.5 178.2
rgn 20.02 20.02 110 110 0.7 0.7 0.1 0.1
roll3000 0.15 0.00 65 1 2.8 0.9 0.7 0.2
rout 0.27 0.00 58 0 0.5 0.2 0.1 0.0
set1ch 37.74 0.00 127 0 0.1 0.0 0.0 0.0
sp97ar 1.39 1.31 9 2 5.0 3.5 2.5 1.7
timtab1 7.51 -0.05 43 3 0.0 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

timtab2 5.57 0.28 147 56 0.2 0.1 0.0 0.0
tr12-30 38.34 0.00 226 0 1.4 0.5 0.4 0.2
vpm1 64.95 0.00 22 0 0.0 0.0 0.0 0.0
vpm2 69.61 0.00 72 0 0.0 0.0 0.0 0.0

Total 1845.54 53.94 5243 383 4047.3 2429.8 797.1 427.6
Geom. Mean 11.99 1.07 37 5 4.3 1.5 2.2 0.5

Table B.52: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the main test set. Cut generation heuristic. Use N ∗

2 = N∗1 ∪{λ+1} as candidate set
for the value of ū. Application to all rows of a MIP. (4 with respect to the default algorithm
(applied to all rows of a MIP))
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 29.18 2.04 257 81 44.0 33.5 4.9 3.4
aflow30a 35.05 1.57 96 6 1.8 1.4 0.1 0.1
aflow40b 28.49 4.75 80 21 8.9 6.7 0.7 0.5
arki001 3.54 0.00 78 6 129.1 54.0 21.5 9.0
atlanta-ip 0.15 0.15 40 24 1320.6 1065.7 264.1 213.1
bc1 34.38 2.36 14 0 982.7 577.5 98.3 47.6
bienst1 6.59 -0.01 55 -2 0.3 0.2 0.0 0.0
bienst2 7.43 0.00 91 7 0.5 0.4 0.0 0.0
binkar10 1 22.55 -3.59 42 14 1.0 0.5 0.2 0.1
blend2 6.93 2.34 6 -4 31.4 5.7 7.8 2.7
cap6000 0.00 0.00 0 0 0.7 0.6 0.7 0.6
dano3mip 0.01 0.00 4 0 97.0 55.0 19.4 11.0
danoint 0.62 0.04 23 1 0.7 0.4 0.1 0.0
dcmulti 21.96 0.00 38 0 0.1 0.0 0.1 0.1
egout 91.46 -3.27 12 -1 0.1 0.0 0.0 0.0
fiber 89.38 1.15 100 26 0.6 0.5 0.1 0.1
fixnet6 46.53 5.47 110 31 1.9 1.1 0.1 0.1
gen 98.17 0.00 23 16 0.2 0.2 0.0 0.0
gesa2 61.31 0.78 55 8 22.6 11.5 4.5 2.3
gesa2-o 9.21 1.75 37 11 13.8 8.6 3.4 1.7
gesa3 33.26 9.92 18 4 18.4 13.8 4.6 2.3
gesa3 o 6.98 0.00 11 0 7.6 3.7 3.8 1.9
gt2 33.85 0.00 6 0 0.0 0.0 0.0 0.0
harp2 0.00 0.00 0 0 0.7 0.2 0.7 0.2
khb05250 98.16 0.20 87 12 12.9 3.6 1.3 0.5
lseu 42.88 6.38 37 18 0.0 0.0 0.0 0.0
mitre 21.27 14.50 1031 128 41.3 35.8 6.9 6.0
mkc 2.36 2.31 143 84 228.5 159.3 28.6 17.1
mod008 35.48 5.72 18 4 3.8 2.4 0.2 0.1
mod010 17.28 -1.04 3 2 0.3 0.2 0.1 0.0
mod011 49.34 0.15 258 1 274.5 107.4 16.1 5.7
modglob 25.21 0.35 36 -4 1.6 0.4 0.3 0.1
momentum2 0.04 0.04 16 5 378.1 336.5 94.5 84.1
msc98-ip 0.84 0.10 306 19 432.0 350.7 72.0 60.4
neos616206 3.04 -0.02 195 0 4.9 2.1 0.4 0.1
neos8 4.17 4.17 7 1 47.9 45.0 23.9 22.5
neos14 55.43 9.65 92 16 0.3 0.1 0.1 0.0
neos15 48.48 8.46 92 16 0.3 0.1 0.1 0.0
neos16 9.52 0.00 132 0 0.3 0.2 0.1 0.1
neos22 3.96 0.00 111 0 22.2 17.2 3.7 2.9
net12 2.67 0.00 96 7 208.0 187.0 26.0 24.1
nsrand-ipx 12.13 7.34 89 20 7.5 6.1 0.9 0.7
p0033 9.56 0.22 15 6 0.0 0.0 0.0 0.0
p0282 95.61 1.63 133 12 0.4 0.3 0.0 0.0
p0548 87.37 14.32 174 88 0.6 0.5 0.0 0.0
p2756 85.78 13.39 259 31 3.3 2.3 0.4 0.3
pp08aCUTS 0.55 0.00 4 0 0.0 0.0 0.0 0.0
prod1 0.13 0.02 13 1 1.8 1.1 0.3 0.2
qnet1 41.25 12.09 56 30 0.5 0.4 0.1 0.1
qnet1 o 59.05 4.75 55 22 0.4 0.3 0.0 0.0
ran10x26 40.37 1.84 53 4 0.4 0.3 0.0 0.0
ran12x21 45.68 6.23 59 4 0.2 0.1 0.0 0.0
ran13x13 46.55 7.13 54 12 0.1 0.1 0.0 0.0
ran14x18 1 44.73 5.52 110 40 0.5 0.5 0.0 0.0
ran8x32 66.63 4.03 61 14 0.5 0.4 0.0 0.0
rentacar 0.69 0.69 10 6 708.7 352.0 236.2 57.9
rgn 57.49 57.49 32 32 0.2 0.2 0.1 0.1
roll3000 6.14 5.99 107 43 6.5 4.6 0.9 0.4
rout 0.27 0.00 62 4 1.3 1.0 0.2 0.1
set1ch 37.78 0.04 128 1 0.1 0.0 0.0 0.0
sp97ar 0.77 0.69 9 2 6.7 5.2 3.3 2.5
timtab1 7.51 -0.05 44 4 0.1 0.1 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

timtab2 5.63 0.34 116 25 0.2 0.1 0.0 0.0
tr12-30 59.69 21.35 343 117 1.2 0.3 0.4 0.2
vpm1 64.67 -0.28 22 0 0.0 0.0 0.0 0.0
vpm2 71.28 1.67 71 -1 0.1 0.1 0.0 0.0

Total 2034.49 242.89 5935 1075 5082.9 3465.4 953.0 583.5
Geom. Mean 13.52 2.60 42 10 4.9 2.1 2.4 0.7

Table B.53: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the main test set. Cut generation heuristic. Use N ∗

3 = {uj : j ∈ N and uj >

λ} ∪ {max{uj : j ∈ N and uj ≥ λ}+ 1, λ+ 1} as candidate set for the value of ū. Application to
all rows of a MIP. (4 with respect to the default algorithm (applied to all rows of a MIP))
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 30.41 3.27 295 119 21.2 10.7 2.6 1.1
aflow30a 37.76 4.28 129 39 1.2 0.8 0.1 0.1
aflow40b 30.39 6.65 94 35 9.6 7.4 0.5 0.3
arki001 2.13 -1.41 104 32 203.3 128.2 33.9 21.4
atlanta-ip 0.09 0.09 38 22 522.6 267.7 130.7 79.7
bc1 30.93 -1.09 10 -4 1132.6 727.4 188.8 138.1
bienst1 6.64 0.04 112 55 0.2 0.1 0.0 0.0
bienst2 7.45 0.02 168 84 0.2 0.1 0.0 0.0
binkar10 1 27.82 1.68 38 10 1.3 0.8 0.2 0.1
blend2 4.59 0.00 15 5 84.3 58.6 16.9 11.8
cap6000 0.00 0.00 1 1 0.5 0.4 0.2 0.1
dano3mip 0.01 0.00 4 0 135.6 93.6 27.1 18.7
danoint 0.66 0.08 41 19 0.7 0.4 0.1 0.0
dcmulti 21.96 0.00 54 16 0.1 0.0 0.1 0.1
egout 98.57 3.84 23 10 0.1 0.0 0.0 0.0
fiber 88.81 0.58 79 5 0.2 0.1 0.0 0.0
fixnet6 52.42 11.36 147 68 2.6 1.8 0.1 0.1
gen 98.17 0.00 7 0 0.1 0.1 0.0 0.0
gesa2 60.69 0.16 66 19 41.4 30.3 8.3 6.1
gesa2-o 9.03 1.57 41 15 21.8 16.6 7.3 5.6
gesa3 23.34 0.00 14 0 13.9 9.3 6.9 4.6
gesa3 o 6.98 0.00 12 1 12.2 8.3 6.1 4.2
gt2 33.85 0.00 7 1 0.0 0.0 0.0 0.0
harp2 0.00 0.00 0 0 2.5 2.0 2.5 2.0
khb05250 98.01 0.05 102 27 14.6 5.3 1.3 0.5
lseu 39.28 2.78 19 0 0.0 0.0 0.0 0.0
mitre 6.78 0.01 966 63 15.5 10.0 2.6 1.7
mkc 0.76 0.71 83 24 130.2 61.0 21.7 10.2
mod008 29.76 0.00 15 1 309.6 308.2 22.1 22.0
mod010 18.32 0.00 1 0 0.2 0.1 0.1 0.0
mod011 49.56 0.37 319 62 622.6 455.5 36.6 26.2
modglob 50.75 25.89 107 67 4.8 3.6 0.8 0.6
momentum2 0.05 0.05 29 18 88.9 47.3 22.2 11.8
msc98-ip 0.74 0.00 322 35 288.5 207.2 48.1 36.5
neos616206 3.25 0.19 219 24 5.3 2.5 0.5 0.2
neos8 0.00 0.00 6 0 6.7 3.8 3.4 2.0
neos14 45.78 0.00 80 4 0.4 0.2 0.2 0.1
neos15 40.02 0.00 80 4 0.4 0.2 0.2 0.1
neos16 9.52 0.00 165 33 0.3 0.2 0.0 0.0
neos22 3.96 0.00 114 3 11.7 6.7 1.9 1.1
net12 2.67 0.00 92 3 55.2 34.2 4.6 2.7
nsrand-ipx 12.13 7.34 94 25 43.1 41.7 5.4 5.2
p0033 37.34 28.00 21 12 0.0 0.0 0.0 0.0
p0282 96.13 2.15 146 25 0.3 0.2 0.0 0.0
p0548 85.45 12.40 158 72 0.5 0.4 0.0 0.0
p2756 85.04 12.65 348 120 2.4 1.4 0.3 0.2
pp08aCUTS 0.88 0.33 6 2 0.0 0.0 0.0 0.0
prod1 0.82 0.71 108 96 13.0 12.3 2.2 2.1
qnet1 69.47 40.31 89 63 0.4 0.3 0.0 0.0
qnet1 o 71.86 17.56 91 58 0.3 0.2 0.0 0.0
ran10x26 41.46 2.93 66 17 0.1 0.0 0.0 0.0
ran12x21 49.64 10.19 113 58 0.1 0.0 0.0 0.0
ran13x13 49.63 10.21 105 63 0.1 0.1 0.0 0.0
ran14x18 1 42.79 3.58 165 95 0.2 0.2 0.0 0.0
ran8x32 63.47 0.87 70 23 0.1 0.0 0.0 0.0
rentacar 3.65 3.65 6 2 1146.6 789.9 573.3 395.0
rgn 0.00 0.00 0 0 0.1 0.1 0.1 0.1
roll3000 20.77 20.62 105 41 14.1 12.2 2.0 1.5
rout 0.00 -0.27 82 24 0.6 0.3 0.1 0.0
set1ch 37.74 0.00 244 117 0.1 0.0 0.0 0.0
sp97ar 0.77 0.69 8 1 13.7 12.2 6.9 6.1
timtab1 7.56 0.00 41 1 0.0 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

timtab2 5.29 0.00 89 -2 0.1 0.0 0.0 0.0
tr12-30 41.56 3.22 257 31 3.9 3.0 0.7 0.5
vpm1 78.97 14.02 37 15 0.0 0.0 0.0 0.0
vpm2 69.36 -0.25 91 19 0.0 0.0 0.0 0.0

Total 2043.68 252.08 6758 1898 5003.1 3385.6 1189.9 820.4
Geom. Mean 12.78 1.86 46 14 5.5 2.7 2.6 0.9

Table B.54: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the main test set. Default algorithm. Application to all rows of a MIP including the
separation of the class of c-MIRFPIs. (4 with respect to the default algorithm (applied to all rows
of a MIP))
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 30.51 3.37 353 177 14.7 4.2 2.1 0.6
aflow30a 37.44 3.96 124 34 3.5 3.1 0.2 0.2
aflow40b 31.66 7.92 131 72 20.8 18.6 1.1 0.9
arki001 2.48 -1.06 98 26 1.6 -73.5 0.3 -12.2
atlanta-ip 0.18 0.18 54 38 1675.8 1420.9 279.3 228.3
bc1 34.38 2.36 14 0 50.6 -354.6 5.1 -45.6
bienst1 6.64 0.04 115 58 0.4 0.3 0.0 0.0
bienst2 7.45 0.02 166 82 0.6 0.5 0.1 0.1
binkar10 1 45.99 19.85 49 21 0.5 0.0 0.1 0.0
blend2 10.86 6.27 23 13 0.9 -24.8 0.1 -5.0
cap6000 26.95 26.95 9 9 388.7 388.6 64.8 64.7
dano3mip 0.01 0.00 4 0 18.6 -23.4 3.7 -4.7
danoint 0.66 0.08 42 20 0.3 0.0 0.1 0.0
dcmulti 21.70 -0.26 52 14 0.0 -0.1 0.0 0.0
egout 95.30 0.57 23 10 0.0 -0.1 0.0 0.0
fiber 90.34 2.11 103 29 0.6 0.5 0.0 0.0
fixnet6 53.02 11.96 141 62 0.6 -0.2 0.0 0.0
gen 98.13 -0.04 15 8 0.1 0.1 0.0 0.0
gesa2 61.32 0.79 80 33 0.9 -10.2 0.2 -2.0
gesa2-o 9.34 1.88 43 17 0.3 -4.9 0.1 -1.6
gesa3 33.26 9.92 18 4 0.6 -4.0 0.2 -2.1
gesa3 o 6.98 0.00 13 2 0.2 -3.7 0.1 -1.8
gt2 33.85 0.00 6 0 0.0 0.0 0.0 0.0
harp2 9.78 9.78 8 8 0.3 -0.2 0.1 -0.4
khb05250 98.16 0.20 102 27 0.3 -9.0 0.0 -0.8
lseu 50.32 13.82 44 25 0.1 0.1 0.0 0.0
mitre 25.08 18.31 1128 225 72.5 67.0 12.1 11.2
mkc 7.48 7.43 259 200 28.4 -40.8 2.0 -9.5
mod008 37.25 7.49 20 6 2.8 1.4 0.1 0.0
mod010 18.32 0.00 3 2 0.1 0.0 0.0 -0.1
mod011 49.31 0.12 371 114 13.0 -154.1 0.9 -9.5
modglob 59.67 34.81 112 72 0.3 -0.9 0.0 -0.2
momentum2 0.05 0.05 30 19 156.6 115.0 39.2 28.8
msc98-ip 0.97 0.23 393 106 490.7 409.4 70.1 58.5
neos616206 3.29 0.23 238 43 0.7 -2.1 0.1 -0.2
neos8 4.17 4.17 7 1 35.1 32.2 17.6 16.2
neos14 55.43 9.65 143 67 0.1 -0.1 0.1 0.0
neos15 48.48 8.46 143 67 0.1 -0.1 0.1 0.0
neos16 9.52 0.00 135 3 0.5 0.4 0.1 0.1
neos22 3.96 0.00 106 -5 13.6 8.6 1.9 1.1
net12 2.67 0.00 99 10 242.0 221.0 30.2 28.3
nsrand-ipx 12.49 7.70 105 36 13.6 12.2 1.5 1.3
p0033 67.84 58.50 32 23 0.0 0.0 0.0 0.0
p0282 96.58 2.60 167 46 0.6 0.5 0.0 0.0
p0548 88.87 15.82 191 105 0.7 0.6 0.0 0.0
p2756 85.78 13.39 348 120 3.4 2.4 0.4 0.3
pp08aCUTS 0.98 0.43 6 2 0.0 0.0 0.0 0.0
prod1 0.82 0.71 107 95 3.7 3.0 0.6 0.5
qnet1 41.25 12.09 56 30 0.3 0.2 0.0 0.0
qnet1 o 59.60 5.30 61 28 0.2 0.1 0.0 0.0
ran10x26 45.85 7.32 97 48 0.4 0.3 0.0 0.0
ran12x21 55.91 16.46 117 62 0.2 0.1 0.0 0.0
ran13x13 50.14 10.72 129 87 0.2 0.2 0.0 0.0
ran14x18 1 49.10 9.89 206 136 0.6 0.6 0.0 0.0
ran8x32 68.61 6.01 127 80 0.5 0.4 0.0 0.0
rentacar 14.60 14.60 34 30 3.0 -353.7 0.2 -178.1
rgn 57.49 57.49 48 48 0.0 0.0 0.0 0.0
roll3000 28.97 28.82 117 53 1.5 -0.4 0.2 -0.3
rout 0.15 -0.12 97 39 0.3 0.0 0.0 -0.1
set1ch 37.78 0.04 245 118 0.1 0.0 0.0 0.0
sp97ar 0.77 0.69 9 2 9.9 8.4 5.0 4.2
timtab1 7.14 -0.42 42 2 0.1 0.1 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

timtab2 5.48 0.19 114 23 0.2 0.1 0.0 0.0
tr12-30 59.75 21.41 698 472 1.6 0.7 0.3 0.1
vpm1 78.69 13.74 38 16 0.0 0.0 0.0 0.0
vpm2 74.50 4.89 106 34 0.1 0.1 0.0 0.0

Total 2311.49 519.89 8314 3454 3278.7 1661.2 540.5 171.0
Geom. Mean 17.30 6.38 64 32 2.9 0.1 1.7 0.0

Table B.55: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the main test set. Resulting algorithm. Apply the fixing strategy suggested in Sec-
tion 5.3.1 to KPSNF

int and KPSNF
rat . Solve KPSNF

int exactly using Algorithm 4.1 if the calculated
scaling factor γ is not greater than 1,000 and nc for KPSNF

int is not greater than 1,000,000, and solve
KPSNF

rat approximately using Algorithm 5.1 otherwise. Use N ∗3 as candidate set for the value of
ū. Application to all rows of a MIP including the separation of the class of c-MIRFPIs. (4 with
respect to the default algorithm (applied to all rows of a MIP))
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

10teams 0.00 0 0.1 0.1
30:70:4 5:0 5:100 0.00 0 15.8 15.8
30:70:4 5:0 95:98 0.00 0 16.7 16.7
air03 0.00 0 0.2 0.2
air04 0.00 0 0.5 0.5
air05 0.00 0 0.2 0.2
bell3a 0.00 0 0.0 0.0
bell5 0.00 0 0.0 0.0
dano3 3 0.00 1 4.1 2.1
dano3 4 0.00 1 4.4 2.2
dano3 5 0.00 1 4.5 2.2
ds 0.00 0 9.7 9.7
eilD76 0.00 0 0.0 0.0
fast0507 0.00 0 4.5 4.5
flugpl 0.00 0 0.0 0.0
glass4 0.00 22 0.0 0.0
irp 0.00 0 0.4 0.4
l152lav 0.00 0 0.1 0.1
liu 0.00 0 0.0 0.0
manna81 0.00 0 9.6 9.6
markshare1 0.00 10 0.0 0.0
markshare2 0.00 5 0.1 0.0
mas284 0.00 0 0.2 0.2
mas74 0.00 0 0.1 0.1
mas76 0.00 0 0.1 0.1
misc03 0.00 0 0.0 0.0
misc06 0.00 0 0.0 0.0
misc07 0.00 0 0.0 0.0
mkc1 0.00 55 10.9 1.8
momentum1 0.00 17 118.3 29.6
mzzv11 0.00 4 25.8 12.9
mzzv42z 0.00 0 15.8 15.8
neos1 0.00 322 0.7 0.1
neos2 0.00 0 0.1 0.1
neos3 0.00 0 0.2 0.2
neos632659 14.02 227 0.2 0.0
neos648910 0.00 130 0.3 0.1
neos7 0.00 1 0.3 0.2
neos9 0.00 0 161.2 161.2
neos10 0.00 13 39.6 19.8
neos11 0.00 0 0.3 0.3
neos12 0.00 0 2.5 2.5
neos13 0.00 0 12.9 12.9
neos17 0.00 0 0.1 0.1
neos18 0.00 0 0.9 0.9
neos19 0.00 8542 1048.2 349.4
neos20 0.00 53 0.5 0.1
neos21 0.00 0 0.1 0.1
neos23 0.00 0 0.1 0.1
noswot 0.00 29 0.0 0.0
nug08 0.00 0 0.2 0.2
nw04 0.00 0 2.3 2.3
opt1217 0.00 0 0.0 0.0
p0201 0.00 8 0.0 0.0
pk1 0.00 0 0.0 0.0
pp08a 0.29 6 0.0 0.0
protfold 0.00 0 0.3 0.3
qap10 0.00 0 0.9 0.9
qiu 0.00 0 0.1 0.1
seymour 0.00 0 3.5 3.5
seymour1 0.00 0 1.5 1.5
stein27 0.00 0 0.0 0.0
stein45 0.00 0 0.0 0.0
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Name Gap Closed % Cuts Sepa Time Average Sepa Time

swath 0.00 0 0.1 0.1
swath1 0.00 0 0.2 0.2
swath2 0.00 0 0.2 0.2
swath3 0.00 0 0.2 0.2
t1717 0.00 0 7.3 7.3

Total 14.30 9447 1527.1 689.7
Geom. Mean 1.04 2 2.2 1.9

Table B.56: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the remaining test set. Resulting algorithm. Apply the fixing strategy suggested in
Section 5.3.1 to KPSNF

int and KPSNF
rat . Solve KPSNF

int exactly using Algorithm 4.1 if the calculated
scaling factor γ is not greater than 1,000 and nc for KPSNF

int is not greater than 1,000,000, and solve
KPSNF

rat approximately using Algorithm 5.1 otherwise. Use N ∗3 as candidate set for the value of ū.
Application to all rows of a MIP including the separation of the class of c-MIRFPIs.
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

a1c1s1 27.58 -2.93 316 -37 2.8 -11.9 0.4 -1.7
aflow30a 33.29 -4.15 96 -28 0.6 -2.9 0.1 -0.1
aflow40b 28.65 -3.01 93 -38 2.7 -18.1 0.3 -0.8
arki001 2.48 0.00 97 -1 1.2 -0.4 0.2 -0.1
atlanta-ip 0.00 -0.18 0 -54 1.2 -1674.6 1.2 -278.1
bc1 34.82 0.44 16 2 5.5 -45.1 0.6 -4.5
bienst1 6.64 0.00 115 0 0.4 0.0 0.0 0.0
bienst2 7.45 0.00 166 0 0.5 -0.1 0.1 0.0
binkar10 1 32.43 -13.56 64 15 0.4 -0.1 0.1 0.0
blend2 8.38 -2.48 21 -2 0.3 -0.6 0.0 -0.1
cap6000 26.95 0.00 10 1 2.3 -386.4 0.4 -64.4
dano3mip 0.00 -0.01 0 -4 0.5 -18.1 0.5 -3.2
danoint 0.66 0.00 42 0 0.3 0.0 0.0 -0.1
dcmulti 21.70 0.00 52 0 0.0 0.0 0.0 0.0
egout 95.30 0.00 23 0 0.0 0.0 0.0 0.0
fiber 89.84 -0.50 103 0 0.4 -0.2 0.0 0.0
fixnet6 49.95 -3.07 118 -23 0.2 -0.4 0.0 0.0
gen 98.13 0.00 15 0 0.1 0.0 0.0 0.0
gesa2 61.32 0.00 76 -4 0.8 -0.1 0.1 -0.1
gesa2-o 9.34 0.00 43 0 0.3 0.0 0.1 0.0
gesa3 33.26 0.00 18 0 0.5 -0.1 0.1 -0.1
gesa3 o 6.98 0.00 13 0 0.2 0.0 0.1 0.0
gt2 33.85 0.00 6 0 0.0 0.0 0.0 0.0
harp2 9.59 -0.19 8 0 0.2 -0.1 0.0 -0.1
khb05250 98.16 0.00 100 -2 0.2 -0.1 0.0 0.0
lseu 46.91 -3.41 28 -16 0.0 -0.1 0.0 0.0
mitre 9.02 -16.06 743 -385 14.3 -58.2 2.4 -9.7
mkc 7.40 -0.08 209 -50 10.2 -18.2 1.0 -1.0
mod008 28.63 -8.62 15 -5 0.1 -2.7 0.0 -0.1
mod010 18.32 0.00 3 0 0.1 0.0 0.0 0.0
mod011 48.54 -0.77 348 -23 8.1 -4.9 0.8 -0.1
modglob 59.67 0.00 112 0 0.3 0.0 0.0 0.0
momentum2 0.04 -0.01 8 -22 6.8 -149.8 1.4 -37.8
msc98-ip 0.97 0.00 207 -186 59.8 -430.9 10.0 -60.1
neos616206 3.29 0.00 235 -3 0.5 -0.2 0.1 0.0
neos8 4.17 0.00 7 0 1.8 -33.3 0.9 -16.7
neos14 55.43 0.00 143 0 0.1 0.0 0.1 0.0
neos15 48.48 0.00 143 0 0.1 0.0 0.1 0.0
neos16 9.52 0.00 157 22 0.3 -0.2 0.0 -0.1
neos22 0.00 -3.96 0 -106 0.2 -13.4 0.2 -1.7
net12 1.92 -0.75 82 -17 15.8 -226.2 1.8 -28.4
nsrand-ipx 12.49 0.00 104 -1 11.5 -2.1 1.3 -0.2
p0033 63.53 -4.31 25 -7 0.0 0.0 0.0 0.0
p0282 95.69 -0.89 100 -67 0.1 -0.5 0.0 0.0
p0548 88.49 -0.38 177 -14 0.3 -0.4 0.0 0.0
p2756 85.79 0.01 338 -10 2.5 -0.9 0.3 -0.1
pp08aCUTS 0.98 0.00 6 0 0.0 0.0 0.0 0.0
prod1 0.82 0.00 107 0 1.9 -1.8 0.3 -0.3
qnet1 41.25 0.00 56 0 0.3 0.0 0.0 0.0
qnet1 o 59.60 0.00 61 0 0.2 0.0 0.0 0.0
ran10x26 45.64 -0.21 81 -16 0.2 -0.2 0.0 0.0
ran12x21 54.75 -1.16 117 0 0.2 0.0 0.0 0.0
ran13x13 50.03 -0.11 120 -9 0.1 -0.1 0.0 0.0
ran14x18 1 48.54 -0.56 185 -21 0.2 -0.4 0.0 0.0
ran8x32 66.79 -1.82 102 -25 0.2 -0.3 0.0 0.0
rentacar 14.60 0.00 32 -2 1.7 -1.3 0.2 0.0
rgn 57.49 0.00 48 0 0.0 0.0 0.0 0.0
roll3000 28.28 -0.69 121 4 1.2 -0.3 0.1 -0.1
rout 0.13 -0.02 95 -2 0.1 -0.2 0.0 0.0
set1ch 37.78 0.00 245 0 0.1 0.0 0.0 0.0
sp97ar 0.77 0.00 9 0 5.0 -4.9 2.5 -2.5
timtab1 7.14 0.00 42 0 0.1 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

timtab2 5.47 -0.01 113 -1 0.1 -0.1 0.0 0.0
tr12-30 32.79 -26.96 395 -303 0.2 -1.4 0.1 -0.2
vpm1 78.69 0.00 38 0 0.0 0.0 0.0 0.0
vpm2 74.50 0.00 106 0 0.1 0.0 0.0 0.0

Total 2211.08 -100.41 6874 -1440 166.7 -3112.0 28.1 -512.4
Geom. Mean 16.07 -1.23 50 -14 1.5 -1.4 1.1 -0.6

Table B.57: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the main test set. Resulting algorithm with MAXTESTDELTA = 10. Application to
the rows of a MIP (ordered by nonincreasing value of ROWSCOREi, i ∈ P ) including the separation
of the class of c-MIRFPIs. Limit the application by using MAXFAILS = 100, MAXCUTS = 200 and
MAXROUNDS = 10. (4 with respect to the resulting algorithm (applied to all rows of a MIP including
the separation of the class of c-MIRFPIs))
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

10teams 0.00 0.00 0 0 0.0 -0.1 0.0 -0.1
30:70:4 5:0 5:100 0.00 0.00 0 0 0.6 -15.2 0.6 -15.2
30:70:4 5:0 95:98 0.00 0.00 0 0 0.6 -16.1 0.6 -16.1
air03 0.00 0.00 0 0 0.2 0.0 0.2 0.0
air04 0.00 0.00 0 0 0.2 -0.3 0.2 -0.3
air05 0.00 0.00 0 0 0.2 0.0 0.2 0.0
bell3a 0.00 0.00 0 0 0.0 0.0 0.0 0.0
bell5 0.00 0.00 0 0 0.0 0.0 0.0 0.0
dano3 3 0.00 0.00 0 -1 0.5 -3.6 0.5 -1.6
dano3 4 0.00 0.00 0 -1 0.5 -3.9 0.5 -1.7
dano3 5 0.00 0.00 0 -1 0.5 -4.0 0.5 -1.7
ds 0.00 0.00 0 0 2.8 -6.9 2.8 -6.9
eilD76 0.00 0.00 0 0 0.0 0.0 0.0 0.0
fast0507 0.00 0.00 0 0 1.9 -2.6 1.9 -2.6
flugpl 0.00 0.00 0 0 0.0 0.0 0.0 0.0
glass4 0.00 0.00 22 0 0.0 0.0 0.0 0.0
irp 0.00 0.00 0 0 0.4 0.0 0.4 0.0
l152lav 0.00 0.00 0 0 0.0 -0.1 0.0 -0.1
liu 0.00 0.00 0 0 0.0 0.0 0.0 0.0
manna81 0.00 0.00 0 0 0.4 -9.2 0.4 -9.2
markshare1 0.00 0.00 6 -4 0.0 0.0 0.0 0.0
markshare2 0.00 0.00 4 -1 0.0 -0.1 0.0 0.0
mas284 0.00 0.00 0 0 0.0 -0.2 0.0 -0.2
mas74 0.00 0.00 0 0 0.1 0.0 0.1 0.0
mas76 0.00 0.00 0 0 0.0 -0.1 0.0 -0.1
misc03 0.00 0.00 0 0 0.0 0.0 0.0 0.0
misc06 0.00 0.00 0 0 0.0 0.0 0.0 0.0
misc07 0.00 0.00 0 0 0.0 0.0 0.0 0.0
mkc1 0.00 0.00 59 4 3.7 -7.2 0.6 -1.2
momentum1 0.00 0.00 1 -16 2.9 -115.4 1.4 -28.2
mzzv11 0.00 0.00 0 -4 0.5 -25.3 0.5 -12.4
mzzv42z 0.00 0.00 0 0 0.7 -15.1 0.7 -15.1
neos1 0.00 0.00 322 0 0.3 -0.4 0.1 0.0
neos2 0.00 0.00 0 0 0.1 0.0 0.1 0.0
neos3 0.00 0.00 0 0 0.1 -0.1 0.1 -0.1
neos632659 14.02 0.00 213 -14 0.2 0.0 0.0 0.0
neos648910 0.00 0.00 129 -1 0.2 -0.1 0.1 0.0
neos7 0.00 0.00 1 0 0.1 -0.2 0.1 -0.1
neos9 0.00 0.00 0 0 4.4 -156.8 4.4 -156.8
neos10 0.00 0.00 13 0 2.3 -37.3 1.1 -18.7
neos11 0.00 0.00 0 0 0.0 -0.3 0.0 -0.3
neos12 0.00 0.00 0 0 0.2 -2.3 0.2 -2.3
neos13 0.00 0.00 0 0 2.1 -10.8 2.1 -10.8
neos17 0.00 0.00 0 0 0.0 -0.1 0.0 -0.1
neos18 0.00 0.00 0 0 0.1 -0.8 0.1 -0.8
neos19 0.00 0.00 0 -8542 2.6 -1045.6 2.6 -346.8
neos20 0.00 0.00 53 0 0.2 -0.3 0.1 0.0
neos21 0.00 0.00 0 0 0.0 -0.1 0.0 -0.1
neos23 0.00 0.00 0 0 0.0 -0.1 0.0 -0.1
noswot 0.00 0.00 29 0 0.0 0.0 0.0 0.0
nug08 0.00 0.00 0 0 0.0 -0.2 0.0 -0.2
nw04 0.00 0.00 0 0 1.7 -0.6 1.7 -0.6
opt1217 0.00 0.00 0 0 0.0 0.0 0.0 0.0
p0201 0.00 0.00 8 0 0.0 0.0 0.0 0.0
pk1 0.00 0.00 0 0 0.0 0.0 0.0 0.0
pp08a 0.29 0.00 6 0 0.0 0.0 0.0 0.0
protfold 0.00 0.00 0 0 0.1 -0.2 0.1 -0.2
qap10 0.00 0.00 0 0 0.1 -0.8 0.1 -0.8
qiu 0.00 0.00 0 0 0.0 -0.1 0.0 -0.1
seymour 0.00 0.00 0 0 0.1 -3.4 0.1 -3.4
seymour1 0.00 0.00 0 0 0.1 -1.4 0.1 -1.4
stein27 0.00 0.00 0 0 0.0 0.0 0.0 0.0
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Gap Closed % Cuts Sepa Time Average Sepa Time
Name Value 4 Value 4 Value 4 Value 4

stein45 0.00 0.00 0 0 0.0 0.0 0.0 0.0
swath 0.00 0.00 0 0 0.1 0.0 0.1 0.0
swath1 0.00 0.00 0 0 0.2 0.0 0.2 0.0
swath2 0.00 0.00 0 0 0.2 0.0 0.2 0.0
swath3 0.00 0.00 0 0 0.2 0.0 0.2 0.0
t1717 0.00 0.00 0 0 2.2 -5.1 2.2 -5.1

Total 14.30 0.00 866 -8581 34.8 -1492.3 28.2 -661.5
Geom. Mean 1.04 0.00 1 -1 1.1 -1.1 1.1 -0.8

Table B.58: Computational results for the cutting plane separator for the 0-1 single node flow
problem on the remaining test set. Resulting algorithm with MAXTESTDELTA = 10. Application to
the rows of a MIP (ordered by nonincreasing value of ROWSCOREi, i ∈ P ) including the separation
of the class of c-MIRFPIs. Limit the application by using MAXFAILS = 100, MAXCUTS = 200 and
MAXROUNDS = 10. (4 with respect to the resulting algorithm (applied to all rows of a MIP including
the separation of the class of c-MIRFPIs))
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B.4 Comparison with Cplex and Cbc

Name Type Conss Vars zLP zMIP

10teams.pre BIP 210 1600 897 904
30:70:4 5:0 5:100.pre BIP 12012 10751 5337.1 5338
30:70:4 5:0 95:98.pre BIP 12392 10910 5969.5 5970
a1c1s1.pre BMIP 2283 2619 2209.5717 11566.5904
aflow30a.pre BMIP 455 818 91.1674253 266
aflow40b.pre BMIP 1405 2691 -578.335183 -416
air03.pre BIP 122 8457 311406.25 312702
air04.pre BIP 614 7564 54030.4364 54632
air05.pre BIP 343 6139 25877.6093 26374
arki001.pre MIP 776 959 7009391.43 7010584.11
atlanta-ip.pre MIP 19446 17343 81.2553981 95.0073127
bc1.pre BMIP 1337 1043 2.18877635 3.33836255
bell3a.pre MIP 86 100 862116.583 874375.166
bell5.pre MIP 77 94 8341834.36 8699822.9
bienst1.pre BMIP 520 449 11.7241379 46.75
bienst2.pre BMIP 520 449 11.7241379 54.6
binkar10 1.pre BMIP 823 2019 5728.13803 5833.15003
blend2.pre MIP 184 334 6.91567511 7.598985
cap6000.pre BIP 1891 4689 -2403390.33 -2403230
dano3 3.pre BMIP 3151 13837 576.23162 576.344633
dano3 4.pre BMIP 3151 13837 576.23162 576.435225
dano3 5.pre BMIP 3151 13837 576.23162 576.924916
dano3mip.pre BMIP 3151 13837 576.23162 705.941176
danoint.pre BMIP 600 457 62.6372804 65.67
dcmulti.pre BMIP 239 515 184034.377 188182
ds.pre BIP 656 67732 57.2345653 468.645
egout.pre BMIP 35 47 242.52422 299.00708
eilD76.pre BIP 75 1893 680.538997 885.411847
fast0507.pre BIP 472 62167 158.145567 160
fiber.pre BMIP 363 1298 156082.518 405935.18
fixnet6.pre BMIP 477 877 3190.042 3981
flugpl.pre MIP 13 14 726875.166 760500
gen.pre BMIP 384 543 58319.9441 58349.0903
gesa2-o.pre MIP 1176 1152 18717600.8 19020967.5
gesa2.pre MIP 1344 1176 25502855 25779856.4
gesa3.pre MIP 1296 1080 27884380.4 27991042.6
gesa3 o.pre MIP 1104 1032 12274783.2 12432193.4
glass4.pre BMIP 392 317 800002400 1.6000134e+09
gt2.pre IP 28 180 20146.7613 21166
harp2.pre BIP 92 1035 -74232132.3 -73806560
irp.pre BIP 39 19370 12123.5302 12159.4928
khb05250.pre BMIP 100 1299 95919464 106940226
l152lav.pre BIP 97 1988 4656.36364 4722
liu.pre BMIP 2178 1154 346 1146
lseu.pre BIP 28 85 949.518722 1120
manna81.pre IP 6480 3321 -13297 -13164
markshare1.pre BMIP 6 56 0 1
markshare2.pre BMIP 7 67 0 1
mas284.pre MIP 68 148 86195.863 91405.7237
mas74.pre MIP 13 148 10482.7953 11801.1857
mas76.pre MIP 12 148 38893.9036 40005.0541
misc03.pre BIP 95 153 1910 3360
misc06.pre BMIP 511 1373 12841.6894 12850.8607
misc07.pre BIP 211 253 1415 2810
mitre.pre BIP 1471 8469 114908.999 115155
mkc.pre IP 1286 3223 -611.437978 -563.212
mkc1.pre MIP 2830 4851 -611.85 -607.207
mod008.pre BIP 6 319 290.931073 307
mod010.pre BIP 144 2569 6532.08333 6548
mod011.pre BMIP 1404 7022 -61678103.8 -54558535
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Name Type Conss Vars zLP zMIP

modglob.pre BMIP 286 384 19790205.8 20099766.2
momentum1.pre BMIP 11633 3579 47128.5523 83478.2514
momentum2.pre BMIP 19116 3306 1225.6443 6314.21959
msc98-ip.pre MIP 15024 12798 18473197.7 22213598
mzzv11.pre IP 8272 8775 -22773.75 -21718
mzzv42z.pre IP 9951 11291 -21446.2397 -20540
neos1.pre BIP 1018 1728 12 19
neos10.pre IP 3743 1892 -1198.33333 -1137
neos11.pre BMIP 2566 1190 6 9
neos12.pre BMIP 5377 3780 9.41161243 13
neos13.pre BMIP 19278 1826 -126.178378 -95.4748066
neos14.pre BMIP 436 675 28644.7958 70244.0244
neos15.pre BMIP 459 698 28570.7845 75958.6821
neos16.pre IP 850 377 429 450
neos17.pre BMIP 486 511 0.000681498501 0.150002577
neos18.pre BIP 3060 760 5.33333333 13
neos19.pre BMIP 23094 78344 -1611 -1499
neos2.pre BMIP 1103 2101 -4717.66685 454.864697
neos20.pre MIP 1298 735 -475 -434
neos21.pre BIP 1074 592 2.21648352 7
neos22.pre BMIP 4300 2786 777191.429 779715
neos23.pre BMIP 1162 435 56 137
neos3.pre BMIP 1442 2747 -6571.62916 368.842751
neos616206.pre BMIP 534 480 787.721258 937.6
neos632659.pre BMIP 170 290 -109.714286 -94
neos648910.pre BMIP 650 273 16 32
neos7.pre MIP 1715 1407 571556.49 714163
neos8.pre IP 3303 1660 -3725 -3719
neos9.pre BMIP 31600 81408 780 798
net12.pre BMIP 13757 13843 26.7541667 214
noswot.pre MIP 172 120 -43 -41
nsrand-ipx.pre BIP 535 4073 49667.8923 51520
nug08.pre BIP 912 1632 203.5 214
nw04.pre BIP 36 46190 16310.6667 16862
opt1217.pre BMIP 64 759 -20.0213904 -16
p0033.pre BIP 13 28 2262.54674 2513
p0201.pre BIP 107 183 7125 7615
p0282.pre BIP 160 200 179990.3 258401
p0548.pre BIP 129 409 5194.43615 8691
p2756.pre IP 642 2371 2701.75 3124
pk1.pre BMIP 45 86 0 11
pp08a.pre BMIP 133 234 2748.34524 7350
pp08aCUTS.pre BMIP 239 235 5280.60616 7150
prod1.pre BIP 75 117 8.44984888 26
protfold.pre BIP 2110 1835 -41.9574468 -23
qap10.pre BIP 1820 4150 332.566228 340
qiu.pre BMIP 1192 840 -931.638853 -132.873137
qnet1.pre IP 363 1417 14274.1027 16029.6927
qnet1 o.pre IP 245 1330 12907.7792 16029.6927
ran10x26.pre BMIP 296 520 3857.02278 4270
ran12x21.pre BMIP 285 504 3157.37744 3664
ran13x13.pre BMIP 195 338 2691.43947 3252
ran14x18 1.pre BMIP 284 504 3016.94435 3714
ran8x32.pre BMIP 296 512 4937.58453 5247
rentacar.pre BMIP 1010 2789 -3996349.94 -2567968.57
rgn.pre BMIP 24 180 48.7999986 82.1999992
roll3000.pre MIP 1109 948 11098.1402 12899
rout.pre MIP 290 555 -1393.38571 -1297.69
set1ch.pre BMIP 423 643 30269.8598 49689.5
seymour.pre BIP 4624 1085 239.469492 257
seymour1.pre BMIP 4634 1085 238.351528 244.763701
sp97ar.pre BIP 1670 14085 648138794 658743127
stein27.pre BIP 118 27 13 18
stein45.pre BIP 331 45 22 30
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Name Type Conss Vars zLP zMIP

swath.pre BMIP 482 6260 334.496858 477.34101
swath1.pre BMIP 482 6260 334.496858 379.071296
swath2.pre BMIP 482 6260 334.496858 385.199693
swath3.pre BMIP 482 6260 334.496858 397.761344
t1717.pre BIP 551 16428 134531.021 288658
timtab1.pre MIP 166 378 29032 765110
timtab2.pre MIP 287 648 68068 1168706
tr12-30.pre BMIP 722 1052 13924.1745 126396
vpm1.pre BMIP 128 188 16.4333333 20
vpm2.pre BMIP 128 188 11.1356321 13.75

Table B.59: Summary of the test set for the comparison with Cplex and Cbc.
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

10teams.pre 0.7 904 100.00 3 10.5 904 100.00 0.00 5 0.1 904 100.00 0.00 2
30:70:4 5:0 5:100.pre 160.6 5337.66667 62.96 101 202.1 5338 100.00 37.04 28 251.4 5338 100.00 37.04 6
30:70:4 5:0 95:98.pre 159.0 5970 100.00 150 249.8 5970 100.00 0.00 16 284.1 5970 100.00 0.00 1
a1c1s1.pre 0.2 3882.02402 17.87 124 0.5 5246.98275 32.46 14.59 198 1.3 5660.69 36.88 19.01 117
aflow30a.pre 0.2 116.572474 14.53 34 0.1 121.507755 17.35 2.82 36 0.3 140.479 28.21 13.68 20
aflow40b.pre 0.3 -564.903867 8.27 14 0.7 -552.215342 16.09 7.82 43 1.1 -548.068 18.64 10.37 17
air03.pre 0.8 312702 100.00 16 0.3 312702 100.00 0.00 3 0.2 312702 100.00 0.00 1
air04.pre 3.9 54030.4364 0.00 0 15.1 54100.6265 11.67 11.67 8 0.5 54030.9 0.08 0.08 0
air05.pre 2.2 25877.6093 0.00 0 12.1 25913.4025 7.21 7.21 9 0.3 25877.6 0.00 0.00 0
arki001.pre 0.2 7009391.43 0.00 6 0.4 7009904.05 42.98 42.98 54 1.4 7009990 50.19 50.19 62
atlanta-ip.pre 63.1 81.2553981 0.00 0 72.5 81.3443459 0.65 0.65 4 2.8 81.2554 0.00 0.00 0
bc1.pre 0.8 2.18877635 0.00 0 2.0 2.21294248 2.10 2.10 2 0.8 2.2088 1.74 1.74 1
bell3a.pre 0.0 869109.014 57.04 11 0.0 869736.909 62.16 5.12 14 0.1 869188 57.69 0.65 7
bell5.pre 0.0 8387030.13 12.62 12 0.0 8406938.89 18.19 5.57 13 0.2 8656910 88.01 75.39 18
bienst1.pre 0.1 12.7710654 2.99 29 0.2 15.1029368 9.65 6.66 14 1.9 36.2447 70.01 67.02 16
bienst2.pre 0.1 12.7710654 2.44 36 0.2 14.4504909 6.36 3.92 25 3.1 36.303 57.33 54.89 13
binkar10 1.pre 0.1 5728.13803 0.00 0 0.5 5742.88349 14.04 14.04 24 0.1 5739.32 10.65 10.65 5
blend2.pre 0.0 6.91567511 0.00 0 0.0 7.0246493 15.95 15.95 2 0.9 7.1499 34.28 34.28 3
cap6000.pre 0.5 -2403390.33 0.00 0 0.1 -2403323.55 41.65 41.65 1 0.1 -2403390 0.00 0.00 0
dano3 3.pre 30.5 576.23162 0.00 0 99.5 576.234134 2.22 2.22 1 1.4 576.232 0.00 0.00 0
dano3 4.pre 35.4 576.23162 0.00 0 84.6 576.234953 1.64 1.64 3 1.6 576.232 0.00 0.00 0
dano3 5.pre 44.6 576.23162 0.00 0 85.5 576.249479 2.58 2.58 3 1.6 576.232 0.00 0.00 0
dano3mip.pre 38.3 576.23162 0.00 0 72.3 576.265696 0.03 0.03 8 0.5 576.232 0.00 0.00 0
danoint.pre 0.1 62.6372804 0.00 0 0.1 62.6460503 0.29 0.29 6 9.3 62.667 0.98 0.98 23
dcmulti.pre 0.1 185089.562 25.44 39 0.1 186877.886 68.56 43.12 47 3.3 187087 73.60 48.16 43
ds.pre 61.1 57.2345653 0.00 0 139.0 57.4064195 0.04 0.04 17 6.6 57.2346 0.00 0.00 0
egout.pre 0.0 266.004562 41.57 12 0.0 299.00708 100.00 58.43 17 0.2 298.39 98.91 57.34 12
eilD76.pre 0.2 680.538997 0.00 0 1.3 684.407956 1.89 1.89 6 0.0 680.539 0.00 0.00 0
fast0507.pre 44.0 158.145567 0.00 0 173.6 158.206927 3.31 3.31 6 0.8 158.146 0.02 0.02 0
fiber.pre 0.1 375159.832 87.68 44 0.1 386475.798 92.21 4.53 27 0.3 380808 89.94 2.26 0
fixnet6.pre 0.2 3415.06515 28.45 69 0.1 3408.57167 27.63 -0.82 27 0.1 3483.74 37.13 8.68 11
flugpl.pre 0.0 730596.276 11.07 11 0.0 732049.37 15.39 4.32 7 0.1 732518 16.78 5.71 6
gen.pre 0.0 58330.3843 35.82 10 0.0 58324.7035 16.33 -19.49 12 0.1 58336.4 56.46 20.64 7
gesa2-o.pre 0.1 18717643.9 0.01 2 0.1 18936542.9 72.17 72.16 89 4.7 18951800 77.20 77.19 73
gesa2.pre 0.1 25502888.7 0.01 2 0.1 25635171.3 47.77 47.76 68 2.6 25738000 84.89 84.88 55
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

gesa3.pre 0.1 27900545.8 15.16 11 0.2 27927267.8 40.21 25.05 83 2.0 27926400 39.40 24.24 21
gesa3 o.pre 0.1 12301408.1 16.91 10 0.1 12373619.3 62.79 45.88 73 0.6 12376200 64.43 47.52 45
glass4.pre 0.0 800002436 0.00 147 0.1 800003020 0.00 0.00 193 0.0 800002000 0.00 0.00 6
gt2.pre 0.0 20370.9727 22.00 21 0.0 21148.4712 98.28 76.28 12 0.1 21166 100.00 78.00 7
harp2.pre 0.0 -74232132.3 0.00 0 0.1 -74100100.6 31.02 31.02 25 0.4 -74082800 35.09 35.09 10
irp.pre 1.8 12138.6623 42.08 6 3.9 12145.1809 60.20 18.12 10 0.2 12123.5 -0.08 -42.16 0
khb05250.pre 0.0 100189855 38.75 13 0.0 104598848 78.75 40.00 20 0.1 105786000 89.53 50.78 30
l152lav.pre 0.3 4662.84234 9.87 20 0.8 4672.56818 24.69 14.82 5 0.0 4656.36 0.00 -9.87 0
liu.pre 0.1 560 26.75 4 0.5 560 26.75 0.00 105 0.1 560 26.75 0.00 30
lseu.pre 0.0 1006.6416 33.51 7 0.0 1021.83424 42.42 8.91 7 0.1 1036.67 51.12 17.61 7
manna81.pre 0.7 -13164 100.00 272 0.4 -13164 100.00 0.00 274 0.3 -13164 100.00 0.00 269
markshare1.pre 0.0 0 0.00 0 0.0 0 0.00 0.00 1 0.1 0 0.00 0.00 0
markshare2.pre 0.0 0 0.00 0 0.0 0 0.00 0.00 0 0.2 0 0.00 0.00 0
mas284.pre 0.0 86195.863 0.00 0 0.1 86298.9993 1.98 1.98 5 1.1 86344.7 2.86 2.86 5
mas74.pre 0.0 10482.7953 0.00 0 0.0 10590.3726 8.16 8.16 7 0.2 10589.2 8.07 8.07 9
mas76.pre 0.0 38893.9036 0.00 0 0.0 38973.1845 7.14 7.14 5 0.2 38979.6 7.71 7.71 6
misc03.pre 0.0 2087 12.21 24 0.0 2185 18.97 6.76 19 1.1 2270.35 24.85 12.64 7
misc06.pre 0.1 12844.0321 25.54 4 0.1 12845.7447 44.22 18.68 15 0.1 12846.5 52.45 26.91 15
misc07.pre 0.1 1415 0.00 18 0.1 1425 0.72 0.72 7 1.9 1477.61 4.49 4.49 4
mitre.pre 0.7 115127.365 88.77 365 0.7 115155 100.00 11.23 297 1.4 115137 92.68 3.91 228
mkc.pre 0.3 -596.606142 30.75 17 0.5 -590.151765 44.14 13.39 31 0.6 -584.281 56.31 25.56 20
mkc1.pre 0.5 -611.85 0.00 4 0.6 -610.166266 36.26 36.26 36 0.2 -611.85 0.00 0.00 13
mod008.pre 0.0 290.931073 0.00 0 0.0 297.883042 43.26 43.26 7 0.5 298.255 45.58 45.58 8
mod010.pre 0.3 6548 100.00 6 0.2 6548 100.00 0.00 24 0.0 6532.08 0.00 -100.00 0
mod011.pre 0.4 -60798245.9 12.36 14 0.4 -59675911.9 28.12 15.76 16 0.1 -61356700 4.51 -7.85 6
modglob.pre 0.0 19790205.8 0.00 0 0.0 19830691.6 13.08 13.08 23 2.0 19920100 41.96 41.96 27
momentum1.pre 2.9 70575.7824 64.50 24 3.0 70575.7824 64.50 0.00 14 2.3 70575.8 64.50 0.00 6
momentum2.pre 7.9 3216.14744 39.12 14 16.6 3223.92267 39.27 0.15 13 81.8 3258.88 39.96 0.84 20
msc98-ip.pre 215.7 18595662 3.27 224 321.8 18635744 4.35 1.08 54 545.2 18635700 4.34 1.07 54
mzzv11.pre 93.2 -22357.9802 39.38 122 82.2 -22382.5471 37.05 -2.33 33 5.0 -22456.2 30.08 -9.30 23
mzzv42z.pre 49.7 -21291.9253 17.03 40 21.3 -21126.5956 35.27 18.24 39 4.8 -21268.5 19.61 2.58 29
neos1.pre 4.7 14.5077375 35.82 217 0.7 12.8863786 12.66 -23.16 38 0.2 12.16 2.29 -33.53 12
neos10.pre 2.5 -1181.10579 28.09 145 0.7 -1175.82872 36.69 8.60 21 0.4 -1181 28.26 0.17 7
neos11.pre 1.4 6 0.00 10 1.3 6 0.00 0.00 1 2.3 6 0.00 0.00 7
neos12.pre 21.3 9.41843537 0.19 20 22.9 9.45164166 1.12 0.93 41 15.6 9.42116 0.27 0.08 15
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

neos13.pre 5.0 -126.178378 0.00 7 7.6 -103.188882 74.88 74.88 221 2.5 -115.557 34.59 34.59 250
neos14.pre 0.0 46125.3396 42.02 96 0.1 54008.3624 60.97 18.95 105 1.1 59884.7 75.10 33.08 68
neos15.pre 0.0 47312.3703 39.55 119 0.1 53137.9649 51.84 12.29 107 9.6 65245.8 77.39 37.84 135
neos16.pre 0.3 431 9.52 231 0.2 431 9.52 0.00 51 14.8 432 14.29 4.77 77
neos17.pre 0.0 0.000681498501 0.00 0 0.2 0.0422573392 27.84 27.84 76 0.0 0.000681499 0.00 0.00 0
neos18.pre 3.7 8 34.78 146 0.9 7 21.74 -13.04 21 3.4 8 34.78 0.00 11
neos19.pre 83.7 -1611 0.00 2761 91.1 -1611 0.00 0.00 381 1580.8 -1611 0.00 0.00 1642
neos2.pre 0.1 -4574.09499 2.78 26 0.2 -3942.17298 14.99 12.21 41 0.8 -3857.13 16.64 13.86 34
neos20.pre 0.4 -475 0.00 70 0.6 -472 7.32 7.32 49 0.5 -475 0.00 0.00 36
neos21.pre 0.3 2.69870075 10.08 5 0.5 2.76110357 11.39 1.31 7 1.0 2.80011 12.20 2.12 5
neos22.pre 0.5 777227.429 1.43 141 0.5 777191.429 0.00 -1.43 109 0.3 777191 0.00 -1.43 4
neos23.pre 0.1 56 0.00 58 0.1 56.3608865 0.45 0.45 25 0.0 56 0.00 0.00 5
neos3.pre 0.2 -6404.06184 2.41 30 0.6 -5680.68576 12.84 10.43 59 1.4 -5339.72 17.75 15.34 19
neos616206.pre 0.1 787.721258 0.00 31 0.3 788.427308 0.47 0.47 28 20.1 795.413 5.13 5.13 38
neos632659.pre 0.0 -109.714286 0.00 47 0.0 -109.714286 0.00 0.00 22 0.4 -109.714 0.00 0.00 5
neos648910.pre 0.0 16 0.00 135 0.1 16 0.00 0.00 99 0.3 16 0.00 0.00 15
neos7.pre 0.4 605261.04 23.63 61 0.4 626562.405 38.57 14.94 144 0.6 624725 37.28 13.65 47
neos8.pre 1.0 -3719 100.00 61 0.1 -3719 100.00 0.00 8 0.1 -3719 100.00 0.00 1
neos9.pre 182.2 797.125 95.14 467 49.6 796.5 91.67 -3.47 260 9.9 794 77.78 -17.36 36
net12.pre 58.4 53.9043395 14.50 211 35.4 63.1463499 19.44 4.94 56 30.8 51.8409 13.40 -1.10 46
noswot.pre 0.0 -43 0.00 11 0.0 -43 0.00 0.00 24 0.4 -43 0.00 0.00 4
nsrand-ipx.pre 1.5 50137.2882 25.34 28 3.2 50453.539 42.42 17.08 39 0.5 50421.1 40.67 15.33 35
nug08.pre 9.0 204.380311 8.38 18 14.9 207.759215 40.56 32.18 7 10.4 205.347 17.59 9.21 6
nw04.pre 2.2 16310.6667 0.00 0 9.2 16790.8372 87.09 87.09 18 0.7 16310.7 0.01 0.01 0
opt1217.pre 0.1 -19.0332732 24.57 16 0.2 -18.2470811 44.12 19.55 18 0.1 -19.4516 14.17 -10.40 6
p0033.pre 0.0 2377.325 45.83 8 0.0 2388.6257 50.34 4.51 6 0.0 2277.25 5.87 -39.96 1
p0201.pre 0.1 7159.91472 7.13 9 0.1 7219.85889 19.36 12.23 6 2.8 7329.94 41.82 34.69 9
p0282.pre 0.0 185845.592 7.47 29 0.0 190091.732 12.88 5.41 17 0.9 212167 41.04 33.57 17
p0548.pre 0.0 8136.7595 84.15 46 0.0 8611.89426 97.74 13.59 50 1.2 8626.08 98.14 13.99 43
p2756.pre 0.2 3113.70411 97.56 138 0.1 3114.77295 97.81 0.25 114 0.1 3113.93 97.62 0.06 125
pk1.pre 0.0 0 0.00 1 0.0 0 0.00 0.00 1 0.3 0 0.00 0.00 0
pp08a.pre 0.0 4677.95289 41.93 34 0.0 6619.42493 84.12 42.19 76 4.2 6648.3 84.75 42.82 72
pp08aCUTS.pre 0.0 5716.26377 23.30 17 0.0 6319.12632 55.55 32.25 45 3.4 6466.21 63.42 40.12 37
prod1.pre 0.0 8.44984888 0.00 0 0.0 9.78335012 7.60 7.60 8 1.6 10.018 8.94 8.94 9
protfold.pre 22.3 -40.0953097 9.82 8 112.2 -40.2202211 9.16 -0.66 21 4.7 -40.8958 5.60 -4.22 3
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

qap10.pre 39.7 332.566228 0.00 0 124.9 333.814171 16.79 16.79 11 2.0 332.566 0.00 0.00 0
qiu.pre 0.1 -931.638853 0.00 0 0.3 -918.745571 1.61 1.61 20 0.9 -892.203 4.94 4.94 7
qnet1.pre 0.7 14693.1207 23.87 15 0.2 14556.3415 16.08 -7.79 6 0.2 14689.4 23.66 -0.21 8
qnet1 o.pre 0.3 14117.0404 38.73 24 0.2 14622.6349 54.93 16.20 18 0.1 14172.2 40.50 1.77 9
ran10x26.pre 0.0 3967.66673 26.79 20 0.1 3962.92193 25.64 -1.15 19 0.3 3969.47 27.23 0.44 13
ran12x21.pre 0.1 3280.95242 24.39 50 0.1 3264.04822 21.06 -3.33 16 1.0 3277.83 23.78 -0.61 16
ran13x13.pre 0.1 2858.79229 29.85 32 0.1 2814.00424 21.86 -7.99 24 2.1 2888.16 35.09 5.24 22
ran14x18 1.pre 0.1 3189.11482 24.70 37 0.1 3161.41308 20.73 -3.97 24 0.5 3134.7 16.89 -7.81 14
ran8x32.pre 0.1 5027.11899 28.94 44 0.1 5048.62415 35.89 6.95 18 0.9 5047.42 35.50 6.56 18
rentacar.pre 0.2 -3995303.15 0.07 2 0.2 -3918333.31 5.46 5.39 6 0.0 -3996350 0.00 -0.07 2
rgn.pre 0.0 55.305972 19.48 24 0.0 59.3720968 31.65 12.17 20 0.4 70.4828 64.92 45.44 28
roll3000.pre 2.5 12119.3943 56.71 108 1.2 11499.4687 22.29 -34.42 50 2.6 11910.7 45.12 -11.59 48
rout.pre 0.1 -1392.57181 0.85 17 0.1 -1388.01643 5.61 4.76 10 0.1 -1392.38 1.05 0.20 4
set1ch.pre 0.1 37861.3146 39.09 125 0.1 47918.0653 90.88 51.79 100 1.6 46881.8 85.54 46.45 101
seymour.pre 7.2 242.217415 15.68 18 8.0 242.252067 15.87 0.19 21 7.1 241.917 13.96 -1.72 11
seymour1.pre 3.9 238.883793 8.30 4 5.8 239.628851 19.92 11.62 15 2.3 239.164 12.67 4.37 4
sp97ar.pre 11.1 648639048 4.72 3 32.8 649848971 16.13 11.41 19 1.6 649046000 8.56 3.84 7
stein27.pre 0.0 13 0.00 20 0.0 13 0.00 0.00 5 0.3 13 0.00 0.00 5
stein45.pre 0.0 22 0.00 18 0.1 22 0.00 0.00 7 2.0 22 0.00 0.00 1
swath.pre 1.5 380.300953 32.07 102 2.8 380.879185 32.47 0.40 125 0.1 335.226 0.51 -31.56 1
swath1.pre 0.1 334.496858 0.00 0 0.7 340.856381 14.27 14.27 32 0.0 334.497 0.00 0.00 0
swath2.pre 0.2 340.567288 11.97 8 1.0 341.08784 13.00 1.03 38 0.1 334.497 0.00 -11.97 0
swath3.pre 0.2 338.711236 6.66 4 0.9 341.849661 11.62 4.96 38 0.1 334.497 0.00 -6.66 0
t1717.pre 21.2 134531.021 0.00 0 53.8 134593.682 0.04 0.04 12 1.6 134531 0.00 0.00 0
timtab1.pre 0.1 278266.46 33.86 227 0.1 310539.264 38.24 4.38 90 5.0 331824 41.14 7.28 63
timtab2.pre 0.3 386989.422 28.98 361 0.2 431176.364 32.99 4.01 138 23.4 461205 35.72 6.74 106
tr12-30.pre 0.1 56451.0344 37.81 207 0.2 97202.5757 74.04 36.23 372 6.3 110660 86.01 48.20 358
vpm1.pre 0.0 18.6821138 63.05 57 0.0 17.537037 30.94 -32.11 14 1.0 18.8137 66.74 3.69 26
vpm2.pre 0.0 11.657079 19.95 20 0.0 12.160145 39.19 19.24 26 2.0 12.3667 47.09 27.14 26

Total 1514.5 2838.71 9117 2265.8 4294.52 1455.81 6010 3030.2 4179.20 1340.49 5204
Geom. Mean 2.1 7.02 13 2.4 15.02 8.00 20 2.0 10.88 3.86 8

Table B.60: Computational results for the comparison with Cplex and Cbc. Cutting plane sep-
arator for the class of GMI inequalities. (4 with respect to Scip)
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

10teams.pre 0.4 897 0.00 0 0.1 897 0.00 0.00 0 0.0 897 0.00 0.00 0
30:70:4 5:0 5:100.pre 13.7 5337.1 0.00 0 12.4 5337.1 0.00 0.00 0 125.6 5337.1 0.00 0.00 0
30:70:4 5:0 95:98.pre 20.2 5969.5 0.00 0 13.6 5969.5 0.00 0.00 0 114.1 5969.5 0.00 0.00 0
a1c1s1.pre 12.8 5632.68511 36.58 806 1.9 7327.01796 54.69 18.11 486 0.5 5057.69 30.44 -6.14 207
aflow30a.pre 4.1 162.700587 40.92 186 0.1 152.273802 34.95 -5.97 49 0.2 145.92 31.32 -9.60 50
aflow40b.pre 21.1 -529.896163 29.84 107 0.3 -555.78942 13.89 -15.95 16 1.8 -531.634 28.77 -1.07 64
air03.pre 1.0 311406.25 0.00 0 0.2 311406.25 0.00 0.00 0 0.1 311406 0.00 0.00 0
air04.pre 3.3 54030.4364 0.00 0 1.9 54030.4364 0.00 0.00 0 0.5 54030.9 0.08 0.08 0
air05.pre 2.1 25877.6093 0.00 0 0.5 25877.6093 0.00 0.00 0 0.3 25877.6 0.00 0.00 0
arki001.pre 5.6 7009591.54 16.78 279 0.2 7009683.49 24.49 7.71 48 0.2 7009530 11.62 -5.16 6
atlanta-ip.pre 83.0 81.2652543 0.07 15 68.1 81.2762858 0.15 0.08 61 8.2 81.2717 0.12 0.05 29
bc1.pre 3.5 2.62695156 38.12 18 2.6 2.4449267 22.28 -15.84 1 1.9 2.53504 30.12 -8.00 12
bell3a.pre 0.0 869351.381 59.02 15 0.0 869039.674 56.48 -2.54 11 0.0 865166 24.88 -34.14 6
bell5.pre 0.0 8355467.02 3.81 19 0.0 8396554.78 15.29 11.48 14 0.0 8348300 1.81 -2.00 5
bienst1.pre 1.8 14.1153965 6.83 138 0.4 14.8514859 8.93 2.10 137 0.3 14.0421 6.62 -0.21 59
bienst2.pre 3.1 15.0064524 7.66 234 0.6 15.586573 9.01 1.35 181 0.5 14.9129 7.44 -0.22 83
binkar10 1.pre 0.7 5787.08201 56.13 56 0.0 5728.13803 0.00 -56.13 0 0.0 5728.16 0.02 -56.11 0
blend2.pre 0.1 6.96975772 7.91 25 0.0 7.01490511 14.52 6.61 7 0.0 7.04686 19.20 11.29 9
cap6000.pre 0.6 -2403390.33 0.00 0 0.1 -2403390.33 0.00 0.00 0 0.0 -2403390 0.00 0.00 0
dano3 3.pre 32.0 576.23207 0.00 1 44.4 576.243836 10.81 10.81 12 1.4 576.232 0.00 0.00 0
dano3 4.pre 39.7 576.23461 1.47 3 132.2 576.256062 12.00 10.53 22 1.6 576.232 0.00 -1.47 0
dano3 5.pre 51.9 576.240343 1.26 6 70.2 576.296058 9.29 8.03 30 1.6 576.232 0.00 -1.26 0
dano3mip.pre 82.3 576.284231 0.04 78 140.0 576.496184 0.20 0.16 150 0.6 576.232 0.00 -0.04 0
danoint.pre 1.8 62.6682179 1.02 78 0.2 62.696834 1.96 0.94 73 0.2 62.6581 0.69 -0.33 36
dcmulti.pre 1.1 185649.672 38.95 148 0.1 185528.93 36.03 -2.92 84 0.0 184217 4.40 -34.55 13
ds.pre 96.8 57.2345653 0.00 0 37.4 57.2345653 0.00 0.00 0 6.7 57.2346 0.00 0.00 0
egout.pre 0.1 274.908482 57.33 62 0.0 299.00708 100.00 42.67 19 -0.0 295.216 93.29 35.96 11
eilD76.pre 0.4 680.538997 0.00 0 0.1 680.538997 0.00 0.00 0 0.0 680.539 0.00 0.00 0
fast0507.pre 39.1 158.145567 0.00 0 23.7 158.145567 0.00 0.00 0 1.0 158.146 0.02 0.02 0
fiber.pre 0.7 367252.067 84.52 61 0.1 385167.597 91.69 7.17 50 0.1 295912 55.96 -28.56 20
fixnet6.pre 2.3 3535.744 43.71 266 0.2 3568.59339 47.86 4.15 40 0.2 3557.35 46.44 2.73 47
flugpl.pre 0.0 726875.166 0.00 0 0.0 726875.166 0.00 0.00 0 -0.0 726875 0.00 0.00 0
gen.pre 0.1 58349.0903 100.00 17 0.0 58325.1316 17.80 -82.20 8 0.0 58349.1 100.00 0.00 9
gesa2-o.pre 6.2 19018510 99.19 385 0.2 18972569.1 84.05 -15.14 152 0.1 18822400 34.55 -64.64 80
gesa2.pre 3.8 25778619.1 99.55 265 0.1 25730996.3 82.36 -17.19 87 0.1 25602300 35.90 -63.65 58

continued on the next page
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

gesa3.pre 2.6 27961999.2 72.77 118 0.1 27943159.7 55.11 -17.66 65 0.1 27919000 32.46 -40.31 23
gesa3 o.pre 3.6 12405891.3 83.29 204 0.1 12382018.6 68.12 -15.17 101 0.1 12358900 53.44 -29.85 53
glass4.pre 0.1 800002400 0.00 32 0.0 800002400 0.00 0.00 90 0.4 800003000 0.00 0.00 230
gt2.pre 0.0 20690.8105 53.38 19 0.0 20652.7281 49.64 -3.74 14 0.0 20350.9 20.03 -33.35 14
harp2.pre 0.0 -74232132.3 0.00 0 0.0 -74232132.3 0.00 0.00 0 0.2 -73996700 55.32 55.32 55
irp.pre 1.3 12123.5302 0.00 0 0.3 12123.5302 0.00 0.00 0 0.2 12123.5 -0.08 -0.08 0
khb05250.pre 0.5 106901468 99.65 132 0.1 106709067 97.90 -1.75 103 0.1 106720000 98.00 -1.65 52
l152lav.pre 0.2 4656.36364 0.00 0 0.0 4656.36364 0.00 0.00 0 0.0 4656.36 0.00 0.00 0
liu.pre 3.2 385 4.88 256 0.6 560 26.75 21.87 298 0.9 385 4.88 0.00 258
lseu.pre 0.0 1026.0419 44.89 18 0.0 949.518722 0.00 -44.89 0 0.0 1022 42.52 -2.37 8
manna81.pre 1.1 -13297 0.00 0 0.1 -13297 0.00 0.00 0 0.1 -13297 0.00 0.00 0
markshare1.pre 0.0 0 0.00 5 0.0 0 0.00 0.00 3 0.0 0 0.00 0.00 0
markshare2.pre 0.0 0 0.00 6 0.0 0 0.00 0.00 1 0.0 0 0.00 0.00 0
mas284.pre 0.1 86195.863 0.00 0 0.1 86749.5829 10.63 10.63 11 0.0 86195.9 0.00 0.00 0
mas74.pre 0.0 10482.7953 0.00 0 0.0 10577.1057 7.15 7.15 10 0.0 10482.8 0.00 0.00 0
mas76.pre 0.0 38893.9036 0.00 0 0.0 38974.1624 7.22 7.22 10 0.0 38893.9 0.00 0.00 0
misc03.pre 0.0 1910 0.00 0 0.0 1910 0.00 0.00 0 0.0 1910 0.00 0.00 0
misc06.pre 0.1 12841.6894 0.00 0 0.0 12842.147 4.99 4.99 11 0.0 12841.7 0.00 0.00 0
misc07.pre 0.0 1415 0.00 0 0.0 1415 0.00 0.00 0 0.0 1415 0.00 0.00 0
mitre.pre 10.8 114942.769 13.73 549 0.1 114908.999 0.00 -13.73 0 1.3 115072 66.26 52.53 396
mkc.pre 7.7 -608.349021 6.41 158 0.1 -611.437978 0.00 -6.41 3 0.1 -611.438 0.00 -6.41 8
mkc1.pre 0.8 -611.85 0.00 4 0.2 -611.85 0.00 0.00 8 0.2 -611.85 0.00 0.00 18
mod008.pre 0.1 294.586091 22.75 8 0.0 290.931073 0.00 -22.75 0 0.1 301.609 66.45 43.70 14
mod010.pre 0.4 6535 18.32 2 0.1 6532.08333 0.00 -18.32 0 0.0 6532.08 0.00 -18.32 0
mod011.pre 13.7 -57280568.9 61.77 566 11.9 -57607910.3 57.17 -4.60 439 0.3 -60719800 13.46 -48.31 24
modglob.pre 1.3 19987402 63.70 390 0.1 19940170.8 48.44 -15.26 74 0.1 19993700 65.74 2.04 50
momentum1.pre 8.8 47128.5523 0.00 0 1.7 47128.5824 0.00 0.00 4 0.4 47128.6 0.00 0.00 16
momentum2.pre 5.6 1225.6443 0.00 0 15.1 1225.6443 0.00 0.00 0 78.3 1225.64 0.00 0.00 1
msc98-ip.pre 77.7 18478536.3 0.14 29 210.2 18503353.9 0.81 0.67 142 60.4 18473800 0.02 -0.12 25
mzzv11.pre 55.8 -22773.75 0.00 0 68.2 -22773.75 0.00 0.00 4 0.6 -22773.8 0.00 0.00 0
mzzv42z.pre 30.8 -21446.2397 0.00 0 16.6 -21446.2397 0.00 0.00 0 0.3 -21446.2 0.00 0.00 0
neos1.pre 5.0 17.6 80.00 510 0.1 12 0.00 -80.00 0 0.1 12 0.00 -80.00 38
neos10.pre 2.9 -1198.33333 0.00 143 0.1 -1198.33333 0.00 0.00 0 0.1 -1198.33 0.01 0.01 0
neos11.pre 2.7 6 0.00 0 0.4 6 0.00 0.00 0 0.2 6 0.00 0.00 0
neos12.pre 10.1 9.41161243 0.00 0 12.0 9.41161243 0.00 0.00 4 4.8 9.41161 0.00 0.00 0

continued on the next page
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

neos13.pre 19.5 -126.178378 0.00 0 144.4 -126.178378 0.00 0.00 554 0.7 -126.178 0.00 0.00 0
neos14.pre 6.0 57837.5873 70.18 542 0.1 57082.008 68.36 -1.82 215 0.0 51701.9 55.43 -14.75 92
neos15.pre 6.6 61872.0344 70.27 769 0.1 58370.5232 62.88 -7.39 231 0.0 51545.7 48.48 -21.79 92
neos16.pre 0.5 431 9.52 72 0.1 431 9.52 0.00 34 0.0 429 0.00 -9.52 0
neos17.pre 0.1 0.000681498501 0.00 0 0.1 0.000681498501 0.00 0.00 0 0.0 0.000681499 0.00 0.00 0
neos18.pre 0.5 5.33333333 0.00 0 0.2 5.33333333 0.00 0.00 0 0.9 5.33333 0.00 0.00 0
neos19.pre 113.4 -1611 0.00 458 48.9 -1611 0.00 0.00 1105 2862.3 -1611 0.00 0.00 8034
neos2.pre 4.6 -4315.97183 7.77 77 0.1 -4684.5176 0.64 -7.13 31 0.0 -4717.67 0.00 -7.77 0
neos20.pre 2.0 -475 0.00 118 0.1 -475 0.00 0.00 0 0.1 -475 0.00 0.00 6
neos21.pre 0.2 2.21648352 0.00 0 0.1 2.21648352 0.00 0.00 0 0.2 2.21648 0.00 0.00 0
neos22.pre 6.7 777291.429 3.96 39 0.2 779200.714 79.62 75.66 174 0.2 777291 3.95 -0.01 72
neos23.pre 0.3 56 0.00 15 0.1 59.1663745 3.91 3.91 42 0.0 56 0.00 0.00 0
neos3.pre 8.6 -6109.46882 6.66 85 0.1 -6526.70362 0.65 -6.01 46 0.0 -6571.63 0.00 -6.66 0
neos616206.pre 0.7 787.813105 0.06 107 0.2 792.712673 3.33 3.27 101 0.4 792.56 3.23 3.17 55
neos632659.pre 0.1 -109.714286 0.00 53 0.0 -109.714286 0.00 0.00 19 0.1 -109.714 0.00 0.00 7
neos648910.pre 0.8 16 0.00 273 0.1 16 0.00 0.00 115 0.2 16 0.00 0.00 40
neos7.pre 0.5 571556.49 0.00 0 0.2 632065.382 42.43 42.43 108 0.1 572964 0.99 0.99 4
neos8.pre 7.7 -3724.75 4.17 108 0.1 -3724.75 4.17 0.00 1 0.1 -3725 0.00 -4.17 0
neos9.pre 26.8 780 0.00 0 5.7 780 0.00 0.00 0 1.4 780 0.00 0.00 0
net12.pre 84.5 44.3882086 9.42 115 14.1 45.0004787 9.74 0.32 94 13.9 43.2207 8.79 -0.63 57
noswot.pre 0.1 -43 0.00 61 0.0 -43 0.00 0.00 12 0.0 -43 0.00 0.00 25
nsrand-ipx.pre 8.0 49915.9785 13.39 81 0.1 49667.8923 0.00 -13.39 0 1.1 49999.2 17.89 4.50 47
nug08.pre 3.7 203.5 0.00 0 2.5 203.5 0.00 0.00 0 0.7 203.5 0.00 0.00 0
nw04.pre 3.1 16310.6667 0.00 0 0.8 16310.6667 0.00 0.00 0 0.7 16310.7 0.01 0.01 0
opt1217.pre 0.0 -20.0213904 0.00 0 0.0 -19.8930481 3.19 3.19 10 0.0 -20.0214 0.00 0.00 0
p0033.pre 0.0 2277.25 5.87 2 0.0 2262.54674 0.00 -5.87 0 0.0 2361.83 39.64 33.77 7
p0201.pre 0.0 7125 0.00 14 0.0 7125 0.00 0.00 0 0.0 7125 0.00 0.00 3
p0282.pre 0.3 254927.021 95.57 127 0.0 179990.3 0.00 -95.57 0 0.2 254593 95.14 -0.43 43
p0548.pre 0.1 8679.49453 99.67 95 0.0 5194.43616 0.00 -99.67 0 0.1 6085.01 25.47 -74.20 61
p2756.pre 1.3 3063.89685 85.77 231 0.0 2701.75 0.00 -85.77 0 0.1 2703 0.30 -85.47 43
pk1.pre 0.0 0 0.00 0 0.0 0 0.00 0.00 1 0.0 0 0.00 0.00 0
pp08a.pre 1.4 7157.81046 95.82 219 0.0 7097.42678 94.51 -1.31 120 0.0 5562.26 61.15 -34.67 59
pp08aCUTS.pre 0.9 6981.37326 90.98 153 0.1 6844.68413 83.67 -7.31 96 0.0 5448.34 8.97 -82.01 11
prod1.pre 0.2 8.71674344 1.52 54 0.0 8.44984888 0.00 -1.52 0 0.1 8.73797 1.64 0.12 9
protfold.pre 4.0 -41.9574468 0.00 0 3.0 -41.9574468 0.00 0.00 0 1.6 -41.9574 0.00 0.00 0

continued on the next page
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

qap10.pre 38.7 332.566228 0.00 0 50.0 332.566228 0.00 0.00 0 1.8 332.566 0.00 0.00 0
qiu.pre 0.2 -931.638853 0.00 0 0.1 -931.638857 0.00 0.00 0 0.2 -931.639 0.00 0.00 0
qnet1.pre 1.4 15644.2144 78.04 97 0.2 15497.2223 69.67 -8.37 42 0.2 15003.6 41.55 -36.49 27
qnet1 o.pre 0.6 15628.6883 87.16 83 0.2 15661.1841 88.20 1.04 57 0.4 15783.1 92.10 4.94 43
ran10x26.pre 1.8 4052.97912 47.45 109 0.1 4055.682 48.10 0.65 41 0.2 4052.31 47.29 -0.16 38
ran12x21.pre 2.3 3412.23773 50.31 183 0.1 3431.15832 54.04 3.73 70 0.2 3421.59 52.15 1.84 42
ran13x13.pre 0.8 2962.14008 48.29 106 0.1 2991.0242 53.44 5.15 68 0.1 2971.87 50.03 1.74 31
ran14x18 1.pre 2.0 3313.33414 42.52 174 0.1 3341.78949 46.60 4.08 78 0.2 3333.61 45.43 2.91 55
ran8x32.pre 1.1 5116.89978 57.95 114 0.1 5140.10951 65.45 7.50 40 0.1 5122.73 59.84 1.89 32
rentacar.pre 0.5 -3980759.58 1.09 10 0.3 -3860106.14 9.54 8.45 16 0.5 -3666090 23.12 22.03 10
rgn.pre 0.5 81.7999992 98.80 109 0.0 77.6052165 86.24 -12.56 47 0.1 68 57.49 -41.31 3
roll3000.pre 20.1 12142.6253 58.00 146 0.9 12126.4995 57.10 -0.90 97 1.0 12045.8 52.62 -5.38 63
rout.pre 0.3 -1393.38571 0.00 94 0.0 -1393.38571 0.00 0.00 7 0.1 -1393.39 0.00 0.00 19
set1ch.pre 1.1 49632.6342 99.71 377 0.1 46922.1723 85.75 -13.96 165 0.0 43372.2 67.47 -32.24 120
seymour.pre 3.9 239.469492 0.00 0 3.4 239.469492 0.00 0.00 0 0.2 239.469 0.00 0.00 0
seymour1.pre 3.6 238.351528 0.00 0 5.0 239.222039 13.58 13.58 24 0.1 238.352 0.01 0.01 0
sp97ar.pre 12.2 648218654 0.75 7 1.6 648138794 0.00 -0.75 0 4.3 648344000 1.94 1.19 18
stein27.pre 0.0 13 0.00 0 0.0 13 0.00 0.00 0 0.0 13 0.00 0.00 0
stein45.pre 0.0 22 0.00 0 0.0 22 0.00 0.00 0 0.0 22 0.00 0.00 0
swath.pre 24.7 359.072887 17.20 123 0.1 373.882794 27.57 10.37 25 0.1 334.497 0.00 -17.20 11
swath1.pre 1.9 338.681683 9.39 23 0.1 338.681683 9.39 0.00 7 0.1 334.497 0.00 -9.39 6
swath2.pre 2.3 338.681683 8.25 21 0.1 343.090343 16.95 8.70 9 0.1 334.497 0.00 -8.25 6
swath3.pre 2.1 337.131796 4.16 26 0.1 343.090343 13.58 9.42 11 0.1 334.497 0.00 -4.16 6
t1717.pre 14.2 134531.021 0.00 0 7.9 134531.021 0.00 0.00 0 1.5 134531 0.00 0.00 0
timtab1.pre 4.8 407987.21 51.48 628 0.2 436050.574 55.30 3.82 181 0.0 194195 22.44 -29.04 52
timtab2.pre 8.5 452986.501 34.97 891 0.6 555537.655 44.29 9.32 299 0.1 232830 14.97 -20.00 90
tr12-30.pre 4.6 106094.34 81.95 875 0.2 110898.299 86.22 4.27 640 0.1 82083.7 60.60 -21.35 382
vpm1.pre 0.0 20 100.00 30 0.0 19.5 85.98 -14.02 37 0.0 18.7917 66.12 -33.88 17
vpm2.pre 0.9 13.069534 73.97 165 0.0 12.9509292 69.44 -4.53 50 0.0 12.9179 68.17 -5.80 32

Total 1250.9 3178.42 14676 1183.3 2735.74 -442.68 8253 3315.2 2276.56 -901.86 11957
Geom. Mean 3.0 5.45 17 1.8 5.00 -0.45 9 1.4 4.06 -1.39 7

Table B.61: Computational results for the comparison with Cplex and Cbc. Cutting plane sep-
arator for the class of c-MIR inequalities. (4 with respect to Scip)
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

10teams.pre 0.2 897 0.00 0 0.1 897 0.00 0.00 0 0.0 897 0.00 0.00 0
30:70:4 5:0 5:100.pre 11.0 5337.1 0.00 0 12.6 5337.1 0.00 0.00 0 125.4 5337.1 0.00 0.00 0
30:70:4 5:0 95:98.pre 17.7 5969.5 0.00 0 13.5 5969.5 0.00 0.00 0 113.3 5969.5 0.00 0.00 0
a1c1s1.pre 2.6 4218.23237 21.47 219 2.8 7546.34732 57.04 35.57 741 0.0 2209.57 0.00 -21.47 0
aflow30a.pre 0.6 145.116431 30.86 89 0.1 139.540889 27.67 -3.19 34 0.0 117.865 15.27 -15.59 29
aflow40b.pre 2.5 -536.264574 25.92 89 0.2 -567.225842 6.84 -19.08 4 0.2 -553.165 15.51 -10.41 31
air03.pre 0.7 311406.25 0.00 0 0.2 311406.25 0.00 0.00 0 0.1 311406 0.00 0.00 0
air04.pre 2.0 54030.4364 0.00 0 1.9 54030.4364 0.00 0.00 0 0.5 54030.9 0.08 0.08 0
air05.pre 0.8 25877.6093 0.00 0 0.5 25877.6093 0.00 0.00 0 0.2 25877.6 0.00 0.00 0
arki001.pre 1.4 7009421.06 2.48 88 0.2 7009391.43 0.00 -2.48 11 0.1 7009390 0.00 -2.48 0
atlanta-ip.pre 55.3 81.2553981 0.00 0 62.3 81.2553981 0.00 0.00 0 0.8 81.2554 0.00 0.00 0
bc1.pre 14.0 2.62391195 37.85 75 2.2 2.18877635 0.00 -37.85 0 0.6 2.18878 0.00 -37.85 0
bell3a.pre 0.0 862116.583 0.00 0 0.0 865459.981 27.27 27.27 4 0.0 862117 0.00 0.00 0
bell5.pre 0.0 8341834.36 0.00 0 0.0 8409924.34 19.02 19.02 6 0.0 8341830 0.00 0.00 0
bienst1.pre 0.4 14.048581 6.64 123 0.3 14.3815535 7.59 0.95 134 0.1 13.9873 6.46 -0.18 28
bienst2.pre 0.5 14.9186794 7.45 164 0.4 15.0419751 7.74 0.29 221 0.2 14.8477 7.29 -0.16 37
binkar10 1.pre 1.1 5789.42858 58.37 73 0.0 5728.13803 0.00 -58.37 0 0.0 5728.16 0.02 -58.35 0
blend2.pre 0.3 6.98015488 9.44 22 0.0 6.91567511 0.00 -9.44 6 0.0 6.91568 0.00 -9.44 0
cap6000.pre 2.4 -2403346.9 27.09 8 0.1 -2403390.33 0.00 -27.09 0 0.0 -2403390 0.00 -27.09 0
dano3 3.pre 31.1 576.23162 0.00 0 75.8 576.253185 19.08 19.08 23 1.4 576.232 0.00 0.00 0
dano3 4.pre 36.3 576.23162 0.00 0 79.1 576.262521 15.18 15.18 30 1.7 576.232 0.00 0.00 0
dano3 5.pre 45.9 576.23162 0.00 0 96.4 576.302996 10.30 10.30 53 1.7 576.232 0.00 0.00 0
dano3mip.pre 37.1 576.23162 0.00 0 120.8 576.532826 0.23 0.23 231 0.6 576.232 0.00 0.00 0
danoint.pre 0.5 62.6574167 0.66 42 0.2 62.7087387 2.36 1.70 102 0.1 62.6456 0.27 -0.39 15
dcmulti.pre 0.0 184145.514 2.68 17 0.1 185632.345 38.53 35.85 93 0.0 184044 0.23 -2.45 4
ds.pre 43.9 57.2345653 0.00 0 37.4 57.2345653 0.00 0.00 0 6.6 57.2346 0.00 0.00 0
egout.pre 0.0 296.951731 96.36 39 0.0 297.744372 97.76 1.40 11 0.0 253.703 19.79 -76.57 10
eilD76.pre 0.2 680.538997 0.00 0 0.1 680.538997 0.00 0.00 0 0.0 680.539 0.00 0.00 0
fast0507.pre 26.8 158.145567 0.00 0 23.7 158.145567 0.00 0.00 0 0.8 158.146 0.02 0.02 0
fiber.pre 0.4 383911.863 91.19 77 0.1 336929.514 72.38 -18.81 30 0.0 156083 0.00 -91.19 0
fixnet6.pre 0.3 3585.14122 49.95 123 0.1 3529.00999 42.86 -7.09 40 0.1 3318.92 16.29 -33.66 29
flugpl.pre 0.0 726875.166 0.00 0 0.0 726875.166 0.00 0.00 0 0.0 726875 0.00 0.00 0
gen.pre 0.1 58349.0903 100.00 20 0.0 58319.9441 0.00 -100.00 0 0.0 58320 0.00 -100.00 0
gesa2-o.pre 0.4 18732799.5 5.01 29 0.1 18831108.3 37.42 32.41 55 0.1 18810600 30.66 25.65 73
gesa2.pre 0.8 25668916.2 59.95 71 0.1 25567672.6 23.40 -36.55 28 0.1 25503300 0.16 -59.79 4

continued on the next page
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

gesa3.pre 0.4 27907701.2 21.86 21 0.0 27884504.5 0.12 -21.74 2 0.0 27884500 0.11 -21.75 2
gesa3 o.pre 0.1 12274783.2 0.00 0 0.0 12289361.6 9.26 9.26 16 0.0 12288300 8.59 8.59 20
glass4.pre 0.2 800002400 0.00 22 0.0 800002400 0.00 0.00 87 0.0 800003000 0.00 0.00 0
gt2.pre 0.0 20530.1857 37.62 8 0.0 20146.7613 0.00 -37.62 0 0.0 20146.8 0.00 -37.62 0
harp2.pre 0.2 -74232132.2 0.00 5 0.0 -74232132.3 0.00 0.00 0 0.0 -74232100 0.00 0.00 0
irp.pre 1.0 12123.5302 0.00 0 0.3 12123.5302 0.00 0.00 0 0.2 12123.5 -0.08 -0.08 0
khb05250.pre 0.3 106734430 98.13 95 0.1 106788996 98.63 0.50 86 0.0 96188100 2.44 -95.69 17
l152lav.pre 0.1 4656.36364 0.00 0 0.1 4656.36364 0.00 0.00 0 0.0 4656.36 0.00 0.00 0
liu.pre 0.1 346 0.00 0 0.2 346 0.00 0.00 220 0.1 346 0.00 0.00 500
lseu.pre 0.0 1025.48296 44.56 24 0.0 949.518722 0.00 -44.56 0 0.0 949.519 0.00 -44.56 0
manna81.pre 0.7 -13297 0.00 0 0.1 -13297 0.00 0.00 0 0.1 -13297 0.00 0.00 0
markshare1.pre 0.0 0 0.00 13 0.0 0 0.00 0.00 1 0.1 0 0.00 0.00 0
markshare2.pre 0.0 0 0.00 8 0.0 0 0.00 0.00 0 0.0 0 0.00 0.00 0
mas284.pre 0.1 86195.863 0.00 0 0.0 86196.4819 0.01 0.01 1 0.0 86195.9 0.00 0.00 0
mas74.pre 0.1 10482.7953 0.00 0 0.0 10506.1796 1.77 1.77 7 0.0 10482.8 0.00 0.00 0
mas76.pre 0.1 38893.9036 0.00 0 0.0 38908.0216 1.27 1.27 5 0.0 38893.9 0.00 0.00 0
misc03.pre 0.0 1910 0.00 0 0.0 1910 0.00 0.00 0 0.0 1910 0.00 0.00 0
misc06.pre 0.1 12841.6894 0.00 0 0.0 12841.6894 0.00 0.00 0 0.0 12841.7 0.00 0.00 0
misc07.pre 0.0 1415 0.00 0 0.0 1415 0.00 0.00 0 0.0 1415 0.00 0.00 0
mitre.pre 12.8 114935.078 10.60 756 0.1 114908.999 0.00 -10.60 0 0.1 114909 0.00 -10.60 0
mkc.pre 4.8 -607.955378 7.22 165 0.1 -611.437978 0.00 -7.22 2 0.1 -611.438 0.00 -7.22 4
mkc1.pre 3.3 -611.85 0.00 33 0.1 -611.85 0.00 0.00 5 0.1 -611.85 0.00 0.00 17
mod008.pre 0.2 295.872654 30.75 11 0.0 290.931073 0.00 -30.75 0 0.0 290.932 0.01 -30.74 0
mod010.pre 0.2 6535 18.32 3 0.1 6532.08333 0.00 -18.32 0 0.0 6532.08 0.00 -18.32 0
mod011.pre 2.4 -60720457 13.45 43 2.5 -59437366.2 31.47 18.02 496 0.1 -61675400 0.04 -13.41 0
modglob.pre 0.8 20002089.1 68.45 137 0.1 20070624 90.59 22.14 134 0.1 19901900 36.08 -32.37 68
momentum1.pre 3.7 47128.5685 0.00 2 1.4 47128.5523 0.00 0.00 0 0.3 47128.6 0.00 0.00 0
momentum2.pre 7.8 1226.55766 0.02 3 14.7 1225.6443 0.00 -0.02 0 79.7 1225.64 0.00 -0.02 0
msc98-ip.pre 101.9 18485051 0.32 125 216.8 18491081.1 0.48 0.16 116 65.1 18491100 0.48 0.16 80
mzzv11.pre 54.2 -22773.75 0.00 0 69.2 -22773.75 0.00 0.00 0 0.4 -22773.7 0.00 0.00 0
mzzv42z.pre 29.2 -21446.2397 0.00 0 16.7 -21446.2397 0.00 0.00 0 0.3 -21446.2 0.00 0.00 0
neos1.pre 1.2 14.6933333 38.48 426 0.1 12 0.00 -38.48 0 0.0 12 0.00 -38.48 0
neos10.pre 1.6 -1198.33333 0.00 105 0.2 -1198.33333 0.00 0.00 0 0.1 -1198.33 0.01 0.01 0
neos11.pre 0.5 6 0.00 0 0.4 6 0.00 0.00 0 0.3 6 0.00 0.00 0
neos12.pre 8.9 9.41161243 0.00 0 11.4 9.41161243 0.00 0.00 0 4.7 9.41161 0.00 0.00 0

continued on the next page
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

neos13.pre 4.3 -126.178378 0.00 0 143.3 -126.178378 0.00 0.00 384 0.7 -126.178 0.00 0.00 0
neos14.pre 0.1 51701.9199 55.43 143 0.1 57523.5845 69.42 13.99 299 0.0 28645.2 0.00 -55.43 0
neos15.pre 0.1 51545.6642 48.48 143 0.1 59488.361 65.24 16.76 335 0.0 28571.1 0.00 -48.48 0
neos16.pre 0.3 431 9.52 129 0.0 431 9.52 0.00 18 0.1 431 9.52 0.00 37
neos17.pre 0.1 0.000681498501 0.00 0 0.1 0.000681498501 0.00 0.00 0 0.0 0.000681499 0.00 0.00 0
neos18.pre 0.3 5.33333333 0.00 0 0.3 5.33333333 0.00 0.00 0 0.9 5.33333 0.00 0.00 0
neos19.pre 71.8 -1611 0.00 707 116.0 -1611 0.00 0.00 4929 88.7 -1611 0.00 0.00 0
neos2.pre 0.1 -4407.09724 6.00 12 0.1 -4717.66685 0.00 -6.00 8 0.0 -4717.67 0.00 -6.00 0
neos20.pre 0.6 -475 0.00 97 0.1 -475 0.00 0.00 10 0.0 -475 0.00 0.00 0
neos21.pre 0.1 2.21648352 0.00 0 0.1 2.21648352 0.00 0.00 0 0.2 2.21648 0.00 0.00 0
neos22.pre 0.3 777191.429 0.00 0 0.2 777291.429 3.96 3.96 6 0.1 777191 0.00 0.00 0
neos23.pre 0.0 56 0.00 0 0.1 56.2352941 0.29 0.29 63 0.0 56 0.00 0.00 0
neos3.pre 0.2 -6158.20911 5.96 20 0.1 -6561.50713 0.15 -5.81 13 0.0 -6571.63 0.00 -5.96 0
neos616206.pre 0.7 792.485486 3.18 228 0.1 789.074798 0.90 -2.28 49 0.0 787.917 0.13 -3.05 9
neos632659.pre 0.0 -109.714286 0.00 19 0.0 -109.714286 0.00 0.00 36 0.0 -109.714 0.00 0.00 0
neos648910.pre 0.2 16 0.00 194 0.0 16 0.00 0.00 111 0.0 16.0141 0.09 0.09 0
neos7.pre 0.1 571556.49 0.00 0 0.2 631218.795 41.84 41.84 147 0.0 571556 0.00 0.00 0
neos8.pre 1.9 -3724.75 4.17 135 0.1 -3725 0.00 -4.17 0 0.0 -3725 0.00 -4.17 0
neos9.pre 10.9 780 0.00 0 5.7 780 0.00 0.00 0 1.6 780 0.00 0.00 0
net12.pre 55.8 45.312416 9.91 90 13.7 43.4909551 8.94 -0.97 53 1.2 26.7542 0.00 -9.91 0
noswot.pre 0.0 -43 0.00 19 0.0 -43 0.00 0.00 6 0.0 -43 0.00 0.00 14
nsrand-ipx.pre 9.3 49921.7162 13.70 114 0.2 49667.8923 0.00 -13.70 0 0.1 49667.9 0.00 -13.70 0
nug08.pre 3.4 203.5 0.00 0 2.7 203.5 0.00 0.00 0 0.7 203.5 0.00 0.00 0
nw04.pre 2.6 16310.6667 0.00 0 0.8 16310.6667 0.00 0.00 0 0.7 16310.7 0.01 0.01 0
opt1217.pre 0.0 -20.0213904 0.00 0 0.0 -20.0213904 0.00 0.00 0 0.0 -20.0214 0.00 0.00 0
p0033.pre 0.0 2406.01781 57.28 22 0.0 2262.54674 0.00 -57.28 0 0.0 2262.55 0.00 -57.28 0
p0201.pre 0.0 7125 0.00 13 0.0 7125 0.00 0.00 0 0.0 7125 0.00 0.00 0
p0282.pre 0.2 255021.562 95.69 99 0.0 179990.3 0.00 -95.69 0 0.0 179990 0.00 -95.69 0
p0548.pre 0.2 8658.29748 99.06 133 0.0 5194.43616 0.00 -99.06 0 0.0 5194.44 0.00 -99.06 0
p2756.pre 2.0 3063.95023 85.78 310 0.0 2701.75 0.00 -85.78 0 0.0 2701.75 0.00 -85.78 0
pk1.pre 0.0 0 0.00 0 0.0 0 0.00 0.00 0 0.0 0 0.00 0.00 0
pp08a.pre 0.0 2763.36769 0.33 10 0.1 7103.71324 94.65 94.32 136 0.0 2748.35 0.00 -0.33 0
pp08aCUTS.pre 0.0 5298.94251 0.98 6 0.1 6806.16671 81.61 80.63 102 0.0 5280.61 0.00 -0.98 0
prod1.pre 0.8 8.72341513 1.56 48 0.0 8.44984888 0.00 -1.56 0 0.0 8.44985 0.00 -1.56 0
protfold.pre 3.4 -41.9574468 0.00 0 3.0 -41.9574468 0.00 0.00 0 1.7 -41.9574 0.00 0.00 0

continued on the next page
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

qap10.pre 38.7 332.566228 0.00 0 49.8 332.566228 0.00 0.00 0 1.9 332.566 0.00 0.00 0
qiu.pre 0.1 -931.638853 0.00 0 0.1 -931.638857 0.00 0.00 0 0.2 -931.639 0.00 0.00 0
qnet1.pre 0.5 15058.9949 44.71 54 0.1 14274.1034 0.00 -44.71 1 0.0 14274.1 0.00 -44.71 0
qnet1 o.pre 0.3 14969.617 66.04 60 0.0 12907.7792 0.00 -66.04 0 0.0 12907.8 0.00 -66.04 0
ran10x26.pre 0.2 4047.92469 46.23 88 0.0 4004.56705 35.73 -10.50 27 0.0 3857.02 0.00 -46.23 0
ran12x21.pre 0.3 3436.22974 55.04 122 0.0 3313.18152 30.75 -24.29 34 0.0 3157.38 0.00 -55.04 0
ran13x13.pre 0.2 2972.3949 50.12 121 0.0 2920.84099 40.92 -9.20 23 0.0 2691.44 0.00 -50.12 0
ran14x18 1.pre 0.3 3354.66557 48.45 183 0.0 3148.71179 18.90 -29.55 33 0.0 3088.59 10.28 -38.17 26
ran8x32.pre 0.2 5144.49571 66.87 99 0.0 5099.29977 52.26 -14.61 16 0.0 4937.58 0.00 -66.87 0
rentacar.pre 0.9 -3759915.64 16.55 10 0.3 -3581347.76 29.05 12.50 28 0.0 -3868360 8.96 -7.59 2
rgn.pre 0.0 67.9999988 57.49 41 0.0 48.7999986 0.00 -57.49 0 0.0 48.9538 0.46 -57.03 12
roll3000.pre 3.5 12001.9899 50.19 111 0.2 11098.7402 0.03 -50.16 10 0.1 11098.1 0.00 -50.19 0
rout.pre 0.2 -1393.32143 0.07 105 0.0 -1393.38571 0.00 -0.07 0 0.0 -1393.39 0.00 -0.07 9
set1ch.pre 0.2 42417.9556 62.56 261 0.1 46877.9452 85.52 22.96 181 0.0 30270 0.00 -62.56 0
seymour.pre 3.4 239.469492 0.00 0 3.4 239.469492 0.00 0.00 0 0.1 239.469 0.00 0.00 0
seymour1.pre 3.2 238.351528 0.00 0 2.9 238.351528 0.00 0.00 0 0.1 238.352 0.01 0.01 0
sp97ar.pre 11.6 648220123 0.77 8 1.6 648138794 0.00 -0.77 0 0.9 648139000 0.00 -0.77 0
stein27.pre 0.0 13 0.00 0 0.0 13 0.00 0.00 0 0.0 13 0.00 0.00 0
stein45.pre 0.0 22 0.00 0 0.0 22 0.00 0.00 0 0.0 22 0.00 0.00 0
swath.pre 0.2 334.496858 0.00 0 0.1 334.496858 0.00 0.00 0 0.1 334.497 0.00 0.00 16
swath1.pre 0.2 334.496858 0.00 0 0.1 334.496858 0.00 0.00 0 0.1 334.497 0.00 0.00 7
swath2.pre 0.2 334.496858 0.00 0 0.1 334.496858 0.00 0.00 0 0.1 334.497 0.00 0.00 7
swath3.pre 0.2 334.496858 0.00 0 0.1 334.496858 0.00 0.00 0 0.1 334.497 0.00 0.00 9
t1717.pre 8.6 134531.021 0.00 0 7.7 134531.021 0.00 0.00 0 1.5 134531 0.00 0.00 0
timtab1.pre 0.1 195639.169 22.63 142 0.0 222145.595 26.24 3.61 96 0.0 29032 0.00 -22.63 0
timtab2.pre 0.2 233810.779 15.06 271 0.1 279543.494 19.21 4.15 160 0.0 68068 0.00 -15.06 0
tr12-30.pre 0.2 51017.9242 32.98 400 0.2 112401.489 87.56 54.58 827 0.0 13924.2 0.00 -32.98 0
vpm1.pre 0.0 19.2397959 78.69 63 0.0 17.3333333 25.23 -53.46 7 0.0 16.4333 0.00 -78.69 0
vpm2.pre 0.1 12.9105196 67.89 75 0.0 11.4521333 12.11 -55.78 13 0.0 11.2089 2.80 -65.09 3

Total 818.2 2302.50 8278 1220.3 1586.30 -716.20 11196 509.7 191.99 -2110.51 1119
Geom. Mean 2.0 4.08 10 1.8 2.76 -1.32 5 1.2 1.28 -2.80 1

Table B.62: Computational results for the comparison with Cplex and Cbc. Cutting plane sep-
arator for the 0-1 single node flow problem. (4 with respect to Scip)
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

10teams.pre 0.2 897 0.00 0 5.6 904 100.00 100.00 6 0.0 897 0.00 0.00 0
30:70:4 5:0 5:100.pre 10.6 5337.1 0.00 0 86.7 5337.1 0.00 0.00 0 125.9 5337.1 0.00 0.00 0
30:70:4 5:0 95:98.pre 18.4 5969.5 0.00 0 73.7 5969.5 0.00 0.00 0 113.8 5969.5 0.00 0.00 0
a1c1s1.pre 0.1 2234.5717 0.27 3 140.9 3426.55867 13.01 12.74 14 0.0 2209.57 0.00 -0.27 0
aflow30a.pre 0.0 91.1674253 0.00 0 6.9 161.098539 40.00 40.00 33 0.0 91.1674 0.00 0.00 0
aflow40b.pre 0.1 -578.335183 0.00 0 10.9 -543.626763 21.38 21.38 30 0.0 -578.281 0.03 0.03 0
air03.pre 0.6 311406.25 0.00 0 3.7 312702 100.00 100.00 8 0.1 311406 0.00 0.00 0
air04.pre 1.8 54030.4364 0.00 0 3.0 54031.4352 0.17 0.17 1 0.6 54030.9 0.08 0.08 0
air05.pre 0.6 25877.6093 0.00 0 5.5 25896.8055 3.87 3.87 11 0.3 25877.6 0.00 0.00 0
arki001.pre 0.2 7009391.43 0.00 3 1.7 7009391.43 0.00 0.00 10 0.2 7009390 0.00 0.00 7
atlanta-ip.pre 65.4 81.2578061 0.02 18 67.0 81.2755788 0.15 0.13 32 5.5 81.2578 0.02 0.00 48
bc1.pre 1.0 2.21088114 1.92 14 7.0 2.37008595 15.77 13.85 31 0.5 2.18878 0.00 -1.92 0
bell3a.pre 0.0 862116.583 0.00 0 0.0 862116.583 0.00 0.00 0 0.0 862117 0.00 0.00 0
bell5.pre 0.0 8341834.36 0.00 0 0.0 8639843.32 83.25 83.25 1 0.0 8341830 0.00 0.00 0
bienst1.pre 0.0 11.7241379 0.00 0 1.0 11.7241379 0.00 0.00 0 0.0 11.7241 0.00 0.00 0
bienst2.pre 0.0 11.7241379 0.00 0 1.8 11.7241379 0.00 0.00 0 0.0 11.7241 0.00 0.00 0
binkar10 1.pre 0.1 5737.89666 9.29 18 0.5 5761.35761 31.63 22.34 17 0.1 5757.41 27.87 18.58 10
blend2.pre 0.0 6.94616147 4.46 4 0.1 6.96943468 7.87 3.41 14 0.0 6.91568 0.00 -4.46 1
cap6000.pre 0.7 -2403387.01 2.07 10 0.2 -2403388.53 0.00 -2.07 2 0.0 -2403390 0.00 -2.07 0
dano3 3.pre 30.2 576.23162 0.00 0 197.0 576.23162 0.00 0.00 0 1.4 576.232 0.00 0.00 0
dano3 4.pre 35.5 576.23162 0.00 0 1297.2 576.23162 0.00 0.00 0 1.7 576.232 0.00 0.00 0
dano3 5.pre 44.5 576.23162 0.00 0 2052.2 576.23162 0.00 0.00 0 1.7 576.232 0.00 0.00 0
dano3mip.pre 36.5 576.23162 0.00 0 535.7 576.23162 0.00 0.00 0 0.5 576.232 0.00 0.00 0
danoint.pre 0.1 62.6372804 0.00 0 3.5 62.6372804 0.00 0.00 0 0.0 62.6374 0.00 0.00 0
dcmulti.pre 0.0 184034.377 0.00 0 1.3 185515.998 35.72 35.72 7 0.0 184034 0.00 0.00 0
ds.pre 40.4 57.2345653 0.00 0 146.1 57.2966841 0.02 0.02 15 6.6 57.2346 0.00 0.00 0
egout.pre 0.0 268.476501 45.95 6 0.0 293.018964 89.40 43.45 9 0.0 273.85 55.46 9.51 8
eilD76.pre 0.1 680.538997 0.00 0 12.3 685.939282 2.64 2.64 28 0.0 680.539 0.00 0.00 0
fast0507.pre 24.7 158.145567 0.00 0 27.0 158.145567 0.00 0.00 0 0.8 158.146 0.02 0.02 0
fiber.pre 0.1 381828.264 90.35 80 0.2 382542.799 90.64 0.29 62 0.2 365536 83.83 -6.52 55
fixnet6.pre 0.0 3190.042 0.00 0 0.7 3377.64064 23.72 23.72 14 0.0 3190.53 0.06 0.06 1
flugpl.pre 0.0 726875.166 0.00 0 0.0 726875.166 0.00 0.00 0 0.0 726875 0.00 0.00 0
gen.pre 0.0 58348.3235 97.37 7 0.0 58348.3235 97.37 0.00 5 0.0 58349.1 100.00 2.63 4
gesa2-o.pre 0.1 18752813.7 11.61 4 0.2 18785808.8 22.48 10.87 13 0.0 18752800 11.60 -0.01 4
gesa2.pre 0.1 25560447.9 20.79 14 0.2 25560072.9 20.66 -0.13 13 0.0 25551100 17.42 -3.37 12

continued on the next page
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

gesa3.pre 0.1 27884504.5 0.12 2 0.1 27884380.4 0.00 -0.12 0 0.0 27884500 0.11 -0.01 1
gesa3 o.pre 0.0 12274783.2 0.00 0 0.1 12274783.2 0.00 0.00 0 0.0 12275500 0.46 0.46 0
glass4.pre 0.0 800002400 0.00 0 0.7 800002400 0.00 0.00 7 0.0 800003000 0.00 0.00 0
gt2.pre 0.0 20146.7613 0.00 0 0.0 20146.7613 0.00 0.00 0 0.0 20146.8 0.00 0.00 0
harp2.pre 0.1 -74098504.9 31.40 77 0.1 -74116262.9 27.23 -4.17 46 0.0 -74186100 10.82 -20.58 7
irp.pre 0.7 12123.5302 0.00 0 5.7 12123.5526 0.06 0.06 2 0.2 12123.5 -0.08 -0.08 0
khb05250.pre 0.0 96437115 4.70 1 0.3 96437115 4.70 0.00 1 0.0 95919500 0.00 -4.70 0
l152lav.pre 0.1 4656.36364 0.00 0 0.8 4659.86945 5.34 5.34 6 0.0 4656.36 0.00 0.00 0
liu.pre 0.1 346 0.00 0 0.2 346 0.00 0.00 0 0.0 346 0.00 0.00 0
lseu.pre 0.0 1026.76335 45.31 21 0.1 1083.41177 78.54 33.23 15 0.0 1015.53 38.72 -6.59 7
manna81.pre 0.2 -13297 0.00 0 0.1 -13297 0.00 0.00 0 0.1 -13297 0.00 0.00 0
markshare1.pre 0.0 0 0.00 0 0.0 0 0.00 0.00 2 0.0 0 0.00 0.00 0
markshare2.pre 0.0 0 0.00 0 0.0 0 0.00 0.00 1 0.0 0 0.00 0.00 0
mas284.pre 0.0 86195.863 0.00 0 0.0 86195.863 0.00 0.00 0 0.0 86195.9 0.00 0.00 0
mas74.pre 0.0 10482.7953 0.00 0 0.0 10482.7953 0.00 0.00 0 0.0 10482.8 0.00 0.00 0
mas76.pre 0.0 38893.9036 0.00 0 0.0 38893.9036 0.00 0.00 0 0.0 38893.9 0.00 0.00 0
misc03.pre 0.0 1910 0.00 0 0.0 1910 0.00 0.00 2 0.0 1910 0.00 0.00 0
misc06.pre 0.0 12841.6894 0.00 0 0.1 12841.6894 0.00 0.00 0 0.0 12841.7 0.00 0.00 0
misc07.pre 0.0 1415 0.00 0 0.1 1417 0.14 0.14 6 0.0 1415 0.00 0.00 0
mitre.pre 0.6 114913.463 1.81 711 0.4 115137.5 92.89 91.08 447 0.3 114909 0.00 -1.81 183
mkc.pre 0.3 -609.512038 3.99 99 0.2 -609.618018 3.77 -0.22 45 0.1 -611.066 0.77 -3.22 13
mkc1.pre 0.2 -611.85 0.00 4 0.1 -611.85 0.00 0.00 3 0.1 -611.85 0.00 0.00 0
mod008.pre 0.1 293.062222 13.26 27 0.1 295.099502 25.94 12.68 15 0.0 290.932 0.01 -13.25 0
mod010.pre 0.1 6535 18.32 2 0.2 6535 18.32 0.00 4 0.0 6532.08 0.00 -18.32 0
mod011.pre 0.2 -61678103.8 0.00 0 0.2 -61678103.8 0.00 0.00 0 0.1 -61675400 0.04 0.04 0
modglob.pre 0.0 19790205.8 0.00 0 0.0 19790205.8 0.00 0.00 0 0.0 19790200 0.00 0.00 0
momentum1.pre 1.6 47128.5523 0.00 0 111.6 48736.8557 4.42 4.42 13 0.3 47128.6 0.00 0.00 0
momentum2.pre 3.1 1225.6443 0.00 0 334.2 2132.84566 17.83 17.83 10 79.8 1225.64 0.00 0.00 0
msc98-ip.pre 99.1 18481818.4 0.23 40 288.1 18504401.6 0.83 0.60 201 56.2 18484500 0.30 0.07 86
mzzv11.pre 54.2 -22773.75 0.00 1 77.2 -22773.75 0.00 0.00 10 0.6 -22773.8 0.00 0.00 1
mzzv42z.pre 28.4 -21446.2397 0.00 0 45.9 -21446.2397 0.00 0.00 12 0.5 -21446.2 0.00 0.00 0
neos1.pre 0.5 18 85.71 351 0.1 12 0.00 -85.71 68 0.1 12 0.00 -85.71 34
neos10.pre 0.2 -1198.33333 0.00 257 0.2 -1198.33333 0.00 0.00 15 0.1 -1198.33 0.01 0.01 0
neos11.pre 0.5 6 0.00 0 24.7 6 0.00 0.00 8 0.2 6 0.00 0.00 0
neos12.pre 8.6 9.41161243 0.00 0 59.9 9.41161243 0.00 0.00 2 4.8 9.41161 0.00 0.00 0

continued on the next page



B
.4

C
o
m

p
a
r
is

o
n

w
it
h

C
p
l
e
x

a
n
d

C
b
c

237

SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

neos13.pre 1.5 -126.178378 0.00 0 9.3 -126.178378 0.00 0.00 0 0.6 -126.178 0.00 0.00 0
neos14.pre 0.0 28644.7958 0.00 0 7.3 29363.7341 1.73 1.73 6 0.0 28645.2 0.00 0.00 0
neos15.pre 0.0 28570.7845 0.00 0 3.3 28942.8512 0.79 0.79 2 0.0 28571.1 0.00 0.00 0
neos16.pre 0.0 429 0.00 0 3.9 429 0.00 0.00 6 0.0 429 0.00 0.00 0
neos17.pre 0.1 0.000681498501 0.00 0 85.5 0.0702052614 46.56 46.56 79 0.0 0.000681499 0.00 0.00 0
neos18.pre 0.2 5.33333333 0.00 0 1.6 5.33333333 0.00 0.00 9 0.9 5.33333 0.00 0.00 0
neos19.pre 9.2 -1611 0.00 0 355.6 -1611 0.00 0.00 0 88.1 -1611 0.00 0.00 0
neos2.pre 0.1 -4717.66685 0.00 0 0.4 -4717.66685 0.00 0.00 6 0.0 -4717.67 0.00 0.00 0
neos20.pre 0.1 -475 0.00 114 0.1 -475 0.00 0.00 72 0.1 -475 0.00 0.00 36
neos21.pre 0.1 2.21648352 0.00 0 34.7 3.77260456 32.53 32.53 25 0.2 2.21648 0.00 0.00 0
neos22.pre 0.2 777191.429 0.00 0 0.6 777191.429 0.00 0.00 0 0.1 777191 0.00 0.00 0
neos23.pre 0.0 56 0.00 0 0.3 56 0.00 0.00 3 0.0 56 0.00 0.00 0
neos3.pre 0.1 -6571.62916 0.00 0 0.5 -6571.62916 0.00 0.00 7 0.0 -6571.63 0.00 0.00 0
neos616206.pre 0.0 787.721258 0.00 10 0.0 787.721258 0.00 0.00 8 0.0 787.721 0.00 0.00 0
neos632659.pre 0.0 -109.714286 0.00 0 0.1 -104 36.36 36.36 5 0.0 -109.714 0.00 0.00 0
neos648910.pre 0.0 16 0.00 0 1.5 16 0.00 0.00 8 0.0 16.0141 0.09 0.09 0
neos7.pre 0.1 571556.49 0.00 0 1.1 571556.49 0.00 0.00 1 0.0 571556 0.00 0.00 0
neos8.pre 0.2 -3725 0.00 230 0.1 -3725 0.00 0.00 2 0.0 -3725 0.00 0.00 0
neos9.pre 3.8 780 0.00 0 2570.83 780 0.00 0.00 0 1.4 780 0.00 0.00 0
net12.pre 22.8 44.2774911 9.36 89 289.5 44.935471 9.71 0.35 59 8.1 44.497 9.48 0.12 55
noswot.pre 0.0 -43 0.00 0 0.0 -43 0.00 0.00 5 0.0 -43 0.00 0.00 1
nsrand-ipx.pre 3.6 49900.3607 12.55 108 0.5 49899.4806 12.50 -0.05 54 0.1 49725.8 3.13 -9.42 5
nug08.pre 3.2 203.5 0.00 0 3.3 203.5 0.00 0.00 1 0.7 203.5 0.00 0.00 0
nw04.pre 1.9 16310.6667 0.00 0 22.8 16312.8 0.39 0.39 5 0.7 16310.7 0.01 0.01 0
opt1217.pre 0.0 -20.0213904 0.00 0 0.0 -20.0213904 0.00 0.00 0 0.0 -20.0214 0.00 0.00 0
p0033.pre 0.0 2405.2433 56.98 15 0.0 2405.2433 56.98 0.00 11 0.0 2360.24 39.01 -17.97 9
p0201.pre 0.0 7125 0.00 16 0.0 7125 0.00 0.00 22 0.0 7125 0.00 0.00 0
p0282.pre 0.1 254081.161 94.49 176 0.1 255450.484 96.24 1.75 60 0.0 252468 92.43 -2.06 36
p0548.pre 0.0 8656.29142 99.01 134 0.1 8650.02647 98.83 -0.18 79 0.1 8593.13 97.20 -1.81 88
p2756.pre 0.1 3063.92405 85.77 284 0.2 3053.71794 83.36 -2.41 248 0.1 3057.11 84.16 -1.61 206
pk1.pre 0.0 0 0.00 0 0.0 0 0.00 0.00 0 0.0 0 0.00 0.00 0
pp08a.pre 0.0 2748.34524 0.00 0 0.4 2777.33333 0.63 0.63 1 0.0 2748.35 0.00 0.00 0
pp08aCUTS.pre 0.0 5280.60616 0.00 0 1.5 5289.43896 0.47 0.47 1 0.0 5280.61 0.00 0.00 0
prod1.pre 0.1 8.48145852 0.18 30 1.8 9.96205125 8.62 8.44 18 0.0 8.47756 0.16 -0.02 7
protfold.pre 3.2 -41.9574468 0.00 0 93.0 -41.9574468 0.00 0.00 4 1.6 -41.9574 0.00 0.00 0

continued on the next page
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SCIP 0.81 CPLEX 10.01 Cbc 1.01.00

Gap
Time Dual Bound Closed % Cuts Time Dual Bound Gap Closed % Cuts Time Dual Bound Gap Closed % Cuts

Name Value Value Value Value Value Value Value 4 Value Value Value Value 4 Value

qap10.pre 37.5 332.566228 0.00 0 107.6 332.699319 1.79 1.79 15 1.9 332.566 0.00 0.00 0
qiu.pre 0.1 -931.638853 0.00 0 38.2 -874.621854 7.14 7.14 5 0.2 -931.639 0.00 0.00 0
qnet1.pre 0.1 14274.1027 0.00 0 0.1 14274.1034 0.00 0.00 1 0.0 14274.1 0.00 0.00 1
qnet1 o.pre 0.1 12918.3142 0.34 1 0.0 12918.3142 0.34 0.00 1 0.0 12918.3 0.34 0.00 1
ran10x26.pre 0.1 4012.09524 37.55 79 0.1 4027.82924 41.36 3.81 27 0.1 3978.21 29.34 -8.21 28
ran12x21.pre 0.0 3310.53114 30.23 42 0.3 3433.43552 54.49 24.26 38 0.1 3375.41 43.04 12.81 32
ran13x13.pre 0.0 2907.43593 38.53 29 0.6 2983.76788 52.15 13.62 34 0.0 2906.28 38.33 -0.20 15
ran14x18 1.pre 0.0 3212.54243 28.06 38 0.2 3335.1436 45.65 17.59 48 0.1 3298.91 40.45 12.39 32
ran8x32.pre 0.0 5011.94879 24.03 61 0.0 5102.25656 53.22 29.19 22 0.1 5095.69 51.10 27.07 19
rentacar.pre 0.2 -3996349.94 0.00 0 2.3 -3898837.01 6.83 6.83 2 0.0 -3996350 0.00 0.00 0
rgn.pre 0.0 48.7999986 0.00 0 0.0 48.7999986 0.00 0.00 0 0.0 48.8 0.00 0.00 0
roll3000.pre 0.2 11099.1529 0.06 6 2.4 11101.6573 0.20 0.14 20 0.1 11098.4 0.01 -0.05 3
rout.pre 0.1 -1393.07714 0.32 34 0.0 -1393.38571 0.00 -0.32 6 0.1 -1393.08 0.32 0.00 10
set1ch.pre 0.0 37418.5597 36.81 13 0.0 38976.0165 44.83 8.02 15 0.0 30270 0.00 -36.81 0
seymour.pre 3.2 239.469492 0.00 0 12.3 239.469492 0.00 0.00 0 0.1 239.469 0.00 0.00 0
seymour1.pre 3.2 238.351528 0.00 0 11.8 238.351528 0.00 0.00 0 0.1 238.352 0.01 0.01 0
sp97ar.pre 9.2 648220123 0.77 8 2.3 648235402 0.91 0.14 12 1.1 648139000 0.00 -0.77 2
stein27.pre 0.0 13 0.00 0 0.0 13 0.00 0.00 0 0.0 13 0.00 0.00 0
stein45.pre 0.0 22 0.00 0 0.4 22 0.00 0.00 0 0.0 22 0.00 0.00 0
swath.pre 0.2 334.496858 0.00 0 0.9 335.306288 0.57 0.57 6 0.1 334.497 0.00 0.00 0
swath1.pre 0.1 334.496858 0.00 0 9.3 340.044897 12.45 12.45 7 0.0 334.497 0.00 0.00 0
swath2.pre 0.1 334.496858 0.00 0 1.5 338.451546 7.80 7.80 4 0.0 334.497 0.00 0.00 0
swath3.pre 0.2 334.496858 0.00 0 0.8 334.496997 0.00 0.00 2 0.1 334.497 0.00 0.00 0
t1717.pre 8.1 134531.021 0.00 0 28.9 134556.912 0.02 0.02 10 1.5 134531 0.00 0.00 0
timtab1.pre 0.0 29032 0.00 0 0.2 37936 1.21 1.21 4 0.0 29032 0.00 0.00 0
timtab2.pre 0.0 68068 0.00 0 0.5 84334 1.48 1.48 13 0.0 68068 0.00 0.00 0
tr12-30.pre 0.0 16712.383 2.48 4 24.3 17512.7541 3.19 0.71 12 0.0 13924.2 0.00 -2.48 0
vpm1.pre 0.0 19.5 85.98 12 0.0 20 100.00 14.02 15 0.2 17.9167 41.59 -44.39 8
vpm2.pre 0.0 12.2403221 42.25 14 0.4 12.7329969 61.10 18.85 26 0.0 12.4036 48.50 6.25 14

Total 624.7 1174.71 3321 9376.93 2062.13 887.42 2469 513.4 966.24 -208.47 1090
Geom. Mean 1.7 2.06 3 3.4 3.45 1.39 5 1.3 1.74 -0.32 1

Table B.63: Computational results for the comparison with Cplex and Cbc. Cutting plane sep-
arator for the 0-1 knapsack problem. (4 with respect to Scip)
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No Cuts Only GMI Only C-MIR Only Knapsack Only Flow Cover Only Impl. B. Only Clique

Nodes Nodes Nodes Nodes Nodes Nodes Nodes
Improv. Improv. Improv. Improv. Improv. Improv.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

10teams 347 1358 0.26 347 1.00 347 1.00 347 1.00 347 1.00 5059 0.07
30:70:4 5:0 95:98 16 256 0.06 16 1.00 16 1.00 16 1.00 16 1.00 16 1.00
aflow30a 196780 270959 0.73 50971 3.86 65746 2.99 65873 2.99 19473 10.11 117488 1.67
air03 2 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00
air04 130 130 1.00 130 1.00 130 1.00 130 1.00 130 1.00 11 11.82
air05 291 291 1.00 291 1.00 291 1.00 291 1.00 291 1.00 171 1.70
bc1 19556 19556 1.00 2124 9.21 16443 1.19 6112 3.20 19556 1.00 19556 1.00
bell3a 46706 47499 0.98 47125 0.99 46706 1.00 46706 1.00 48048 0.97 46706 1.00
bell5 6794 1084 6.27 21070 0.32 6794 1.00 6794 1.00 5935 1.14 6794 1.00
bienst1 29047 8690 3.34 9819 2.96 29047 1.00 8658 3.35 29047 1.00 29047 1.00
bienst2 117138 96898 1.21 73091 1.60 117138 1.00 89647 1.31 117138 1.00 117138 1.00
blend2 10179 6628 1.54 8902 1.14 9071 1.12 5310 1.92 6174 1.65 10179 1.00
cap6000 3550 3550 1.00 3550 1.00 3004 1.18 2779 1.28 3550 1.00 3550 1.00
dano3 3 22 22 1.00 20 1.10 22 1.00 22 1.00 22 1.00 22 1.00
dano3 4 29 29 1.00 36 0.81 29 1.00 29 1.00 29 1.00 29 1.00
dano3 5 169 169 1.00 195 0.87 169 1.00 169 1.00 169 1.00 169 1.00
dcmulti 1252 203 6.17 349 3.59 1237 1.01 893 1.40 857 1.46 1327 0.94
egout 57 18 3.17 4 14.25 36 1.58 2 28.50 1 57.00 57 1.00
eilD76 12372 12372 1.00 12372 1.00 12372 1.00 12372 1.00 12372 1.00 4414 2.80
fiber 8116 504 16.10 114 71.19 98 82.82 40 202.90 8116 1.00 8116 1.00
fixnet6 271 241 1.12 357 0.76 271 1.00 95 2.85 281 0.96 271 1.00
flugpl 1131 240 4.71 1135 1.00 1131 1.00 1131 1.00 1131 1.00 1131 1.00
gen 31 74 0.42 1 31.00 1 31.00 1 31.00 31 1.00 31 1.00
gesa2 57313 69038 0.83 70 818.76 52320 1.10 45756 1.25 57357 1.00 57313 1.00
gesa2-o 114630 104680 1.10 1635 70.11 88355 1.30 90601 1.27 83482 1.37 114630 1.00
gesa3 4649 1574 2.95 34 136.74 4900 0.95 1660 2.80 4695 0.99 4649 1.00
gesa3 o 7219 6882 1.05 274 26.35 7233 1.00 6016 1.20 5593 1.29 7219 1.00
gt2 489 368 1.33 2 244.50 489 1.00 1262 0.39 489 1.00 489 1.00
irp 3347 3347 1.00 3347 1.00 3347 1.00 3347 1.00 3347 1.00 486 6.89
khb05250 1896 562 3.37 385 4.92 1854 1.02 23 82.43 32 59.25 1896 1.00
l152lav 67 53 1.26 67 1.00 67 1.00 67 1.00 67 1.00 82 0.82
lseu 6463 1231 5.25 176 36.72 101 63.99 192 33.66 6463 1.00 6463 1.00
mas284 15406 15406 1.00 15406 1.00 15406 1.00 15406 1.00 15406 1.00 15406 1.00
mas74 4209005 4209005 1.00 4209005 1.00 4209005 1.00 4209005 1.00 4209005 1.00 4209005 1.00
mas76 616407 616407 1.00 616407 1.00 616407 1.00 616407 1.00 616407 1.00 616407 1.00

continued on the next page
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No Cuts Only GMI Only C-MIR Only Knapsack Only Flow Cover Only Impl. B. Only Clique

Nodes Nodes Nodes Nodes Nodes Nodes Nodes
Improv. Improv. Improv. Improv. Improv. Improv.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

misc03 148 187 0.79 148 1.00 148 1.00 148 1.00 148 1.00 148 1.00
misc06 34 23 1.48 34 1.00 34 1.00 34 1.00 34 1.00 34 1.00
misc07 37707 31525 1.20 37707 1.00 35257 1.07 37707 1.00 37707 1.00 37707 1.00
mitre 115 11 10.45 66 1.74 99 1.16 1134 0.10 62 1.85 63 1.83
mod008 1031 1031 1.00 228 4.52 188 5.48 401 2.57 1031 1.00 1031 1.00
mod010 34 2 17.00 4 8.50 18 1.89 4 8.50 34 1.00 34 1.00
mod011 21611 21611 1.00 2683 8.05 21611 1.00 4171 5.18 3113 6.94 21611 1.00
neos2 38588 40437 0.95 101961 0.38 91563 0.42 38588 1.00 54917 0.70 48419 0.80
neos648910 3588 >3832892 – 422 8.50 3588 1.00 34177 0.10 456393 0.01 1421883 0.00
neos8 3 1 3.00 3 1.00 3 1.00 3 1.00 3 1.00 2 1.50
neos10 17 7 2.43 5 3.40 16 1.06 16 1.06 8 2.12 16 1.06
neos11 12711 12711 1.00 12711 1.00 13551 0.94 12711 1.00 12711 1.00 12711 1.00
neos13 2668 391 6.82 2668 1.00 2668 1.00 2668 1.00 2668 1.00 2668 1.00
neos20 15283 13548 1.13 7312 2.09 6770 2.26 6836 2.24 9539 1.60 7762 1.97
neos21 1740 1613 1.08 1740 1.00 1740 1.00 1740 1.00 1740 1.00 1740 1.00
neos22 135930 18282 7.44 5 27186.00 133792 1.02 135930 1.00 56779 2.39 135930 1.00
neos23 1659312 >1880899 – 987076 1.68 1659312 1.00 1659312 1.00 1281595 1.29 1659312 1.00
nug08 3 3 1.00 3 1.00 3 1.00 3 1.00 3 1.00 3 1.00
nw04 3 3 1.00 3 1.00 3 1.00 3 1.00 3 1.00 5 0.60
p0033 98 93 1.05 3 32.67 14 7.00 8 12.25 110 0.89 110 0.89
p0201 55 122 0.45 111 0.50 134 0.41 83 0.66 55 1.00 55 1.00
p0282 148 119 1.24 55 2.69 86 1.72 96 1.54 118 1.25 148 1.00
p0548 3198 259 12.35 105 30.46 124 25.79 136 23.51 6075 0.53 3198 1.00
pk1 240849 442058 0.54 240849 1.00 240849 1.00 240849 1.00 240849 1.00 240849 1.00
prod1 61076 61076 1.00 61967 0.99 61415 0.99 60622 1.01 61076 1.00 61076 1.00
qap10 8 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 3 2.67
qiu 9865 9865 1.00 9865 1.00 9865 1.00 9865 1.00 9865 1.00 9865 1.00
qnet1 254 162 1.57 82 3.10 254 1.00 22 11.55 254 1.00 254 1.00
qnet1 o 1011 343 2.95 9 112.33 1011 1.00 124 8.15 1011 1.00 1011 1.00
ran10x26 267429 116519 2.30 65789 4.06 34413 7.77 41370 6.46 267429 1.00 267429 1.00
ran12x21 1405207 986844 1.42 171287 8.20 282414 4.98 131999 10.65 1405207 1.00 1405207 1.00
ran13x13 403238 170527 2.36 178599 2.26 148657 2.71 93726 4.30 403238 1.00 403238 1.00
ran8x32 46488 56801 0.82 21665 2.15 20072 2.32 21751 2.14 46488 1.00 46488 1.00
rentacar 68 59 1.15 31 2.19 68 1.00 25 2.72 4 17.00 68 1.00
rgn 421 1157 0.36 111 3.79 421 1.00 1245 0.34 516 0.82 421 1.00

continued on the next page
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No Cuts Only GMI Only C-MIR Only Knapsack Only Flow Cover Only Impl. B. Only Clique

Nodes Nodes Nodes Nodes Nodes Nodes Nodes
Improv. Improv. Improv. Improv. Improv. Improv.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

rout 138027 184843 0.75 339100 0.41 21648 6.38 196265 0.70 138027 1.00 138027 1.00
seymour1 7252 4229 1.71 7252 1.00 7252 1.00 7252 1.00 7252 1.00 4561 1.59
stein27 3749 4299 0.87 3749 1.00 3749 1.00 3749 1.00 3749 1.00 3749 1.00
stein45 52883 51621 1.02 52883 1.00 52883 1.00 52883 1.00 52883 1.00 52883 1.00
swath1 12347 12347 1.00 4409 2.80 12427 0.99 12347 1.00 12347 1.00 12347 1.00
swath2 27074 27074 1.00 23884 1.13 23305 1.16 27074 1.00 27074 1.00 27074 1.00
swath3 98989 184244 0.54 105206 0.94 125092 0.79 98989 1.00 98989 1.00 98989 1.00
vpm1 93941 19802 4.74 3 31313.67 1 93941.00 5 18788.20 93941 1.00 93941 1.00
vpm2 689595 393100 1.75 9625 71.65 76325 9.03 17848 38.64 226543 3.04 787553 0.88

Geom. Mean (77/79) 1.42 3.55 1.74 2.17 1.29 1.08

Not Solved to Opt. 0 2 0 0 0 0 0

Table B.64: Computational results concerning the impact of individual cutting plane separators
on the overall performance of Scip. Enabling individual cutting plane separators on the solvable
test set. Improv. Factor is defined by (7.1). It gives the factor by which enabling a separator
improves the performance with respect to the performance measure Nodes.
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No Cuts Only GMI Only C-MIR Only Knapsack Only Flow Cover Only Impl. B. Only Clique

Time Time Time Time Time Time Time
Improv. Improv. Improv. Improv. Improv. Improv.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

10teams 41.0 29.3 1.40 41.2 0.99 41.0 1.00 40.7 1.01 41.1 1.00 130.1 0.31
30:70:4 5:0 95:98 411.5 523.5 0.79 416.2 0.99 406.2 1.01 401.3 1.03 408.4 1.01 408.7 1.01
aflow30a 505.9 656.1 0.77 313.8 1.61 229.7 2.20 265.0 1.91 76.5 6.61 321.8 1.57
air03 27.4 27.4 1.00 27.9 0.98 27.0 1.02 27.3 1.01 27.5 1.00 31.5 0.87
air04 236.7 238.9 0.99 238.2 0.99 234.7 1.01 234.8 1.01 237.2 1.00 119.3 1.98
air05 88.0 90.0 0.98 89.5 0.98 87.8 1.00 87.1 1.01 88.0 1.00 96.2 0.91
bc1 740.4 744.7 0.99 172.3 4.30 675.1 1.10 343.2 2.16 742.6 1.00 748.1 0.99
bell3a 64.6 125.0 0.52 131.5 0.49 64.3 1.00 64.8 1.00 49.7 1.30 64.2 1.01
bell5 4.4 1.6 2.85 14.3 0.31 4.4 1.00 4.5 0.98 3.8 1.17 4.5 0.98
bienst1 85.5 40.2 2.13 89.7 0.95 85.3 1.00 66.9 1.28 84.9 1.01 86.2 0.99
bienst2 373.3 470.3 0.79 612.9 0.61 375.2 0.99 653.7 0.57 370.0 1.01 374.4 1.00
blend2 15.8 11.4 1.39 16.3 0.97 14.5 1.09 10.4 1.52 9.1 1.74 15.8 1.00
cap6000 91.2 91.4 1.00 91.0 1.00 79.9 1.14 82.5 1.11 91.0 1.00 91.6 1.00
dano3 3 291.1 291.3 1.00 274.5 1.06 291.4 1.00 294.7 0.99 291.9 1.00 293.6 0.99
dano3 4 291.4 294.5 0.99 315.7 0.92 288.1 1.01 291.1 1.00 292.3 1.00 291.0 1.00
dano3 5 663.9 669.4 0.99 750.1 0.89 665.5 1.00 665.7 1.00 670.7 0.99 668.3 0.99
dcmulti 3.2 3.1 1.02 3.9 0.82 3.1 1.03 2.6 1.23 3.0 1.07 3.1 1.01
egout 0.0 0.1 1.00 0.1 1.00 0.1 1.00 0.0 1.00 0.0 1.00 0.1 1.00
eilD76 101.7 102.7 0.99 103.5 0.98 102.2 0.99 101.6 1.00 101.8 1.00 129.6 0.78
fiber 33.2 6.9 4.83 3.4 9.83 3.8 8.74 2.1 16.12 32.7 1.01 32.8 1.01
fixnet6 2.4 4.3 0.57 6.7 0.36 2.4 1.01 1.8 1.31 2.5 0.98 2.4 1.01
flugpl 0.8 0.4 1.00 0.8 1.00 0.8 1.00 0.8 1.00 0.8 1.00 0.8 1.00
gen 0.5 0.8 1.00 0.2 1.00 0.1 1.00 0.2 1.00 0.5 1.00 0.5 1.00
gesa2 294.3 351.3 0.84 9.1 32.31 293.0 1.00 268.1 1.10 289.8 1.02 294.4 1.00
gesa2-o 526.8 490.9 1.07 23.9 22.09 430.8 1.22 434.6 1.21 413.2 1.27 525.7 1.00
gesa3 38.9 19.1 2.03 8.6 4.54 36.8 1.06 19.3 2.02 38.6 1.01 39.0 1.00
gesa3 o 49.4 43.2 1.15 13.6 3.63 47.3 1.05 44.8 1.10 42.8 1.15 49.1 1.01
gt2 1.1 0.7 1.15 0.0 1.15 1.2 0.99 1.4 0.82 1.1 1.01 1.2 0.98
irp 338.3 338.0 1.00 338.3 1.00 337.8 1.00 336.3 1.01 338.6 1.00 113.3 2.99
khb05250 4.6 2.7 1.68 3.5 1.30 4.5 1.00 0.6 4.57 0.4 4.57 4.6 0.99
l152lav 6.6 6.9 0.96 6.6 1.01 6.5 1.01 6.5 1.01 6.5 1.02 5.8 1.14
lseu 4.2 1.7 2.47 0.5 4.20 0.3 4.20 0.5 4.20 4.2 0.99 4.2 0.99
mas284 21.2 20.9 1.01 21.2 1.00 21.3 0.99 21.2 1.00 21.0 1.01 21.0 1.01
mas74 1582.2 1576.5 1.00 1567.4 1.01 1606.8 0.98 1603.3 0.99 1592.3 0.99 1605.4 0.99
mas76 251.2 247.2 1.02 247.0 1.02 256.5 0.98 254.1 0.99 251.0 1.00 254.3 0.99

continued on the next page
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No Cuts Only GMI Only C-MIR Only Knapsack Only Flow Cover Only Impl. B. Only Clique

Time Time Time Time Time Time Time
Improv. Improv. Improv. Improv. Improv. Improv.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

misc03 1.2 2.9 0.44 1.3 0.98 1.2 1.02 1.3 0.98 1.2 1.02 1.3 0.98
misc06 0.7 0.9 1.00 0.7 1.00 0.7 1.00 0.8 1.00 0.7 1.00 0.7 1.00
misc07 66.6 63.2 1.05 68.2 0.98 64.2 1.04 66.4 1.00 67.6 0.98 67.6 0.99
mitre 85.5 12.0 7.14 116.5 0.73 69.0 1.24 220.9 0.39 77.9 1.10 86.9 0.98
mod008 1.9 1.9 1.00 1.6 1.21 1.4 1.33 2.0 0.93 1.9 0.98 1.9 0.98
mod010 5.3 4.6 1.16 4.2 1.27 4.6 1.17 4.2 1.28 5.3 1.00 5.3 1.01
mod011 408.8 407.8 1.00 352.3 1.16 403.0 1.01 160.8 2.54 151.5 2.70 410.4 1.00
neos2 202.5 234.7 0.86 522.4 0.39 387.6 0.52 205.9 0.98 285.8 0.71 240.7 0.84
neos648910 12.8 >3600.0 – 5.5 2.31 13.1 0.98 44.8 0.29 534.0 0.02 1354.3 0.01
neos8 258.3 259.1 1.00 259.0 1.00 257.3 1.00 258.3 1.00 252.9 1.02 255.8 1.01
neos10 326.7 310.7 1.05 314.5 1.04 312.5 1.05 326.1 1.00 327.2 1.00 325.2 1.00
neos11 1679.3 1691.2 0.99 1722.9 0.97 1844.7 0.91 1660.0 1.01 1700.8 0.99 1668.8 1.01
neos13 390.1 250.7 1.56 409.5 0.95 392.5 0.99 393.1 0.99 395.1 0.99 395.6 0.99
neos20 74.5 72.2 1.03 42.8 1.74 45.5 1.64 43.8 1.70 47.9 1.56 40.0 1.86
neos21 62.1 55.0 1.13 60.8 1.02 61.2 1.01 62.2 1.00 61.3 1.01 61.3 1.01
neos22 1679.6 252.3 6.66 6.7 249.20 1619.7 1.04 1657.7 1.01 657.2 2.56 1649.7 1.02
neos23 3162.1 >3600.0 – 2144.2 1.47 3178.2 0.99 3196.6 0.99 2588.9 1.22 3099.7 1.02
nug08 31.9 53.3 0.60 32.4 0.99 31.8 1.00 32.9 0.97 32.3 0.99 48.5 0.66
nw04 93.9 95.8 0.98 97.0 0.97 94.3 1.00 95.9 0.98 93.8 1.00 103.9 0.90
p0033 0.1 0.1 1.00 0.1 1.00 0.1 1.00 0.0 1.00 0.1 1.00 0.1 1.00
p0201 0.6 1.4 0.73 1.2 0.83 1.2 0.81 1.0 0.99 0.6 1.00 0.6 1.00
p0282 0.7 0.8 1.00 0.7 1.00 1.0 1.00 0.9 1.00 0.6 1.00 0.6 1.00
p0548 7.3 1.7 4.27 1.9 3.84 1.1 6.48 1.8 4.06 10.4 0.70 7.2 1.00
pk1 121.5 222.6 0.55 115.4 1.05 117.1 1.04 117.4 1.04 123.2 0.99 116.7 1.04
prod1 67.9 67.8 1.00 72.6 0.94 67.6 1.01 76.1 0.89 68.2 1.00 71.4 0.95
qap10 260.6 264.1 0.99 262.0 0.99 263.1 0.99 259.2 1.01 259.6 1.00 269.7 0.97
qiu 217.2 214.9 1.01 218.2 1.00 217.8 1.00 218.7 0.99 214.4 1.01 218.1 1.00
qnet1 7.0 7.7 0.91 6.2 1.14 6.8 1.03 2.5 2.75 7.0 1.00 6.9 1.02
qnet1 o 8.2 9.4 0.87 2.0 4.18 8.3 0.99 6.4 1.28 8.2 1.00 8.2 1.01
ran10x26 274.9 162.3 1.69 141.1 1.95 96.6 2.85 94.8 2.90 276.3 1.00 281.6 0.98
ran12x21 1268.9 1228.9 1.03 412.6 3.08 459.0 2.76 286.1 4.44 1297.8 0.98 1306.5 0.97
ran13x13 277.8 207.2 1.34 203.8 1.36 149.9 1.85 137.0 2.03 277.1 1.00 278.6 1.00
ran8x32 72.3 112.7 0.64 66.0 1.10 55.8 1.30 64.6 1.12 72.3 1.00 72.7 0.99
rentacar 24.9 25.3 0.98 24.7 1.01 25.1 0.99 20.9 1.19 5.6 4.44 24.8 1.00
rgn 0.7 1.2 0.81 1.1 0.88 0.7 1.00 1.3 0.79 0.8 1.00 0.7 1.00

continued on the next page
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No Cuts Only GMI Only C-MIR Only Knapsack Only Flow Cover Only Impl. B. Only Clique

Time Time Time Time Time Time Time
Improv. Improv. Improv. Improv. Improv. Improv.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

rout 256.2 333.0 0.77 556.4 0.46 57.6 4.45 409.7 0.63 256.5 1.00 256.9 1.00
seymour1 1998.1 1202.3 1.66 2110.1 0.95 2023.0 0.99 2030.4 0.98 2009.9 0.99 1284.1 1.56
stein27 2.7 3.1 0.85 2.7 0.99 2.7 0.99 2.7 0.98 2.7 0.99 2.7 0.98
stein45 60.5 61.4 0.99 60.7 1.00 61.0 0.99 60.1 1.01 59.3 1.02 60.8 1.00
swath1 194.4 195.8 0.99 130.9 1.48 195.5 0.99 193.9 1.00 193.1 1.01 195.5 0.99
swath2 382.3 383.8 1.00 334.9 1.14 337.8 1.13 384.1 1.00 382.3 1.00 389.1 0.98
swath3 1030.4 1810.7 0.57 1076.8 0.96 1309.5 0.79 1027.6 1.00 1021.4 1.01 1018.1 1.01
vpm1 45.8 13.7 3.35 0.0 45.84 0.0 45.84 0.1 45.84 45.0 1.02 45.9 1.00
vpm2 438.8 308.0 1.42 14.6 30.00 57.8 7.60 19.4 22.68 153.6 2.86 518.4 0.85

Geom. Mean (77/79) 1.12 1.45 1.25 1.33 1.13 1.01

Not Solved to Opt. 0 2 0 0 0 0 0

Table B.65: Computational results concerning the impact of individual cutting plane separators
on the overall performance of Scip. Enabling individual cutting plane separators on the solvable
test set. Improv. Factor is defined by (7.1). It gives the factor by which enabling a separator
improves the performance with respect to the performance measure Time.
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No Cuts Only GMI Only C-MIR Only Knapsack Only Flow Cover Only Impl. B. Only Clique

Gap % Gap % Gap % Gap % Gap % Gap % Gap %
Improv. Improv. Improv. Improv. Improv. Improv.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

a1c1s1 348.98 293.08 1.19 76.98 4.53 229.76 1.52 133.82 2.61 167.47 2.08 348.92 1.00
30:70:4 5:0 5:100 11.11 0.00 – 22.22 0.50 11.11 1.00 11.11 1.00 11.11 1.00 55.11 0.20
aflow40b 26.15 20.45 1.28 19.98 1.31 18.21 1.44 12.37 2.11 37.40 0.70 20.08 1.30
arki001 0.03 0.03 1.00 0.04 1.00 0.03 1.00 0.03 1.00 0.04 1.00 0.03 1.00
atlanta-ip ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
binkar10 1 0.71 0.71 1.00 0.33 1.00 0.35 1.00 0.37 1.00 0.71 1.00 0.71 1.00
dano3mip 26.95 26.95 1.00 25.26 1.07 27.23 0.99 26.95 1.00 26.95 1.00 26.95 1.00
danoint 4.55 4.55 1.00 3.08 1.47 4.19 1.08 4.03 1.13 4.37 1.04 4.56 1.00
ds 447.28 447.59 1.00 447.59 1.00 447.28 1.00 447.28 1.00 447.28 1.00 531.03 0.84
fast0507 4.43 4.43 1.00 4.43 1.00 4.43 1.00 4.43 1.00 4.43 1.00 4.43 1.00
glass4 137.50 168.75 0.81 162.50 0.85 137.50 1.00 175.00 0.79 152.08 0.90 168.75 0.81
liu 305.00 305.00 1.00 388.93 0.78 305.00 1.00 305.00 1.00 305.00 1.00 305.00 1.00
manna81 0.96 0.00 – 0.96 1.00 0.96 1.00 0.96 1.00 0.96 1.00 0.96 1.00
markshare1 ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
markshare2 ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
mkc 8.99 11.17 0.80 5.75 1.56 7.23 1.24 3.45 2.60 10.13 0.89 15.59 0.58
mkc1 0.16 0.15 1.00 0.26 1.00 0.09 1.00 0.10 1.00 0.16 1.00 0.05 1.00
modglob 0.22 0.22 1.00 0.18 1.00 0.22 1.00 0.00 – 0.22 1.00 0.22 1.00
momentum1 ∞ ∞ – ∞ – 30.46 – ∞ – ∞ – 37.46 –
momentum2 ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
msc98-ip ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
mzzv11 3.94 3.22 1.22 3.93 1.00 6.16 0.64 3.91 1.01 0.00 – 1.70 2.32
mzzv42z 4.31 0.00 – 4.33 0.99 4.35 0.99 4.31 1.00 0.00 – 1.88 2.30
neos1 147.83 141.53 1.04 30.52 4.84 115.64 1.28 131.71 1.12 131.71 1.12 49.02 3.02
neos3 64.57 80.81 0.80 30.66 2.11 0.00 – 64.59 1.00 0.00 – 45.78 1.41
neos616206 6.53 13.97 0.47 7.96 0.82 5.10 1.28 12.35 0.53 6.53 1.00 14.74 0.44
neos632659 10.84 0.00 – 0.00 – 10.84 1.00 8.99 1.21 3.66 2.96 10.84 1.00
neos7 0.28 0.84 1.00 0.00 – 0.00 – 0.28 1.00 0.00 – 0.28 1.00
neos9 2.31 0.00 – 2.31 1.00 2.31 1.00 2.31 1.00 2.31 1.00 2.31 1.00
neos12 13.49 12.70 1.06 13.70 0.99 13.70 0.98 13.74 0.98 13.74 0.98 13.54 1.00
neos14 89.00 16.24 5.48 12.38 7.19 89.00 1.00 21.42 4.15 21.04 4.23 89.00 1.00
neos15 104.53 20.47 5.11 14.76 7.08 104.53 1.00 28.16 3.71 28.74 3.64 104.53 1.00
neos16 ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
neos17 390.42 390.58 1.00 390.63 1.00 390.66 1.00 390.38 1.00 390.79 1.00 390.52 1.00
neos18 6.67 6.67 1.00 6.67 1.00 6.67 1.00 6.67 1.00 6.67 1.00 6.67 1.00

continued on the next page
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No Cuts Only GMI Only C-MIR Only Knapsack Only Flow Cover Only Impl. B. Only Clique

Gap % Gap % Gap % Gap % Gap % Gap % Gap %
Improv. Improv. Improv. Improv. Improv. Improv.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

neos19 15.21 17.32 0.88 15.21 1.00 16.20 0.94 15.21 1.00 8.19 1.86 16.14 0.94
net12 63.89 ∞ – 166.87 0.38 ∞ – 132.82 0.48 142.55 0.45 124.46 0.51
noswot 4.65 0.00 – 4.65 1.00 4.65 1.00 4.65 1.00 0.00 – 4.65 1.00
nsrand-ipx 11.66 8.64 1.35 7.47 1.56 10.04 1.16 7.82 1.49 11.65 1.00 11.65 1.00
opt1217 19.87 16.83 1.18 19.87 1.00 19.87 1.00 19.87 1.00 19.87 1.00 19.87 1.00
p2756 1.76 0.00 – 0.00 – 0.00 – 0.00 – 1.49 1.18 0.63 1.76
pp08a 33.56 13.02 2.58 0.00 – 33.56 1.00 32.61 1.03 17.33 1.94 33.56 1.00
pp08aCUTS 6.41 0.00 – 0.00 – 6.41 1.00 5.48 1.17 6.41 1.00 6.41 1.00
protfold ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
ran14x18 1 11.16 7.64 1.46 4.97 2.25 6.95 1.61 5.17 2.16 11.16 1.00 11.16 1.00
roll3000 15.45 12.29 1.26 4.98 3.10 13.27 1.16 11.23 1.38 14.49 1.07 15.45 1.00
set1ch 40.55 4.20 9.65 0.00 – 26.21 1.55 16.98 2.39 17.12 2.37 40.55 1.00
seymour 3.90 3.18 1.23 3.90 1.00 3.90 1.00 3.90 1.00 3.90 1.00 3.16 1.24
sp97ar 5.14 5.81 0.88 5.76 0.89 4.49 1.15 3.85 1.34 5.14 1.00 5.14 1.00
swath 43.63 33.49 1.30 35.07 1.24 47.77 0.91 43.63 1.00 43.63 1.00 43.63 1.00
t1717 ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
timtab1 98.24 80.64 1.22 22.02 4.46 72.72 1.35 74.71 1.32 88.89 1.11 98.24 1.00
timtab2 ∞ ∞ – 148.50 0.01 ∞ – ∞ – ∞ – ∞ –
tr12-30 597.27 213.51 2.80 27.85 21.45 533.00 1.12 152.85 3.91 56.27 10.61 597.27 1.00

Geom. Mean (29/54) 1.20 1.66 1.10 1.32 1.24 0.99

No Feas. Sol. 8 9 7 8 8 8 7
Solved to Opt. 0 8 6 3 2 5 0

Table B.66: Computational results concerning the impact of individual cutting plane separators
on the overall performance of Scip. Enabling individual cutting plane separators on the unsolvable
test set. Improv. Factor is defined by (7.1). It gives the factor by which enabling a separator
improves the performance with respect to the performance measure Gap %.
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All Cuts No GMI No C-MIR No Knapsack No Flow Cover No Impl. B. No Clique

Nodes Nodes Nodes Nodes Nodes Nodes Nodes
Degrad. Degrad. Degrad. Degrad. Degrad. Degrad.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

10teams 588 456 0.78 588 1.00 588 1.00 588 1.00 588 1.00 125 0.21
30:70:4 5:0 5:100 276 378 1.37 276 1.00 276 1.00 276 1.00 276 1.00 338 1.22
30:70:4 5:0 95:98 200 129 0.65 200 1.00 200 1.00 200 1.00 200 1.00 200 1.00
aflow30a 7132 8686 1.22 10400 1.46 18663 2.62 8091 1.13 15877 2.23 7109 1.00
air03 2 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00 2 1.00
air04 85 85 1.00 85 1.00 85 1.00 85 1.00 85 1.00 148 1.74
air05 196 237 1.21 196 1.00 196 1.00 196 1.00 196 1.00 518 2.64
bc1 2232 2232 1.00 4764 2.13 10699 4.79 2119 0.95 2232 1.00 2232 1.00
bell3a 50005 42600 0.85 48012 0.96 50005 1.00 50005 1.00 45191 0.90 50005 1.00
bell5 1722 27309 15.86 1148 0.67 1722 1.00 1722 1.00 1459 0.85 1722 1.00
bienst1 7907 11759 1.49 9348 1.18 8251 1.04 8227 1.04 7907 1.00 7907 1.00
bienst2 76567 81082 1.06 76892 1.00 76567 1.00 86344 1.13 76567 1.00 76567 1.00
blend2 7699 7699 1.00 10092 1.31 8229 1.07 8734 1.13 9560 1.24 7699 1.00
cap6000 2817 2817 1.00 2817 1.00 2779 0.99 4142 1.47 2817 1.00 2817 1.00
dano3 3 20 20 1.00 22 1.10 20 1.00 20 1.00 20 1.00 20 1.00
dano3 4 36 36 1.00 29 0.81 36 1.00 36 1.00 36 1.00 36 1.00
dano3 5 195 195 1.00 169 0.87 195 1.00 195 1.00 195 1.00 195 1.00
dcmulti 129 393 3.05 230 1.78 70 0.54 103 0.80 83 0.64 134 1.04
egout 1 1 1.00 2 2.00 1 1.00 1 1.00 2 2.00 1 1.00
eilD76 4414 4414 1.00 4414 1.00 4414 1.00 4414 1.00 4414 1.00 12372 2.80
fiber 37 41 1.11 25 0.68 30 0.81 140 3.78 37 1.00 37 1.00
fixnet6 54 55 1.02 49 0.91 54 1.00 90 1.67 47 0.87 54 1.00
flugpl 361 1135 3.14 240 0.66 361 1.00 361 1.00 361 1.00 361 1.00
gen 1 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00
gesa2 27 27 1.00 11479 425.15 280 10.37 19 0.70 51 1.89 27 1.00
gesa2-o 632 794 1.26 26429 41.82 1416 2.24 1380 2.18 554 0.88 632 1.00
gesa3 214 36 0.17 1247 5.83 32 0.15 110 0.51 84 0.39 214 1.00
gesa3 o 25 25 1.00 6058 242.32 143 5.72 25 1.00 26 1.04 25 1.00
gt2 20 639 31.95 169 8.45 20 1.00 20 1.00 20 1.00 20 1.00
irp 311 183 0.59 311 1.00 311 1.00 311 1.00 311 1.00 3347 10.76
khb05250 19 19 1.00 20 1.05 19 1.00 23 1.21 25 1.32 19 1.00
l152lav 53 56 1.06 53 1.00 53 1.00 53 1.00 53 1.00 49 0.92
lseu 180 520 2.89 137 0.76 49 0.27 201 1.12 180 1.00 180 1.00
manna81 1 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00
mas284 15406 15406 1.00 15406 1.00 15406 1.00 15406 1.00 15406 1.00 15406 1.00

continued on the next page
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All Cuts No GMI No C-MIR No Knapsack No Flow Cover No Impl. B. No Clique

Nodes Nodes Nodes Nodes Nodes Nodes Nodes
Degrad. Degrad. Degrad. Degrad. Degrad. Degrad.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

mas74 4209005 4209005 1.00 4209005 1.00 4209005 1.00 4209005 1.00 4209005 1.00 4209005 1.00
mas76 616407 616407 1.00 616407 1.00 616407 1.00 616407 1.00 616407 1.00 616407 1.00
misc03 89 124 1.39 57 0.64 89 1.00 89 1.00 89 1.00 81 0.91
misc06 23 34 1.48 23 1.00 23 1.00 23 1.00 23 1.00 23 1.00
misc07 44880 47285 1.05 44880 1.00 45038 1.00 44880 1.00 44880 1.00 44880 1.00
mitre 2 38 19.00 1 0.50 56 28.00 1 0.50 16 8.00 2 1.00
mod008 218 218 1.00 219 1.00 378 1.73 188 0.86 218 1.00 218 1.00
mod010 1 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00
mod011 1145 1145 1.00 3168 2.77 1145 1.00 1372 1.20 1506 1.32 1145 1.00
modglob 27695 27695 1.00 33937 1.23 27695 1.00 >395893 – 27695 1.00 27695 1.00
mzzv11 3610 2935 0.81 3610 1.00 4999 1.38 3610 1.00 >12768 – 6250 1.73
mzzv42z 1314 2105 1.60 1314 1.00 1407 1.07 1314 1.00 1657 1.26 3441 2.62
neos1 1 >494053 – >479664 – >487410 – >496032 – 2 2.00 >483794 –
neos2 41287 74458 1.80 36657 0.89 120635 2.92 34015 0.82 77591 1.88 67122 1.63
neos3 326050 576317 1.77 >747408 – 655812 2.01 >543128 – 501152 1.54 >602463 –
neos632659 811 5212 6.43 52569 64.82 811 1.00 1630 2.01 2477 3.05 811 1.00
neos648910 60585 116955 1.93 3297 0.05 60585 1.00 579623 9.57 1613 0.03 72494 1.20
neos7 43402 31933 0.74 27643 0.64 44663 1.03 52058 1.20 50720 1.17 43402 1.00
neos8 1 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00
neos9 35 >1937 – 35 1.00 35 1.00 35 1.00 35 1.00 35 1.00
neos10 7 5 0.71 7 1.00 9 1.29 7 1.00 4 0.57 4 0.57
neos11 13551 13551 1.00 13551 1.00 12711 0.94 13551 1.00 13551 1.00 13551 1.00
neos13 391 2668 6.82 391 1.00 391 1.00 391 1.00 391 1.00 391 1.00
neos20 12912 10967 0.85 13591 1.05 18609 1.44 6970 0.54 9547 0.74 8204 0.64
neos21 1325 3152 2.38 1325 1.00 1325 1.00 1325 1.00 1325 1.00 1325 1.00
neos22 1 5 5.00 27317 27317.00 1 1.00 19 19.00 1 1.00 1 1.00
nug08 3 5 1.67 3 1.00 3 1.00 3 1.00 3 1.00 5 1.67
nw04 5 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 3 0.60
p0033 1 1 1.00 1 1.00 2 2.00 1 1.00 1 1.00 1 1.00
p0201 56 341 6.09 198 3.54 64 1.14 106 1.89 56 1.00 56 1.00
p0282 101 75 0.74 103 1.02 162 1.60 124 1.23 101 1.00 101 1.00
p0548 32 39 1.22 32 1.00 27 0.84 35 1.09 85 2.66 32 1.00
p2756 29 247 8.52 83 2.86 168 5.79 80 2.76 91 3.14 92 3.17
pk1 223941 240849 1.08 442058 1.97 223941 1.00 223941 1.00 223941 1.00 223941 1.00
pp08a 1310 967 0.74 >305126 – 1310 1.00 883 0.67 1197 0.91 1310 1.00

continued on the next page
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All Cuts No GMI No C-MIR No Knapsack No Flow Cover No Impl. B. No Clique

Nodes Nodes Nodes Nodes Nodes Nodes Nodes
Degrad. Degrad. Degrad. Degrad. Degrad. Degrad.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

pp08aCUTS 953 1284 1.35 162921 170.96 953 1.00 615 0.65 953 1.00 953 1.00
prod1 60511 60511 1.00 64686 1.07 64661 1.07 60949 1.01 60511 1.00 60511 1.00
qap10 5 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00 5 1.00
qiu 9865 9865 1.00 9865 1.00 9865 1.00 9865 1.00 9865 1.00 9865 1.00
qnet1 90 71 0.79 67 0.74 90 1.00 52 0.58 30 0.33 90 1.00
qnet1 o 18 51 2.83 152 8.44 18 1.00 70 3.89 18 1.00 18 1.00
ran10x26 30417 27422 0.90 32603 1.07 27294 0.90 27320 0.90 30417 1.00 30417 1.00
ran12x21 64936 70555 1.09 104418 1.61 76775 1.18 81236 1.25 64936 1.00 64936 1.00
ran13x13 30739 43957 1.43 61692 2.01 23907 0.78 64387 2.09 30739 1.00 30739 1.00
ran8x32 8684 9915 1.14 15170 1.75 9693 1.12 17891 2.06 8684 1.00 8684 1.00
rentacar 4 4 1.00 4 1.00 4 1.00 4 1.00 32 8.00 4 1.00
rgn 43 53 1.23 1505 35.00 43 1.00 123 2.86 73 1.70 43 1.00
rout 18746 56113 2.99 70432 3.76 174116 9.29 103110 5.50 18746 1.00 18746 1.00
set1ch 29 54 1.86 >899123 – 64 2.21 21 0.72 42 1.45 29 1.00
seymour1 3994 3994 1.00 3994 1.00 3994 1.00 3994 1.00 3994 1.00 4229 1.06
stein27 4158 4237 1.02 4158 1.00 4158 1.00 4158 1.00 4158 1.00 4158 1.00
stein45 54006 52815 0.98 54006 1.00 54006 1.00 54006 1.00 54006 1.00 54006 1.00
swath1 8678 4944 0.57 12427 1.43 7922 0.91 8678 1.00 8678 1.00 8678 1.00
swath2 25389 19277 0.76 23305 0.92 27204 1.07 19148 0.75 25389 1.00 25389 1.00
swath3 129854 99495 0.77 285224 2.20 150364 1.16 119504 0.92 129854 1.00 129854 1.00
vpm1 2 3 1.50 47 23.50 2 1.00 1 0.50 2 1.00 2 1.00
vpm2 7308 5402 0.74 8602 1.18 6812 0.93 5692 0.78 5177 0.71 7308 1.00

Geom. Mean (85/92) 1.34 1.85 1.18 1.16 1.05 1.06

Not Solved to Opt. 0 2 4 1 3 1 2

Table B.67: Computational results concerning the impact of individual cutting plane separators
on the overall performance of Scip. Disabling individual cutting plane separators on the solvable
test set. Degrad. Factor is defined by (7.2). It gives the factor by which disabling a separator
degrades the performance with respect to the performance measure Nodes.
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All Cuts No GMI No C-MIR No Knapsack No Flow Cover No Impl. B. No Clique

Time Time Time Time Time Time Time
Degrad. Degrad. Degrad. Degrad. Degrad. Degrad.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

10teams 52.4 52.0 0.99 47.5 0.91 51.9 0.99 50.3 0.96 51.9 0.99 33.3 0.64
30:70:4 5:0 5:100 1355.6 655.4 0.48 1332.7 0.98 1353.9 1.00 1355.9 1.00 1344.4 0.99 677.8 0.50
30:70:4 5:0 95:98 595.2 488.1 0.82 573.7 0.96 594.3 1.00 598.6 1.01 594.8 1.00 599.2 1.01
aflow30a 71.3 76.3 1.07 64.5 0.90 137.1 1.92 81.5 1.14 133.9 1.88 75.3 1.06
air03 42.9 40.7 0.95 37.9 0.88 43.2 1.01 41.1 0.96 42.6 0.99 29.1 0.68
air04 237.1 219.2 0.92 225.4 0.95 236.9 1.00 238.0 1.00 236.5 1.00 182.8 0.77
air05 213.0 128.4 0.60 199.7 0.94 213.1 1.00 213.0 1.00 212.0 1.00 108.0 0.51
bc1 211.8 212.9 1.01 271.7 1.28 518.7 2.45 197.4 0.93 212.8 1.00 214.3 1.01
bell3a 64.9 56.9 0.88 68.0 1.05 66.0 1.02 65.4 1.01 112.4 1.73 64.9 1.00
bell5 2.1 17.8 8.52 1.6 0.77 2.1 1.00 2.1 1.00 1.9 0.90 2.1 1.00
bienst1 59.4 93.8 1.58 53.9 0.91 60.5 1.02 70.9 1.19 59.6 1.00 58.5 0.99
bienst2 661.3 683.0 1.03 538.1 0.81 664.1 1.00 761.1 1.15 650.7 0.98 659.1 1.00
blend2 15.8 15.6 0.99 15.5 0.98 16.2 1.03 13.2 0.84 19.7 1.25 15.7 1.00
cap6000 85.5 85.3 1.00 83.0 0.97 84.5 0.99 104.1 1.22 84.7 0.99 84.6 0.99
dano3 3 278.6 280.2 1.01 294.9 1.06 277.0 0.99 281.9 1.01 277.5 1.00 280.4 1.01
dano3 4 319.1 320.5 1.00 292.0 0.92 319.5 1.00 321.2 1.01 319.2 1.00 328.4 1.03
dano3 5 757.5 756.2 1.00 672.3 0.89 764.4 1.01 764.2 1.01 759.0 1.00 762.7 1.01
dcmulti 5.5 3.9 0.71 3.8 0.70 5.1 0.93 4.8 0.88 5.7 1.05 6.0 1.09
egout 0.0 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
eilD76 145.8 138.0 0.95 139.2 0.95 145.8 1.00 144.7 0.99 149.3 1.02 103.0 0.71
fiber 4.4 3.1 0.70 2.1 0.47 2.5 0.57 5.2 1.18 4.5 1.02 4.4 1.00
fixnet6 7.2 5.7 0.79 2.1 0.29 7.1 0.98 7.0 0.97 7.5 1.04 7.5 1.03
flugpl 0.5 0.8 1.00 0.5 1.00 0.6 1.00 0.5 1.00 0.5 1.00 0.5 1.00
gen 0.4 0.3 1.00 0.2 1.00 0.4 1.00 0.2 1.00 0.4 1.00 0.4 1.00
gesa2 7.1 6.7 0.94 75.0 10.53 12.2 1.71 5.4 0.76 7.5 1.05 6.9 0.97
gesa2-o 19.1 17.2 0.90 146.1 7.65 23.2 1.22 20.4 1.07 16.9 0.88 19.6 1.03
gesa3 14.4 9.7 0.67 17.2 1.20 8.3 0.58 11.3 0.79 13.6 0.95 14.4 1.00
gesa3 o 9.2 9.0 0.98 42.2 4.57 13.0 1.41 7.8 0.84 10.3 1.11 9.4 1.02
gt2 0.2 1.5 1.51 0.4 1.00 0.2 1.00 0.2 1.00 0.2 1.00 0.2 1.00
irp 122.4 109.5 0.89 111.7 0.91 121.1 0.99 118.9 0.97 121.6 0.99 343.7 2.81
khb05250 1.8 1.7 0.97 0.7 0.56 1.8 0.98 1.6 0.90 1.7 0.95 1.8 0.99
l152lav 11.5 10.4 0.91 9.3 0.81 11.3 0.99 9.8 0.85 11.3 0.98 10.6 0.92
lseu 0.6 0.9 1.00 0.4 1.00 0.4 1.00 0.6 1.00 0.6 1.00 0.6 1.00
manna81 6.9 7.4 1.07 4.7 0.68 7.0 1.00 5.5 0.80 6.9 1.00 7.0 1.00
mas284 21.4 21.7 1.01 21.5 1.01 21.4 1.00 21.4 1.00 21.5 1.01 21.5 1.01

continued on the next page
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All Cuts No GMI No C-MIR No Knapsack No Flow Cover No Impl. B. No Clique

Time Time Time Time Time Time Time
Degrad. Degrad. Degrad. Degrad. Degrad. Degrad.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

mas74 1644.4 1634.3 0.99 1648.7 1.00 1565.5 0.95 1645.8 1.00 1647.9 1.00 1658.0 1.01
mas76 260.2 259.7 1.00 257.0 0.99 250.2 0.96 260.5 1.00 258.0 0.99 261.8 1.01
misc03 2.1 2.0 0.98 2.1 0.99 2.0 0.97 2.0 0.94 2.0 0.97 1.8 0.87
misc06 1.0 0.8 0.98 1.0 0.98 1.0 1.01 0.9 0.98 1.0 0.98 1.0 1.02
misc07 80.9 84.7 1.05 80.4 0.99 81.3 1.01 79.9 0.99 79.5 0.98 79.8 0.99
mitre 94.5 88.8 0.94 41.1 0.43 90.1 0.95 42.7 0.45 88.4 0.94 85.8 0.91
mod008 1.7 1.7 1.01 1.7 0.98 2.2 1.27 1.5 0.90 1.8 1.04 1.8 1.02
mod010 4.5 5.5 1.23 4.3 0.97 4.5 1.00 4.3 0.97 6.8 1.53 4.6 1.03
mod011 265.2 262.1 0.99 171.6 0.65 263.7 0.99 332.1 1.25 369.6 1.39 266.3 1.00
modglob 73.7 74.2 1.01 94.7 1.28 74.0 1.00 >624.6 – 74.0 1.00 74.1 1.01
mzzv11 2127.9 1443.1 0.68 2070.3 0.97 2370.7 1.11 2175.9 1.02 >3600.2 – 2021.3 0.95
mzzv42z 904.1 1052.1 1.16 839.7 0.93 746.2 0.83 884.5 0.98 1433.7 1.59 1526.0 1.69
neos1 32.6 >3155.9 – >3600.0 – >3300.9 – >3499.2 – 39.0 1.19 >3156.2 –
neos2 281.8 409.4 1.45 200.8 0.71 570.1 2.02 244.2 0.87 417.1 1.48 489.4 1.74
neos3 2206.6 3124.3 1.42 >3600.0 – 3576.1 1.62 >3600.0 – 3092.2 1.40 >3600.0 –
neos632659 4.3 8.9 2.07 51.8 12.07 4.2 0.99 5.8 1.36 7.8 1.83 4.3 1.00
neos648910 88.7 156.9 1.77 12.9 0.15 88.7 1.00 700.5 7.90 9.5 0.11 95.7 1.08
neos7 536.8 422.5 0.79 300.6 0.56 574.1 1.07 599.2 1.12 701.0 1.31 546.6 1.02
neos8 260.1 258.8 0.99 258.1 0.99 258.4 0.99 261.0 1.00 257.0 0.99 258.9 1.00
neos9 967.3 >3600.0 – 456.5 0.47 971.7 1.00 912.1 0.94 973.3 1.01 972.2 1.00
neos10 359.7 362.1 1.01 328.4 0.91 351.8 0.98 356.7 0.99 347.0 0.96 361.1 1.00
neos11 1755.7 1780.9 1.01 1790.6 1.02 1696.7 0.97 1784.1 1.02 1764.7 1.01 1756.0 1.00
neos13 354.9 411.5 1.16 266.2 0.75 354.3 1.00 344.4 0.97 354.7 1.00 357.2 1.01
neos20 101.8 73.1 0.72 104.4 1.03 92.7 0.91 49.5 0.49 62.3 0.61 56.2 0.55
neos21 44.1 80.0 1.82 42.9 0.97 44.4 1.01 43.6 0.99 44.5 1.01 45.6 1.03
neos22 9.4 7.4 0.78 351.6 37.24 9.2 0.97 13.4 1.42 9.0 0.96 9.2 0.97
nug08 116.6 144.7 1.24 109.1 0.94 118.6 1.02 116.7 1.00 117.0 1.00 151.2 1.30
nw04 254.1 235.2 0.93 224.6 0.88 247.0 0.97 142.3 0.56 244.9 0.96 101.5 0.40
p0033 0.1 0.1 1.00 0.1 1.00 0.1 1.00 0.1 1.00 0.1 1.00 0.1 1.00
p0201 2.2 3.3 1.53 3.3 1.51 2.2 1.01 1.9 0.89 2.1 0.98 2.2 1.00
p0282 1.5 1.5 0.96 1.7 1.12 1.7 1.11 1.4 0.93 1.5 0.99 1.5 1.00
p0548 0.6 0.8 1.00 0.5 1.00 0.6 1.00 0.4 1.00 1.7 1.68 0.6 1.00
p2756 12.1 20.0 1.65 16.3 1.34 19.5 1.61 15.6 1.28 14.4 1.19 14.1 1.16
pk1 103.3 117.5 1.14 229.1 2.22 101.7 0.99 103.0 1.00 102.7 0.99 103.9 1.01
pp08a 5.6 4.8 0.85 >380.1 – 5.6 1.00 4.5 0.81 6.2 1.10 5.6 1.00

continued on the next page
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All Cuts No GMI No C-MIR No Knapsack No Flow Cover No Impl. B. No Clique

Time Time Time Time Time Time Time
Degrad. Degrad. Degrad. Degrad. Degrad. Degrad.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

pp08aCUTS 5.2 6.0 1.15 301.4 58.07 5.2 1.01 4.9 0.94 5.1 0.99 5.1 0.99
prod1 79.8 79.4 0.99 79.0 0.99 78.8 0.99 74.0 0.93 79.5 1.00 78.7 0.99
qap10 602.2 574.8 0.95 586.6 0.97 591.9 0.98 598.5 0.99 599.3 1.00 356.5 0.59
qiu 214.7 215.2 1.00 214.6 1.00 215.6 1.00 219.9 1.02 219.6 1.02 220.9 1.03
qnet1 12.3 7.1 0.58 9.0 0.73 12.1 0.98 9.8 0.80 10.8 0.88 12.6 1.03
qnet1 o 8.1 5.8 0.72 9.8 1.20 8.0 0.98 7.1 0.87 8.1 0.99 8.1 0.99
ran10x26 100.7 90.1 0.89 92.4 0.92 91.7 0.91 95.6 0.95 100.3 1.00 101.7 1.01
ran12x21 187.5 212.7 1.13 254.8 1.36 219.6 1.17 233.3 1.24 187.7 1.00 189.4 1.01
ran13x13 75.9 102.7 1.35 113.8 1.50 61.3 0.81 111.9 1.47 76.0 1.00 75.4 0.99
ran8x32 37.8 40.8 1.08 53.1 1.41 40.6 1.08 73.3 1.94 37.5 0.99 37.5 0.99
rentacar 8.8 8.6 0.97 7.0 0.79 8.7 0.98 7.0 0.79 26.8 3.03 8.8 0.99
rgn 0.6 0.7 1.00 1.3 1.29 0.6 1.00 1.1 1.09 0.7 1.00 0.6 1.00
rout 56.9 141.3 2.48 175.7 3.09 361.9 6.37 255.3 4.49 56.7 1.00 57.1 1.00
set1ch 1.6 1.5 0.96 >2181.3 – 1.8 1.16 1.1 0.70 1.5 0.98 1.5 0.97
seymour1 1300.6 1346.5 1.04 1248.3 0.96 1310.6 1.01 1255.0 0.96 1250.3 0.96 1193.7 0.92
stein27 2.9 3.1 1.06 3.0 1.04 3.0 1.02 3.0 1.04 3.0 1.05 2.9 1.01
stein45 63.5 61.4 0.97 69.0 1.09 64.1 1.01 63.9 1.01 64.2 1.01 65.4 1.03
swath1 202.0 138.2 0.68 198.6 0.98 187.0 0.93 199.9 0.99 201.3 1.00 200.8 0.99
swath2 404.5 317.3 0.78 340.0 0.84 411.4 1.02 323.7 0.80 406.2 1.00 407.0 1.01
swath3 1465.8 1100.6 0.75 2571.9 1.75 1544.5 1.05 1316.3 0.90 1472.9 1.00 1463.0 1.00
vpm1 0.1 0.1 1.00 0.4 1.00 0.1 1.00 0.0 1.00 0.1 1.00 0.1 1.00
vpm2 12.2 9.8 0.80 10.0 0.82 10.8 0.89 8.9 0.73 9.8 0.80 12.2 1.00

Geom. Mean (85/92) 1.03 1.13 1.05 1.02 1.03 0.97

Not Solved to Opt. 0 2 4 1 3 1 2

Table B.68: Computational results concerning the impact of individual cutting plane separators
on the overall performance of Scip. Disabling individual cutting plane separators on the solvable
test set. Degrad. Factor is defined by (7.2). It gives the factor by which disabling a separator
degrades the performance with respect to the performance measure Time.
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All Cuts No GMI No C-MIR No Knapsack No Flow Cover No Impl. B. No Clique

Gap % Gap % Gap % Gap % Gap % Gap % Gap %
Degrad. Degrad. Degrad. Degrad. Degrad. Degrad.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

a1c1s1 44.93 47.16 1.05 80.86 1.80 40.23 0.90 44.27 0.99 52.36 1.17 44.89 1.00
aflow40b 17.40 17.41 1.00 10.50 0.60 16.63 0.96 8.41 0.48 15.20 0.87 17.09 0.98
arki001 0.03 0.03 1.00 0.02 1.00 0.02 1.00 0.03 1.00 0.04 1.00 0.03 1.00
atlanta-ip ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
binkar10 1 0.36 0.36 1.00 0.27 1.00 0.45 1.00 0.36 1.00 0.36 1.00 0.36 1.00
dano3mip 23.32 23.32 1.00 27.23 1.17 25.26 1.08 23.32 1.00 23.32 1.00 23.32 1.00
danoint 4.34 4.34 1.00 4.34 1.00 4.18 0.97 5.31 1.22 4.32 1.00 4.37 1.01
ds 532.00 531.68 1.00 531.29 1.00 532.00 1.00 532.00 1.00 532.00 1.00 447.76 0.84
fast0507 4.43 4.43 1.00 4.43 1.00 4.43 1.00 4.43 1.00 4.43 1.00 4.43 1.00
glass4 150.00 150.00 1.00 141.67 0.94 150.00 1.00 159.38 1.06 168.75 1.13 135.94 0.91
liu 381.79 388.93 1.02 305.00 0.80 381.79 1.00 381.79 1.00 381.79 1.00 381.79 1.00
markshare1 ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
markshare2 ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
mkc 2.42 3.56 1.47 3.02 1.25 1.46 0.61 3.53 1.46 4.22 1.75 3.23 1.34
mkc1 0.02 0.05 1.00 0.01 1.00 0.21 1.00 0.01 1.00 0.05 1.00 0.03 1.00
momentum1 ∞ ∞ – ∞ – ∞ – 44.32 – 99.89 – ∞ –
momentum2 ∞ ∞ – ∞ – ∞ – ∞ – 43.96 – ∞ –
msc98-ip ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
neos616206 9.97 11.37 1.14 8.52 0.85 7.44 0.75 6.23 0.63 9.96 1.00 10.69 1.07
neos12 12.71 13.49 1.06 12.70 1.00 12.72 1.00 12.75 1.00 12.84 1.01 12.72 1.00
neos14 2.02 4.87 2.41 4.89 2.42 2.02 1.00 0.97 0.49 2.29 1.13 2.02 1.00
neos15 7.23 6.47 0.89 16.25 2.25 7.23 1.00 6.51 0.90 7.42 1.03 7.23 1.00
neos16 ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
neos17 390.62 390.47 1.00 390.62 1.00 390.57 1.00 390.68 1.00 390.52 1.00 390.68 1.00
neos18 6.67 6.67 1.00 6.67 1.00 6.67 1.00 6.67 1.00 6.67 1.00 6.67 1.00
neos19 ∞ 15.33 – ∞ – ∞ – ∞ – ∞ – ∞ –
neos23 1.48 7.87 5.31 0.00 – 0.00 – 1.48 1.00 0.00 – 0.00 –
net12 151.88 ∞ – 113.85 0.75 47.44 0.31 ∞ – ∞ – 147.97 0.97
noswot 4.65 4.65 1.00 4.65 1.00 4.65 1.00 4.65 1.00 4.65 1.00 4.65 1.00
nsrand-ipx 7.78 7.47 0.96 6.41 0.82 11.12 1.43 9.61 1.24 7.78 1.00 7.78 1.00
opt1217 16.83 19.87 1.18 16.83 1.00 16.83 1.00 16.83 1.00 16.83 1.00 16.83 1.00
protfold ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
ran14x18 1 3.80 3.81 1.00 4.31 1.14 4.02 1.06 3.88 1.02 3.80 1.00 3.80 1.00
roll3000 2.85 3.58 1.25 5.18 1.82 4.28 1.50 5.47 1.92 2.25 0.79 2.75 0.96
seymour 2.78 2.77 1.00 2.77 1.00 2.79 1.00 2.78 1.00 2.78 1.00 3.49 1.26

continued on the next page
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All Cuts No GMI No C-MIR No Knapsack No Flow Cover No Impl. B. No Clique

Gap % Gap % Gap % Gap % Gap % Gap % Gap %
Degrad. Degrad. Degrad. Degrad. Degrad. Degrad.

Name Value Value Factor Value Factor Value Factor Value Factor Value Factor Value Factor

sp97ar 6.99 3.34 0.48 6.99 1.00 5.56 0.80 6.99 1.00 6.99 1.00 6.99 1.00
swath 37.47 40.15 1.07 28.76 0.77 29.61 0.79 38.03 1.02 37.47 1.00 37.47 1.00
t1717 ∞ ∞ – ∞ – ∞ – ∞ – ∞ – ∞ –
timtab1 20.01 26.84 1.34 79.54 3.98 41.05 2.05 21.29 1.06 39.16 1.96 20.01 1.00
timtab2 175.73 ∞ – ∞ – ∞ – ∞ – 149.54 0.85 175.73 1.00
tr12-30 0.12 0.07 1.00 43.74 43.74 0.12 1.00 0.15 1.00 0.42 1.00 0.12 1.00

Geom. Mean (28/41) 1.05 1.29 1.01 0.99 1.05 1.01

No Feas. Sol. 8 9 9 9 9 7 8
Solved to Opt. 0 0 1 1 0 1 1

Table B.69: Computational results concerning the impact of individual cutting plane separators
on the overall performance of Scip. Disabling individual cutting plane separators on the unsolvable
test set. Degrad. Factor is defined by (7.2). It gives the factor by which disabling a separator
degrades the performance with respect to the performance measure Gap %.
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[27] A. Fügenschuh and A. Martin. Computational integer programming and cutting
planes. In K. Aardal, G.L. Nemhauser, and R. Weismantel, editors, Handbooks
in Operations Research and Management Science, volume 12, pages 69–122.
Elsevier, 2005.

[28] R.E. Gomory. An algorithm for the mixed integer problem. Technical Report
RM2597, The RAND Corporation, 1960.
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