
Combinatorial Online-Optimization in Practice

Jörg Rambau / Luis M. Torres

Modeling

1. Consider this more general version of the “ADAC problem”: there is a set
requests V = {1, . . . n} located at some points in the plane. Some of them,
like in the case presented in the lecture, are served just by moving a unit to
them. However, there are another requests demanding a damaged vehicle to
be transported to a garage (which may be different for each request). Model
this problem in graph theoretical terms for the following cases:

(a) There is only service one unit and no time windows.

(b) More than one units and no time windows.

(c) More than one units and hard time windows.

2. The picture shows a (trivial) instance of a vehicle routing problem. Located
on the road map are one service unit u and two events 1 and 2. For each
road segment, the traveling time (in minutes) and traveling cost (in dollars)
is given. The first event needs to be attended within 50 minutes, the second
one within one hour. Suppose, at first, that the service of an event occurs
“instantly” when the unit arrives to it, i.e., it takes no time and has no cost.
We want to find a feasible route of minimum cost for u.

�

�

�

10 min, $2

10
m
in
, $

5

20 min, $3
u

1

2

(a) Model the problem as a hamiltonian shortest path problem with re-
source constraints in an undirected graph. Characterize (in words)
which are the feasible solutions and find the best by inspection.

(b) Construct the time expanded network for this graph. For this pur-
pose, discretize the time in intervals of 10 minutes. Again, characterize
the feasible solutions and find the optimum by inspection. How is the
condition “every event hast to be visited exactly once” stated in this
expanded network?

1

(c) Suppose that the time intervals in the problem data are increased, or,
equivalently, that we need to choose a more precise discretization of the
time (5 minutes, for example). What happens in both cases to the time
expanded network? This is why the algorithms that use this approach
are called only pseudopolynomial.

(d) How can the model be improved to handle the service time and service
costs of the events?

2

Combinatorial Online-Optimization in Practice

Jörg Rambau / Luis M. Torres

Easy and hard problems

1. Let D = (V, A) be a directed graph and c : A → R+ a nonnegative cost
function on the arcs.

(a) Suppose a set of labels {yv : v ∈ V } has been found for all the vertices
in V such that

yv + cvw ≥ yw (1)

holds for all vw ∈ A. Let s and t be two arbitrary nodes in V . Prove
that any path from s to t has a cost larger or equal than yt − ys.

(b) Prove that the distance labels found by Djikstra’s algortihm satisfy
equation (1) for all arcs in A.

(c) Use the last observation to prove the correctness of Djikstra’s algortihm
and show that it can be implemented to run in time O(n2).

2. A topological sort of a digraph D = (V, A) is a set {`v : v ∈ V } of labels for
its nodes having the property that `v < `w holds for all arcs vw ∈ A. A
digraph has a topological sort if an only if it doesn’t contain any (directed)
cycle.

(a) Give an algorithm for finding a topological sort in an acyclic digraph
and analyze its complexity.

(b) Suppose that D is stored as a list L+(v) of successors and a list L−(v) of
predecessors for each node v in such a way, that it is possible to remove
a node in time O(|L+(v)| + |L−(v)|). Improve (if necessary) your last
algorithm and use it to solve the shortest path problem in time O(m)
(where m is the number of arcs of the digraph).

3. The following problem is known as the knapsack problem. There are given n

distinct objects of values {a1, . . . , am} and weights {w1, . . . , wm}. You have
a knapsack of limited capacity W (with W <

∑

wi) and want to choose
as much value as possible to transport, i.e., you are looking for a subset of
objects such that the sum of their weights is not larger than than W and the
sum of their values is maximal. This problem is known to be NP-hard.

Show that this problem can be (polynomially) transformed into a shortest
path problem with one resource constraint and a negative cost function in

3

an acyclic digraph. This proves that the resource constrained shortest path
problem is NP-hard, (why?) even for the case when there is only one resource.

Hint: Introduce two nodes for each of the objects, asociated to the decision
“take it” or “do not take it”.

4. We will next consider Kruskal’s algorithm for the MST. (We keep the same
notation used in the lecture). The first step of the algorithm (sorting the
nodes according to their weights) can be implemented to run in time O(m log m)
using well-known sorting procedures (for example HeapSort) which we will
not discuss here. Let us focus on how long it takes to execute the “main
loop”,i.e., adding new edges of the tree and testing if they create circuits.

(a) A very simple implementation is the following: we maintain for each
node v a label C(v) indicating the connected component of T to which
v belongs. (All these labels are kept in a vector). Initially, C(v) = v

for all v ∈ V . To prove if adding an edge ei = uv creates a circuit in
T , we can compare C(u) and C(v). After adding an edge uv, however,
we have to take care to update the vector C: either change every C(u)
with C(v) or the other way around. The figure shows C and T before
and after inserting a new edge.

Before inserting edge 12:
v C
1 2
2 1
3 1
4 1
5 2
6 3
7 3

1

52

3

4

6

7

After inserting edge 12:
v C
1 1

2 1
3 1
4 1
5 1

6 3
7 3

1

52

3

4

6

7

Show that this implementation runs in time O(n2).

4

(b) The algorithm can be accelerated by using a more advanced data struc-
ture to store the connected components: every connected component
will be maintained as a linked list. For every node v of the graph, we
keep a pointer f(v) to a linked list associated with its component. The
first element of the this list contains information about the size s of the
list, and a pointer to the last element.

When an edge is added, the lists corresponding to the two components
being connected are merged (check that this can be done in constant
time) and the pointer information is changed only for the nodes in the
smaller component. The next figure shows these data structures for the
same example from above.
Before inserting edge 12:

v f
1 f2
2 f1
3 f1
4 f1
5 f2
6 f3
7 f3

�

�

�

�

�

�

s=3
l1

s=2
l2

s=2
l3

3 4 2

1 5

7 6

f1

f2

f3

l1

l2

l3

After inserting edge 12:

v f
1 f1

2 f1
3 f1
4 f1
5 f1

6 f3
7 f3

�

�

�

	

s=5

l1

s=2
l3

3 4 2

1 5

7 6

f1

f3

l1

l3

Show that with this new implementation, the main loop of the algo-
rithm runs in time O(m logn). This gives an overall running time of
O(m logm).

5. Consider the instance of the shortest path problem with time windows given
in the following picture. The interval at each node shows the time window

5

when a vehicle is allowed to visit that node. The numbers showed on the
arcs are the travel costs. Assume all travel times are equal to one.

s

1

2

t

3
3

1

1

1

5

3
1

[0;1]

[1;2]

[1;2]

[1;2]

[2;4]

Find the shortest path from s to t that respects all the time windows. To
do this, follow the idea of the time expanded network: construct a new
digraph with one copy of each node for each unit of time of its time windows.
“Translate” the original arcs into this time expanded network. Finally, solve
the problem using Djisktra’s algorithm.

6

Combinatorial Online-Optimization in Practice

Jörg Rambau / Luis M. Torres

Basics: Polynomial algorithms revisited

Throughout this session, we will discuss some topics on the matching
problem and the well-known Edmond’s algorithm. In all exercises, let G =
(V, E) be an undirected graph and M a matching in G.

1. Let A a subset of nodes. A connected component of the graph G \ A which
has an odd number of vertices will be called an odd component of G \ A.
Moreover, let us denote by oc (G \ A) the number of such odd components
in G \ A.

Prove that, for any matching M in G, the following holds:

|M | ≤
1

2
(|V | − oc (G \ A) + |A|) .

In particular, this means that if there is a set of nodes A with oc (G \ A) >

|A|, then there is no matching that can cover all nodes in V .

Hint: Count the M -exposed nodes (i.e., the nodes not covered by the
matching).

In fact, if M is a matching of maximum cardinality, then there is a set of
nodes A for which the last expression holds with equality. This is known as
the Tutte-Berge Formula.

2. A (simple) path in G is called an M -alternating path if it consists alternately
of edges belonging to M and not, like in the figure (the bold edges are
matching edges).

0 1 2 3 4 5

An M -alternating path between two M -exposed nodes u and v is called an
M -augmenting path. Show that M is a matching of maximum cardinality if
and only if there are no M -augmenting paths in G.

3. A matching is called perfect if it covers all the nodes of the graph. In the
next exercises, we are going to design a polynomial algorithm for constructing
perfect matchings. Let us start with the case when G is a bipartite graph.

Suppose we are given some non-perfect matching in G and consider the fol-
lowing marking procedure CreateTree.

7

Algorithm 1 CreateTree

Input: A graph G = (V, E), a matching M in G.
Output: An M -alternating tree T .

1: Choose an M -exposed node r and mark it with B;
2: Set V (T) = {r}, E(T) = ∅;
3: while there exists vw ∈ E with v marked as B and w not marked do

4: if w is M -exposed then

5: return T . STOP;
6: end if

7: if w is M -covered then

8: Let wz be the matching edge covering w;
9: Mark w with A and z with B;

10: Add w and z to V (T), and vw, wz to E(T);
11: end if

12: end while

13: return T . STOP.

(a) Show that CreateTree is correctly defined, i.e., that it ends after
finitely many steps, that it does not mark any node more than once,
and that it constructs a subgraph T of G which is a tree. Note that
since M is non-perfect, at least one node is marked (Why?) The tree T

is called an M -alternating tree, since the paths going from the root to
any other node of the tree are alternating paths. Observe that no edge
of the tree connects two nodes having the same mark.

(b) Show that after CreateTree has ended one of the two following stop
conditions must hold:

Either: The neighbours of every node marked as B are all marked as A

or: There is an M -augmenting path in G.

Hint: Remember that G is bipartite.

(c) Using the results of exercise one, show that if the first stop condition
(“Either”) holds, then G has no perfect matching.

(d) Put all these ideas together to construct an algorithm for finding a
perfect matching in a given bipartite graph G or stating that G has
no perfect matching. Where does the algorithm fail when G is not
bipartite?

4. Given an odd circuit C (i.e., a circuit with an odd number of edges), we
define the following operation on G: we delete from the graph all nodes in

8

V (C) and replace them by a new node c, then we connect this node to all the
neighbours of the vertices of C. The next figure illustrates this procedure.

1

2
3

4
5

6

7

8

9

C

G

c

6

7

8

9

G × C

We call this operation to shrink the odd circuit C. The new graph will be
denoted by G × C and the new node c is usually called a pseudonode, to
differentiate it from the “original” nodes in G.

(a) Show that any perfect matching M ′ in G × C can be used to construct
a perfect matching in G. We call this operation to extend a matching.

(b) Show with a counterexample that the converse is not true: a perfect
matching in G cannot always be “shrinked” to a perfect matching in
G × C. In particular, this means that it is not possible just to shrink
all odd circuits of G until we obtain a bipartite graph G′, then solve the
matching problem in G′ with the last algorithm and finally extend the
solution to G.

5. Despite of the last observation, the idea of shrinking odd circuits and ex-
tending matchings can be used to formulate an algorithm for finding perfect
matchings on general graphs. This is the idea of the famous BlossomAl-

gorithm due to Edmonds described below.

(a) Show that the shrinking step is well defined, i.e., that it preserves the
structure of T as an M -alternating tree.

(b) Prove that the BlossomAlgorithm terminates after a finite number
of steps.

(c) Show that after the BlossomAlgorithm has ended, it either finds a
perfect matching in G or gives a proof that such a matching does not
exist. (Hint: Observe that none of the nodes marked as B can be a
pseudonode. Why?)

9

Algorithm 2 BlossomAlgorithm

Input: A graph G = (V, E),
Output: A perfect matching M in G, if it exists.

1: Set M = M ′ = ∅, G′ = G;
2: Choose an M ′-exposed node r and mark it with B;
3: Set V (T) = {r}, E(T) = ∅;
4: while there exists vw ∈ E with v marked as B and w not marked as A

do

5: if w is M ′-exposed then

6: Use the M ′-augmenting path from r to w to enlarge M ′;
7: Extend M ′ to a matching M in G;
8: Clear all node marks;
9: Set M ′ = M , G′ = G;

10: if there is no M ′-exposed node in G′ then

11: Return perfect matching M ′ and STOP;
12: else

13: Choose an M ′-exposed node r and mark it with B;
14: Set V (T) = {r}, E(T) = ∅;
15: end if

16: end if

17: if w is M ′-covered and w is not marked as B then

18: Let wz be the matching edge covering w;
19: Mark w with A and z with B;
20: Add w and z to V (T), and vw, wz to E(T);
21: end if

22: if w is M ′-covered and w is marked as B then

23: Let C be the circuit obtained in T by adding vw to E(T);
24: Set G′ = G′ × C, T = T × C;
25: Mark the new pseudonode c with B;
26: end if

27: end while

28: STOP. G has no perfect matching.

10

Combinatorial Online-Optimization in Practice

Jörg Rambau / Luis M. Torres

Geometric Descriptions of Optimization Problems

We will study in this session valid inequalities for polytopes associated to
various combinatorial problems.

1. Let x1, . . . , xk be some points in R
n that satisfy a given linear inequality H

of the form aT x ≤ b. Furthermore, let

P := conv {x1, . . . , xk}

be the polytope defined by the convex hull of these points. Show that any
y ∈ P also satisfies H. What happens with equalities?

2. Given a graph G = (V, E), the perfect matching polytope PMP(G) of G is
defined as:

PMP(G) := conv
{

x ∈ R
E : x is the characteristic vector

of a perfect matching in G}

Prove that any x ∈ PMP(G) satisfies the following set of equalities and
inequalities:

∑

e∈δ(v)

xe = 1, ∀v ∈ V

∑

e∈δ(S)

xe ≥ 1, ∀S ⊆ V with |S| odd,

0 ≤ xe ≤ 1, ∀e ∈ E.

3. In the lectures, we presented a set of inequalities defining the Path-and-
Cycles-Polytope associated to an undirected graph G.

(a) Show that every incidence vector of a hamiltonian (s, t)-path satisfies
all the inequalities of the system.

(b) It is known that the Path-and-Cycles-Polytope is integral, i.e., that its
vertices have only integral coordinates. Since the problem of finding a
hamiltonian (s, t)-path in a graph is NP-hard, it follows that the Path-
and-Cycles-Polytope must contain some other integral points which are
not the incidence vectors of hamiltonian paths. (Why?) Find some
examples.

11

(c) Following an usual approach in polyhedral combinatorics, we will now
try to refine our linear description of the polytope by finding some new
valid inequalities that separate invalid solutions. Show that the inci-
dence vector x of an (s, t)-path satisfies the following set of inequalities:

∑

e∈δ(S)

xe ≥ 2, ∀S ⊂ V \ {s, t} .

(d) Show that after adding the last inequalities, any vector x satisfying the
new linear system and having integral coordinates is the incidence vector
of an (s, t)-path. Let us call this new polytope the Path-No-Subtour-
Polytope.

(e) Unfortunately, by adding new inequalities, we have also created new
vertices with fractional coordinates in the polytope (so-called fractional
vertices). To see this, consider the Path-No-Subtour-Polytope associ-
ated to the following graph:

s t1

2

3

4

5

6
x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

(The labels indicate how the edges will be encoded in a characteristic
vector x). Show that the point:

xT
0 = (1,

1

2
,
1

2
,
1

2
, 1, 1,

1

2
,
1

2
,
1

2
, 1)

belongs to the polytope. On the other side, consider the hyperplane
given by the linear function

H : x1 + 2x2 + 2x3 + 2x4 + x5 + x6 + 2x7 + 2x8 + 2x9 + x10 = 10.5

Prove that all integral points of the Path-No-Subtour-Polytope (i.e., all
incidence vectors of (s, t)-paths lie on one side of H and that x0 lies on
the other side. What can you conclude from the result of exercise one?

12

Combinatorial Online-Optimization in Practice

Jörg Rambau / Luis M. Torres

Basic concepts on Polyhedrons

1. Consider the V-polytope P in R
2 defined by P := conv {Y }, where

Y =
{

(−4, 2)T , (−3,−2)T , (0, 4)T , (0, 2)T , (3,−2)T , (4, 0)T , (5, 2)T
}

(a) Draw the points of Y and the polytope P in a diagram.

(b) Apply one step of the Double Description Method to find a set of points
Y /2 such that:

convY /2 = convY ∩
{

x ∈ R
2 : x2 = 0

}

Do not calculate all coordinates. Just do it for the first point and find
the other ones graphically. Observe that the algorithm produces some
redundant points. Getting rid of them is not a trivial task.

2. Let us now consider the reciprocal problem: given the H-polytope P in R
2

defined by the following inequalities,

−x1 + 2x2 ≤ 10

x1 − x2 ≤ 4

x1 + 3x2 ≤ 15

−x1 − 4x2 ≤ 2

−x1 ≤ 4

apply one step of the Fourier-Motzkin elimination method to find a set of
inequalities defining the projection of P on the hyperplane {x ∈ R

2 : x2 = 0}.
Draw a diagram illustrating how the algorithm works.

3. Consider the H-polytope P defined by the following system of inequalities:

−x1 + x2 ≤ 2

x1 + 2x2 ≤ 4

−3x1 − 2x2 ≤ 6

3x1 − 4x2 ≤ 12

(a) Introduce four new variables w1, . . . , w4 and write P as the intersection
of a new H-polytope

C0(A) :=

{(

x

w

)

∈ R
6 : Ax ≤ w

}

and four hyperplanes.

13

(b) Using the following identity

(

x

w

)

=

2
∑

i=1

|xi| sign(xi)

(

ei

Aei

)

+

4
∑

j=1

(wj − (Ax)j)

(

0
ej

)

write C0(A) as a conic combination of a set of vectors in R
6. This gives

a description of C0(A) as a V-polytope. How would you proceed to
obtain from this a description of P as a V-polytope?

4. Again, let’s look at the converse problem. Given the V-polytope in R
2,

P := conv
{

(−2, 2)T , (1,−2)T , (4, 4)T , (5, 1)T
}

find a H-polytope P ′ in R
6 such that P is a projection of P ′.

14

Combinatorial Online-Optimization in Practice

Jörg Rambau / Luis M. Torres

Linear Programming

1. Consider the following pair of dual linear programs:

max cT x s.t.

(LP) Ax ≤ b

x ≥ 0

min yT b s.t.

(DP) yTA ≥ cT

y ≥ 0

where A ∈ R
m×n; x, c ∈ R

n; and y, b ∈ R
m.

(a) Prove that every feasible solution of DP is an upper bound on the value
of the optimal solution for LP and, conversely, every feasible solution of
LP is a lower bound on the value of the optimum for DP. This property
is called weak duality.

(b) Knowing that

max
{

cT : Ax ≤ b
}

= min
{

yT b : yTA = cT , y ≥ 0
}

(provided both sets are non-empty) prove that the optimal values of LP
and DP do in fact coincide. This property is called strong duality.

(c) Prove the complementary slackness conditions for any pair of optimal
solutions x̃ and ỹ to LP and DP:

(cT − ỹTA)x̃ = 0

ỹT (b − Ax̃) = 0

2. Given an undirected graph G = (V, E), a famous result of Edmonds says
that the problem of finding a perfect matching of minimum weight in G can
be stated as the following linear program:

min
∑

e∈E

xe ce

s.t.
∑

e∈δ(v)

xe = 1 ∀v ∈ V,

∑

e∈δ(S)

xe ≥ 1 ∀S ⊆ V with |S| odd,

xe ≥ 0 ∀e ∈ E.

15

(a) Interpret this linear program in graph-theoretical terms.

(b) Show that if G is bipartite, then the inequalities referring to odd sets
of nodes are redundant.

(c) Write down the dual linear program for the case when G is bipartite.
Explain what the duality theorem implies for this problem.

(d) Use complementary slackness to derive optimality conditions for a pair
of primal and dual solutions. Can you turn this conditions into the
idea for an algorithm to solve the minimum weight perfect matching
problem?

3. Given the directed graph D = (V, A) with cost function c on the arcs, the
problem of finding a shortest path between two nodes s and t can be stated
as the following linear program:

min
∑

a∈A

xa ca

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 ∀v ∈ V \ {s, v} ,

∑

a∈δ−(s)

xa = 1,

∑

a∈δ+(t)

xa = 1,

xa ≥ 0 ∀a ∈ A.

Explain the restrictions in graph-theoretic terms. Formulate the dual prob-
lem and interpret its meaning. Analize the complementary slackness condi-
tions.

16

Combinatorial Online-Optimization in Practice

Jörg Rambau / Luis M. Torres

Large Scale Integer Programming

Polyhedral studies play an important role when solving large scale integer
programs. The knowledge about a specific polytope can be exploited to gen-
erate good cutting planes and tighten the linear bounds that appear during
the branch-and-bound process. This enhanced method is sometimes called
Branch-and-Cut.

As an example of possible cutting planes, we will consider in this session
two kinds of linear inequalities present in the stable set polytope associated
to an undirected graph G = (V, E).

Recall that the problem of finding a stable set of maximal cardinality in
G can be stated as the following integer program:

max
∑

v∈V

xv

s.t.

xv + xw ≤ 1 ∀vw ∈ E, (2)

xv ∈ {0, 1} .

The constraints (2) are usually called edge inequalities. The feasible solu-
tions to this problem are incidence vectors of stable sets in G. Their convex
hull is called the stable set polytope and usually denoted by STAB(G).

1. A clique is a set of nodes of a graph which are all pairwise adjacent. Associ-
ated to each clique Q in G is the clique inequality :

∑

v∈Q

xv ≤ 1

(a) Prove that the clique inequality is valid for the stable set polytope, i.e.,
that the incidence vector of any stable set in G satisfies this inequality.

(b) Show that this inequality cannot be obtained from the edge inequalities.

(c) Recall the definition of facet : an inequality aT x ≤ α is said to define a
facet of a polyhedron P if the following holds

dim
({

x ∈ P : aT x = α
})

= dim(P) − 1

Facet-defining inequalities are very important in a linear description
of a polyhedron. In fact, it can be shown that the set of all these

17

inequalities forms a complete and non redundant linear description of the
polyhedron. Find conditions for clique inequalities to be facet defining.

Hint: Prove at first that dim(STAB(G)) = |V | and try to find |V | affine
independent vectors that satisfy the clique inequality with equality.

(d) Suppose you are given a fractional vector x∗ ∈ R
|V |. How would you

detect if x∗ violates some clique inequality? This is called the separation
problem.

18

