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We consider a mixed-integer linear program (MIP) for supply chains that has been derived in
[A. Fügenschuh, S. Göttlich, M. Herty, A. Klar, and A. Martin, A discrete optimization approach to
large scale supply networks based on partial differential equations, SIAM J. Sci. Comput. 30(3) (2008),
pp. 1490–1507] from a continuous supply chain model based on partial differential equations (PDEs). We
develop new presolve techniques where knowledge about the continuous framework is involved. For this
purpose, several presolve levels are introduced and compared numerically. The presented methods reduce
the size of the MIP in terms of number of variables and constraints, accelerate the solution process of the
MIP when using numerical solvers, and finally assure that such solvers are able to find feasible solutions
at all, where in some cases they would fail without.
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1. Introduction

Recently, continuous supply chain network models have gained attention from a theoretical as
well as from a computational point of view [2–4,7,12,13,15,16,18,19]. A continuous supply chain
model has been derived from discrete event simulations in the case of many parts, which is com-
mon to mass manufacturing processes [4]. Hence this model is in particular applicable in situations
where the number of goods or parts in the network is huge compared with the number of machines
and inventories. A continuous model typically consists of ordinary and partial differential equa-
tions (ODEs and PDEs, respectively) describing the different physical realities as processing and
stocking, respectively. In many applications the simulation of such a production process is only of
minor importance, and a far more interesting question concerns the optimization of a given supply
chain network with respect to network loads, sizes of the inventories or production costs. The
numerical solution to such an optimization problem in general requires a suitable discretization
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of the optimality system and, in particular, a discrete approximation of the arising PDEs. In [17],
a discretization has been proposed that finally yields a linear mixed-integer problem. However,
without employing additional structure information the mixed-integer problem cannot be solved
efficiently and even fails to be solvable in realtime. In this paper we are interested in efficient
presolve techniques that can be applied in order to reduce the size of the mixed-integer problem
and its computational solution time.

For general purpose mixed-integer linear programming (MIP), preprocessing or presolving
refers to a bundle of different techniques that are known to decrease the solution time, that is, the
time a numerical MIP solver needs to find an optimal solution and prove its optimality. Usually
the presolving subroutine is called before the actual branch-and-cut solution process starts. Its
purpose is to find and remove redundant parts of the problem formulation and thus output a
somehow strengthened version of the model. In this work we focus on preprocessing techniques
motivated by the underlying PDEs. The main idea is to use knowledge of the behaviour of the
underlying continuous PDEs in order to derive efficient presolve techniques. The most beneficial
technique for solving MIPs coming from PDE discretizations turns out to be bounds strengthening
together with a suitable ordering of the constraints. For a survey of other preprocessing techniques,
we refer to [1,10,20,29,30].

We present our ideas on the example of an optimization problem for the continuous supply
chain model. We give numerical results on the improvement of the solution time depending on the
applied presolve technique. In particular, we observe that the applied preprocessing outperforms
standard techniques that are implemented in most of the modern academic or commercial MIP
solvers (such as Ilog Cplex).

2. Discrete formulation of the continuous model

We start this section with briefly summarizing the continuous network model developed in [18,19]
and subsequently formulated as an optimal control problem [17,23]. We present a valid dis-
cretization of the continuous model that can be considered as an MIP to solve the original
PDE-constrained optimal control problem. A detailed derivation and analysis of the proposed
MIP can be found in [17].

For convenience we motivate the basic model proposed in [4,18]. The overall purpose is to
model a production line or a supply chain that consists of processors for manufacturing goods
and queues for buffering goods that have not yet been processed. Each processor is accompanied
by a single queue. Goods leaving the processor move directly to the buffering queue of the next
processor. To this end each processor e is characterized by a maximal processing capacity μe

and a processing velocity ve. The network of processors (production network) is modelled as a
finite, directed graph (V, A) consisting of a set of vertices V and a set of arcs A. Each arc e ∈ A
corresponds to one processor and it is mapped on the interval [ae, be]. The length of each processor
is then determined by Le = be − ae (see Figure 1). The vertices are distribution or merging points
of the production network. We denote for a fixed vertex v with multiple incoming and outgoing
arcs, by δ+

v the set of all incoming arcs and by δ−
v the set of all outgoing arcs, respectively.

Figure 1. Example for two connected processors.
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Figure 2. Example for a dispersing intersection. Here, we have only one variable control A1,2
n at time n, where

A1,3
n = 1 − A1,2

n .

In the case of |δ−
v|> 1 there is freedom to distribute the incoming flux along the outgoing arcs.

We introduce distribution rates Av,e
n , v ∈ Vd where Vd ⊂ V denotes the set of dispersing junctions

(see Figure 2). The functions Av, e are required to satisfy 0 ≤ Av,e
n ≤ 1 and

∑
e∈δ+

v
Av,e

n = 1. Here,
n denotes a timestep. For a fixed time horizon we introduce an equidistant time-grid with �t as
step size, NT as total number of timesteps and with tn = n�t.

According to [19] a discrete version of the dynamic model describing the evolution of the goods
in processors is given by

(PDE) : ye
n = ye

n−1 + �t

Le
ve

(
xe

n−1 − ye
n−1

)
. (1)

The previous equation is a two-point upwind discretization of a linear advection equation (see
Figure 3). The variable xe

n denotes the flux on arc e at point ae at time n and the variable ye
n

denotes the flux on arc e at point be at time n. Because of this coarse space discretization, we have
�x = Le.

Following [3,19] a discrete version of the dynamic model describing the evolution of goods in
the buffering queue is given by

(CPL) :
∑
e∈δ+

v

ze
n =

∑
e∈δ−

v

ye
n−1, ∀ v, n, (2a)

(QUE) : qe
n = qe

n−1 + �t
(
ze
n − xe

n

)
, ∀e, n, (2b)

Figure 3. Two-point upwind discretization.
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where the variable ze
n denotes the total inflow to arc e. The previous equations are an explicit Euler

discretization of an ODE. Further, we enforce that the inventories are non-negative,

qe
n ≥ 0, ∀e, n.

Since the maximal capacity of each processor implies an upper bound on the flux variables and
we prescribe the boundary data depending on the load of the queue, we have

0 ≤ xe
n ≤ μe, 0 ≤ ye

n ≤ μe, ∀e, n. (3)

Note that, if the queue is empty, i.e. qe
n−1 = 0, or almost empty (except an error of εreg), i.e.

qe
n−1 ≤ εreg, the outflow xe

n is either given by the inflow ze
n or by the maximal capacity μe. In the

case of ze
n > μe, that means the maximal capacity of processor e is exceeded, the queue starts

to build up. In contrast, if the queue is full, i.e. qe
n−1 > 0, the outgoing flow is always set to the

maximal capacity and the queue will be reduced, see again [3,23] for more details.

(FLUX) : xe
n = min

{
qe

n−1

εreg
, μe

}
, ∀e, n. (4)

Remark 2.1 To ensure that the numerical solution of Equation (1) will be an approximation of
the correct solution we have to impose a restriction on �t, called a CFL condition. A further
restriction on the time step size occurs if the queue-outflux is chosen as Equation (4). Combining
these facts we claim

�t := min

{
εreg,

Le

ve
: e ∈ A

}
. (5)

The reformulation of Equation (4) into a linear mixed-integer framework is as follows: we
transform the non-linearity in Equation (4) into linear constraints by introducing binary variables
ηe

n ∈ {0, 1} and a constant parameter M ∈ R
+
0 defined as

M := T

εreg
· max

e∈A
μe. (6)

Then, Equation (4) can be reformulated as

μeηe
n ≤ xe

n ≤ μe, (7a)

qe
n−1

εreg
− Mηe

n ≤ xe
n ≤ qe

n−1

εreg
. (7b)

For simulation only the discretized model is rewritten as an algorithm of the form for prescribed
values of Av,e

n :

forwardsolutionPDE

(1) For n From 1 To T Do
(2) For All e ∈ A Do
(3) ye

n := ye
n−1 + �t

Le v
e
(
xe

n−1 − ye
n−1

)
; (PDE)

(4) ze
n := A

v,e
n−1

∑
e∈δ−

v
ye

n−1; (CPL)

(5) xe
n := min

{
qe

n−1

εreg , μe
}

; (FLUX)

(6) qe
n := qe

n−1 + �t
(
ze
n − xe

n

)
; (QUE)

(7) End Do
(8) End Do
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Finally, we need to define initial values, i.e. at n = 0 we assume an empty network

xe
0 = 0, ye

0 = 0, qe
0 = 0, ∀e ∈ A.

We prescribe inflow profiles f in
i (n) for all discrete time steps n on designated arcs i incoming to

the network (ai = −∞).
For optimization, we define a cost functional. To this end, we introduce a functional measuring

the sizes of the queues:

J =
∑

e∈A,n∈T

qe
n.

Other cost functionals can be treated similarly. Having the previous discussion in mind, the mixed-
integer problem for minimizing queue lengths using rerouting in a supply chain is then stated as
follows:

min
∑

e∈A,n∈T

qe
n, (8a)

subject to (8b)

(PDE)∀ e, n : ye
n = ye

n−1 + �t

Le
ve

(
xe

n−1 − ye
n−1

)
, (8c)

(CPL)∀ v, n :
∑
e∈δ+

v

ze
n =

∑
e∈δ−

v

ye
n−1, (8d)

(FLUX1)∀ e, n : μeηe
n ≤ xe

n, (8e)

(FLUX2)∀ e, n : xe
n ≤ qe

n−1

εreg
, (8f)

(FLUX3)∀ e, n : qe
n−1

εreg
− Mηe

n ≤ xe
n, (8g)

(QUE)∀ e, n : qe
n = qe

n−1 + �t
(
ze
n − xe

n

)
, (8h)

(BND)∀e, n : 0 ≤ xe
n ≤ μe, 0 ≤ ye

n ≤ μe, 0 ≤ ze
n, 0 ≤ qe

n, (8i)

0 ≤ ηe
n ≤ 1, (8j)

(VAR)∀e, n : xe
n, y

e
n, z

e
n, q

e
n ∈ R, (8k)

ηe
n ∈ {0, 1}. (8l)

3. Bounds strengthening

A description of the bounds strengthening technique for general MIPs can be found in introductory
textbooks [22]. For convenience we recall the necessary steps in Appendix 1. We use the terms
lowerBoundStrengthening(x; (CONSTR)) and upperBoundStrengthening(x;
CONSTR)), respectively, to indicate which bound of variable x will be considered for improve-
ment using an equality or inequality constraint (CONSTR) out of Equations (8c)–(8h) from the
MIP model.

In the sequel we describe a hierarchy consisting of three successive levels of more and more
evolved presolving techniques, all based on the bounds strengthening procedure and a careful
reordering of the constraints.
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3.1 Ordered presolving

The first level, in the sequel called L1, refers to the direct application of the bounds strengthening
procedure to a given instance of model (8) together with a suitable ordering of the constraints and
variables. As the constraints come from a coupled PDE/ODE system which has been discretized
by an upwind scheme, there is an inherent order of the constraints implied. Hence, we sort the
constraints and apply bounds strengthening only in upwind direction of the flow, that is, we apply
the following algorithm:

presolveLevel1

(1) For n From 1 To T Do
(2) For All e ∈ A Do
(3) boundsStrengthening(ye

n; (PDE))
(4) boundsStrengthening(ze

n; (CPL))
(5) lowerBoundStrengthening(xe

n; (FLUX1))
(6) upperBoundStrengthening(xe

n; (FLUX2))
(7) lowerBoundStrengthening(xe

n; (FLUX3))
(8) upperBoundStrengthening(ηe

n; (FLUX1))
(9) lowerBoundStrengthening(ηe

n; (FLUX3))
(10) lowerBoundStrengthening(xe

n; (FLUX1))
(11) lowerBoundStrengthening(xe

n; (FLUX3))
(12) boundsStrengthening(qe

n; (QUE))
(13) End Do
(14) End Do

Note that steps (10) and (11) are a repetition of steps (5) and (7), respectively. This is necessary
since the update of the bounds from other steps, namely the bounds on the binaries ηe

n in steps (8)
and (9), can have a further influence on the bounds of these variables.

To the best of our knowledge there exist only few theoretical results on the number of iterations
a bounds strengthening procedure will require. Only if one puts additional assumptions on the
structure of the constraint system some results in this direction are known. For example in the case
of bounded integer programming problems with at most two non-zero coefficients per inequality
(IP2, for short), Bar-Yehuda and Rawitz [5] proved that the bounds strengthening routine can be
implemented such that it terminates on those systems in pseudopolynomial time O(mU), where m
is the number of inequalities and U := max{uj − lj : j} is the largest difference between lower
and upper bound among all variables. In this spirit we formulate the result dealing with the
behaviour of the bounds strengthening routine on the model. In particular, we implemented it in
such way that only one round is necessary to strengthen all bounds. It is also sufficient and no
further updates of bounds are found in a second round.

Theorem 3.1 Let an instance of model (8) be given. We assume that the bounds on all variables
are strengthened by calling presolveLevel1. Then no further update on any bound is found
when calling presolveLevel1 again.

Proof As abbreviations we write xe
n, x

e
n, y

e

n
, ye

n, z
e
n
, ze

n, q
e

n
, qe

n, η
e

n
, ηe

n for the lower and upper
bounds on the variables xe

n, y
e
n, z

e
n, q

e
n, η

e
n, respectively.

We prove the claim by induction over the timesteps n. For n = 1 there is nothing to show since
all lower and upper bounds are initialized with the initial values of the system (i.e. they are all set
to 0). Suppose now the statement is true for all timesteps up to n − 1. Then we deduce that it has
to be true also for the next timestep n.
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Suppose there is an update on the lower bound ye

n
of variable ye

n. The only step that
touches this bound in algorithm presolveLevel1 is step (3). From there we must have that,
if 1 −�t/(Le)ve > 0,

ye

n
<

(
1 − �t

Le
ve

)
ye

n−1
+ �t

Le
vexe

n−1. (9)

By assumption the bounds ye

n−1
and xe

n−1 did not change in this round (i.e. during the application
of presolveLevel1 for the second time), hence we also have

ye

n
≥

(
1 − �t

Le
ve

)
ye

n−1
+ �t

Le
vexe

n−1, (10)

which is the desired contradiction. With an analogue argument we derive a contradiction if
1 −�t/(Le)ve < 0.

Suppose there is an update on the upper bound ye
n, then we also obtain a contradiction following

the arguments from above. The same can be done for the lower or upper bounds on ze
n using (CPL),

and the bounds on qe
n using update using equation (QUE). For ze

n and constraint (CPL) we remark
that ze

n
= 0 for all arcs e and timesteps n, hence there is no contribution when updating the upper

bound on ze
n.

The more complicated cases are the lower bound on the variables xe
n and the lower and upper

bound on ηe
n. We start with the proof that ηe

n has not changed.
Suppose that there is an update on ηe

n due to constraint (FLUX1) in step (8) of
presolveLevel1. That means

1 = ηe
n >

⌊
1

μe
xe

n

⌋
= 0. (11)

This update can occur only if the upper bound xe
n was changed before, which can come only from

step (6) and constraint (FLUX2). From this we deduce

xe
n >

qe
n−1

εreg
, (12)

hence the upper bound qe
n−1 also has changed before, which is in contradiction to the induction’s

assumption.
Suppose that ηe

n
will be changed because of constraint (FLUX3) in step (9). Then

0 = ηe

n
<

⌈
−xe

n

M
+

qe

n−1

Mεreg

⌉
= 1. (13)

Hence qe

n−1
or xe

n has changed before. Since there cannot be a change of qe

n−1
by induction

assumption, it is xe
n that has changed. This is, as above, only possible in step (6), from which we

already know that a contradiction follows.
Suppose that xe

n will be changed because of step (10). That means from (FLUX1) we have

xe
n < μeηe

n
. (14)

Hence ηe

n
was updated earlier in step (9).Above we already argued that this leads to a contradiction.

And finally, suppose that xe
n will be changed because of step (11). Then

xe
n <

qe

n−1

εreg
− M · ηe

n. (15)

Since qe
n−1 did not change by assumption, it is ηe

n that must have been changed. This however is the
only possible in step (8), from which we already know that this leads also to a contradiction. �
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This theorem implies that for model (8) bounds strengthening can be implemented in such way
that it needs T ·A many steps (each step consists of a constant number of arithmetic operations),
where T is the number of timesteps and A is the number of arcs (processors).

3.2 Presolving for constraints with binary variables

Note that the binary variables ηe
n in the MIP model are in fact artificial auxiliaries. Their only

purpose is to transform the non-linear constraint (FLUX) into linear ones. The non-linearity
here is due to the min operator. This, however, comes at the price of introducing the infamous
big-M formulation, where a suitable large value for M serves as an upper bound on the values
in min operator, i.e. a bound on qe

n−1/ε
reg. Since qe

n−1 can be quite large, and εreg is typically
small, one will expect large values for M. This can cause numerical trouble for the bounds
strengthening procedure as well as for the subsequent linear programming algorithm. For the
bounds strengthening, however, we do not need to resort to the linearized formulation (FLUX1),
(FLUX2), and (FLUX3). We can directly make use of the non-linear constraint (FLUX) instead.

We introduce a new procedure nonlinearBoundsStrengthening(xe
n; (FLUX)), which

performs the following update steps:

xe
n := min

{
xe

n, min

{
qe

n−1

εreg
, μe

}}
, (16)

xe
n := max

{
xe

n, min

{
qe

n−1

εreg
, μe

}}
. (17)

Hence the steps (5)–(13) in presolveLevel1 now shrink to a single step, and the overall
level 2 presolve algorithm is the following:

presolveLevel2

(1) For n From 1 To T Do
(2) For All e ∈ A Do
(3) boundsStrengthening(ye

n; (PDE))
(4) boundsStrengthening(ze

n; (CPL))
(5) nonlinearBoundsStrengthening(xe

n; (FLUX))
(6) boundsStrengthening(qe

n; (QUE))
(7) End Do
(8) End Do

We remark that Theorem 3.1 can be carried over to presolveLevel2 to show, as before,
that there are no further updates when applying the same routine a second time.

3.3 Aggregation of constraints

Consider constraint (QUE) for timestep n and arc e, and insert constraint (FLUX) for xe
n, then

we arrive at

(AGG) qe
n = qe

n−1 + �t

(
ze
n − min

{
qe

n−1

εreg
, μe

})
. (18)

Note that by this aggregation we removed the dependency of (QUE) from the variable xe
n. Thus,

when applying (non-linear) bounds strengthening to this new constraint, one can expect better
bounds in some cases. Namely,
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• if qe
n−1/εreg ≤μe we additionally have the following update on the upper bound of qe

n:

qe
n := min

{
qe

n, q
e
n−1

(
1 − �t

εreg

)
+ �t · ze

n

}
, (19)

• and if qe
n−1/εreg ≥μe we can update the lower bound of qe

n as follows:

qe

n
:= max

{
qe

n
, qe

n−1
+ �t(ze

n
− μe)

}
. (20)

Hence the highest level of presolving L3 consists of the following steps:

presolveLevel3

(1) For n From 1 To T Do
(2) For All e ∈ A Do
(3) boundsStrengthening(ye

n; (PDE))
(4) boundsStrengthening(ze

n; (CPL))
(5) nonlinearBoundsStrengthening(xe

n; (FLUX))
(6) boundsStrengthening(qe

n; (QUE))
(7) nonlinearBoundsStrengthening(qe

n; (AGG))
(8) End Do
(9) End Do

4. Computational results

We test our three presolve algorithms, which we call scmip-presolve in the sequel, on selected test
instances defined by a network (with capacities, velocities and lengths given for each processor),
an inflow profile and the duration of simulation. The algorithms are implemented in C + + and
compiled with GNU gcc 3.2.3.All computations are performed on a 2.4 GHzAMD64X2 processor
with 2 GB RAM on a Linux platform. The MIPs are solved by Ilog Cplex 10.0 [21] with default
settings.

For each problem instance, we generate MIPs containing the mixed-integer formulated problem
after scmip-presolving with presolve levels L1, L2, and L3. These MIPs contain only the variables
that have not been fixed by scmip-presolve, and the constraints they appear in. For comparison,
we also generate the ‘pure’ MIP without scmip-presolving. We measure the computing time for
the solution of the MIPs by considering the runtime for scmip-presolve (L1, L2, L3), and the
solution time consumed by Cplex (divided into Cplex presolve time and solution time for the
presolved MIP).

4.1 Chain of processors

For instances of networks without branches, the flux is uniquely determined by the PDE/ODE
constraints.

We choose a line of five processors with processor capacities, velocities, and lengths as shown
in Table 1.

The total time horizon for the optimization is given by T = 60, and the timestep size is �t = 0.01.
We prescribe an inflow profile on the first arc e = 0 by the function f in

0 (t) = 25 for t ≤ 4 and
f in

0 (t) = 0 otherwise. Although the model is deterministic for this problem instance, it provides
an example in which the gap between lower and upper bound on each variable cannot be closed by
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Table 1. Processing rates μe, processing velocities ve, and
lengths Le.

Processor μe ve Le

0 100 100 1
1 20 10 1
2 6 5 1
3 2 7 1
4 5 1 1

application of our simplest form of bounds strengthening (L1). Obtaining the solution by presolve
requires both the application of the special procedure for the minimum and the aggregation of the
queue equations, which refers to our highest level of bounds strengthening (L3). In Table 2, we
show the percentages of variables whose value is fixed after application of scmip-presolve in the
levels L1, L2, and L3.

We interprete the results in Table 2 as follows. Obviously, there is no optimization involved
in solving the problem on the chain of processors. Taking a closer look at the equations (PDE)–
(QUE), we observe the following: assume at timestep n − 1 all upper and lower bounds on the
variables ye

n−1, x
e
n−1, and qe

n−1 coincide (this is for example the case for n = 1.) For simplicity
assume additionally qe

n−1/ε < μe. Then, ye
n and ze

n are uniquely defined by (PDE, CPL) or equiv-
alently steps (3) and (4) in presolveLevel1. Using preprocessing algorithm L1, we then
update the bounds on xe

n by considering the equations in the steps (5)–(7). At last we update the
bounds on ηe

n using steps (8) and (9), respectively. Because of this ordering of the equations we

only obtain xe
n ∈

[
0,

qe
n−1

ε

]
and ηe

n = 0. This in turn implies bounds on qe
n in (QUE), i.e. by step

(12) of the algorithm. Hence, using L1 after the first processor we cannot expect coinciding lower
and upper bounds on all variables. Note that a simple change in the order of the presolve procedure
does not help for improving the bounds, since the variable ηe

n and xe
n are coupled. However, there

is a remedy for this problem in some cases: we explicitly solve equation (FLUX) instead of using
Equations (5)–(12). As seen in Section 3.3 this cannot be done for any values of qe

n−1 and xe
n

and therefore, there are still variables left where the upper and the lower bound differ (row L2 in
Table 2). A further improvement can be obtained by aggregation, i.e. the QUE will be independent
on the update of equation (FLUX). Of course, this yields better results for the variables qe

n−1 as
seen in row L3 of Table 2. Finally, we observe that in this example combining all preprocessing
strategies, i.e. the ‘correct’ ordering of the equations, the direct computation of the minimum in
(FLUX) and the aggregation in (QUE) strongly improves the result.

The plots in Figure 4 show the gaps between lower and upper bound remaining after scmip-
presolve in the levels L1, L2, and L3 for the outflux y and queue q for processor 4.

We give a survey on the computing times for preprocessing in Table 3 for the original MIP
and for the MIP remaining after applying scmip-presolve with L1, L2, and L3, respectively.
The first column contains the presolve level, where ‘Cplex’ stands for the application of the
default routines of the Cplex solver, and no preprocessing by scmip-presolve. The second column

Table 2. Percentage of number of variables where upper and lower bound coincide.

Processor

Level 0 1 2 3 4 Average

L1 100 26.70 20.06 61.16 22.27 46.04
L2 100 63.36 34.55 64.59 22.31 56.96
L3 100 100 100 100 100 100
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Figure 4. Bounds on flux y and queue q after L1, L2, and L3.

shows the computing time consumed by the particular level in seconds. Column three shows
the computing time in seconds needed by Cplex for the solution of the presolved MIP via its
branch-and-cut method (B&C).

The most striking fact is the infeasibility of the remaining MIP after preprocessing by Cplex
only. Since (commercial) MIP solvers are black-boxes from the end users’ point of view, we can
only speculate that because of round-off errors induced by Cplex’s own preprocessing routines
the problem is considered infeasible. This is clearly wrong and our newly introduced presolve
routines, in particular L3, give the numerically correct solution. Further, we observe that the
new presolve steps take only roughly 10% of the computing time of the presolve used by Cplex.
As expected the more sophisticated presolve techniques yield lower solution times of the remaining
MIP. This trend is also observed in the following examples.
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Table 3. Performance of the presolve algorithm.

Presolve Preprocessing Solution (Cplex B&C)

Cplex 1.62 sec infeasible
L1 0.18 sec 17.94 sec
L2 0.17 sec 1.81 sec
L3 0.27 sec 0.01 sec

4.2 4×4 block network

The test instance is a block network with 4 × 4 interior network vertices, four inflow arcs
(i1, . . . , i4), and four outflow arcs (o1, . . . , o4), see Figure 5.

For the inflow arcs i1, . . . , i4, we choose maximal processing rates of μi = 100 and velocities
vi = 100 (i ∈ {i1, . . . , i4}). For the remaining arcs, we chose μe = 1 and ve = 1. The proces-
sor lengths are Le = 1 for all network arcs. We choose a time horizon for the optimization
of T = 10 time units and a timestep of �t = 0.01. The inflow profile on each network inflow
arc i ∈ {i1, . . . , i4} is given by f in

i (t) = 6 for t ≤ 3 and f in
i (t) = 0 otherwise.

In this network there is the possibility to distribute flux at each vertex. Consequently, the
constraints of the MIP do not define a unique feasible solution. This implies that the problem
cannot be solved in the presolve step. As in the example above, we solve the MIP by Cplex, both
without scmip-presolve and in the versions presolved by L1, L2, and L3. The results are listed
in Table 4. Since the problem is not solvable in presolve in this case, there is also computational
effort for the solution of the presolved MIP via an LP-based branch-and-cut approach. Columns
1 contains the presolve level and column 2 the presolve times in seconds for scmip-presolve. In
columns 3 and 4, we list the computing times consumed by Cplex, divided into time for presolve
(column 3) and solution of the root relaxation (column 4). Column 5 shows the total solution time
on the part of Cplex.

We observe that the more sophisticated presolve techniques strongly outperform Cplex. Further,
the computing time needed for the proposed presolve is small compared with the presolve time of

Figure 5. 4 × 4 block network.

Table 4. Computation times in seconds for presolved MIPs.

Preprocessing Solution (Cplex B&C)

Level Scmip pre Cplex pre Root LP Total

Cplex – 450.00 sec 334.21 sec 785.85 sec
L1 0.33 sec 453.54 sec 383.93 sec 838.18 sec
L2 0.34 sec 460.38 sec 384.32 sec 845.42 sec
L3 0.34 sec 1.46 sec 276.43 sec 278.25 sec



Optimization Methods & Software 439

Cplex. This behaviour is theoretically explained by the assertion of Theorem 1, which states that
a single round of each respective bounds strengthening procedure L1, L2, and L3 is sufficient,
whereas a general purpose MIP solver (such as Cplex) uses more heuristically motivated rules to
determine the number of rounds in the preprocessing.

4.3 A real-world example

Initially our interest in supply chain models was stimulated by the following real-world problem.
During the set up of a new production factury the engineers wanted to design a network consisting
of 12 processors (i.e. arcs in our model), where unfinished products are circling around from one
processor to the next on small pallets. For further details of this application we refer to [17]. The
parameter setting is such that queues are built up in front of processor 2, . . . , 8. Again, the aim
of optimization is to minimize the sizes of the queues (Figure 6).

We are basically interested in two special situations: εreg = 1 and εreg = 0.5. Because of the
CFL condition (5), the parameter εreg determines the time step size �t and consequently the total
amount of variables of the optimization problem (Table 5).

In test case εreg = 1 the total solution time of presolve technique L3 is 20 times faster than
Cplex. But the most astonishing result is the second one. For the choice of εreg = 0.5 Cplex was
not able to find to any feasible solution within 24 hours. However, together with our approach the
problem could be solved in nearly 3 hours. This example underlines the necessity of problem-based
presolve techniques to even guarantee solvability.

5. Further applications of the presolve techniques

Even so the presented techniques were devised for the particular system (8), some pre-
processing techniques to further applications are discussed below. Of particular impor-
tance is the presolveLevel1 which mimics the PDE–dynamics. The presolve Levels
presolveLevel2 and presolveLevel3 are related to the structure of our problem and
are thus restricted to models having a similar constraint structure.

The technique presolveLevel1 is applicable to all transport processes on networks. Its
basic idea is the finite speed of propagation of information across an arc of the network. Such

Figure 6. Real-world network.

Table 5. Computation times in seconds for presolved MIPs.

Preprocessing Solution (B&C)

εreg Level Scmip pre Cplex pre Root LP Total

1 Cplex – 3.64 sec 0.72 sec 224.6 sec
1 L3 0.02 sec 0.56 sec 0.81 sec 11.05 sec
0.5 Cplex – 14.6 sec 4.84 sec No sol. found
0.5 L3 0.05 sec 0.89 sec 3.96 sec 10231.34 sec
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problems arise for example in water contamination problems [25–27], in some traffic assignment
problems [6,8,14,24,28], in data communication problems [9] or supply chain problems [11,17].
All these models can be described by the following general transport process on an arc e of a
network

ye
t + fx(y

e) = g(ye), ∀ x ∈ [ae, be], t ≥ 0. (21)

Here, fy(ye) is the transport velocity and g an external source term. Our technique applies whenever
f and g are linear in y. For example, in the case of water contamination detection we have
f (ye) = veye and g(ye) = − ceye. Therein, ce is the velocity for the transport of the containment
and − ye describes a decay process for the containment of rate ce. In the example of a simple
traffic assignment without jams the source term g vanishes and we can approximate f (ye) again
by f (ye) = veye. Similar assertions are made for supply chain and data networks [8,17]. In the case
of linear transport and decay a possible two–point discretization of Equation (21) is given by

ye
n+1 = ye

n + �t

�x
ve

(
ye

n − xe
n

) − ce�tye
n+1. (22)

Here, y(ae, t) ≈ ye
n and y(be, t) ≈ xe

n. We also set �x = be − ae. Clearly, Equation (22) is similar
to Equation (1).

The different applications yield different coupling conditions for connected arcs. Those cou-
pling conditions have also to be discretized and further non-linearities arise. In general, we obtain
a discretized system of the following type

�
(
(yei

n )ei∈δ−
v
, (x

ej

n )ej ∈δ+
v

) = 0, (23)

where ei and ej are connected arcs at the junction v. Here, � contains the detailed modelling of
the physical process at the vertex. Typical coupling conditions in the case of traffic assignment are

�
(
(yei

n )ei∈δ−
v
, (x

ej

n )ej ∈δ+
v

) =
∑
ei∈δ+

v

xei

n −
∑
ej ∈δ−

v

y
ej

n . (24)

Other examples can be found in [14,17,27]. Given the general discretization for a linear(!) function
� the obvious modification of presolveLevel1 is as follows:

presolveLevel1

(1) For n From 1 To T Do
(2) For All e ∈ A Do
(3) boundsStrengthening(ye

n; (5.2))
(4) boundsStrengthening(xe

n; (5.3))
(5) End Do
(6) End Do

Note that depending on the details of the coupling condition or further non-linearities steps
might be necessary. This is exemplified in Section 3 in the case of the supply chain model.
Therein, additional min − condition are discretized and further boundStrengthening steps
are necessary. Additionally, we might add bound constraints on xe

n and ye
n to describe maximal

part flows, maximal containments, or other restrictions. Those constraints can be included into
the presolve in the same way as describe in this article.
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6. Summary

We used the order of constraints induced by the ODE/PDE system and transferred this to a
preprocessing algorithm by the means of bounds strengthening. Furthermore, we applied some
special presolving techniques for the resolution of the non-linear constraints avoiding the direct
preprocessing by bounds strengthening upon the linearized constraints containing binary vari-
ables. The results outperform the black-box Cplex preprocessing techniques. In particular, some
instances have been considered infeasible by Cplex – most likely – because of round-off errors in
the preprocessing engine. These instances could be solved by the proposed techniques. Further,
the presolve method is efficient even for large-scale problems. The techniques have been demon-
strated by an example of optimizing a production network, but apply similarly to other discretized
PDE-constrained optimization problems.
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Appendix 1. Bounds strengthening in general

For convenience we give a brief description of bounds strengthening for general mixed-integer
programming problems.

Let an arbitrary MIP

min cT x (A1)

s.t. Ax

{≤
=

}
b (A2)

x ∈ Z
p × R

n−p (A3)

be given. We consider the ith inequality of the constraint system Ax

{≤
=

}
b, which is of the

following form:

(IEQ) ai1x1 + ai2x2 + · · · + ainxn ≤ bi. (A4)

Each variable xj has lower and upper bounds lj, uj with lj ≤ xj ≤ uj and lj ∈ R ∪ {−∞}, uj ∈
R ∪ {+∞}. If for some j ∈ {1, ..., n} we have lj > lj or uj < uj , and the set of feasible solution
does not change, i.e.

{x ∈ Z
p × R

n−p: Ax ≤ b, l ≤ x ≤ u} = {x ∈ Z
p × R

n−p : Ax ≤ b, l ≤ x ≤ u, lj ≤ xj ≤ uj },
we say that lj , uj are improved lower and upper bounds, respectively. In principle, best possible
bounds can be obtained by taking each variable xj as objective function and solve a minimization
(for the lower bound) and a maximization problem (for the upper bound). However, such a
procedure would be by far too time consuming in practice. Bounds strengthening now is a much
simpler technique to obtain such improved bounds by using informations solely from the constraint
systems Ax ≤ b and the given bounds l ≤ x ≤ u.

Select an inequality i and a variable with index j. Then Equation (A4) is equivalent to

ajxj ≤ b −
∑

k=1,...,n

k 
=j

akxk. (A5)
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As abbreviations we define

l+j :=
∑

k=1,...,n

k 
=j

max{ak, 0} · lk, l
−
j :=

∑
k=1,...,n

k 
=j

min{ak, 0} · lk,

u+
j :=

∑
k=1,...,n

k 
=j

max{ak, 0} · uk, u
−
j :=

∑
k=1,...,n

k 
=j

min{ak, 0} · uk.

Here we use the intuitive rules for evalutating expressions containing ±∞, namely, l+j = −∞ if
for one k 
= j with ak > 0 it is lk = −∞, for instance.

We distinguish two cases. For aj > 0 it follows from Equation (A5) that

xj ≤ 1

aj

(b − (l+j + u−
j )) =: uj . (A6)

If xj is a continuous variable (i.e. for j > p) we have an improved upper bound on xj if uj < uj .
That is, we set uj := min{uj , uj }. For an integer variable xj (for j ≤ p) we can improve this bound
further by rounding it down to the next integer value, thus uj := min{uj , �uj�}. We denote by
upperBoundStrengthening(xj; (IEQ)) the algorithm that tries to update the upper bound
on variable xj using the information in inequality (IEQ).

In the other case, if aj < 0, we analogously conclude that

xj ≥ 1

aj

(b − (l−j + u+
j )) =: lj , (A7)

and obtain an improved lower bound lj := max{lj , lj } on a continuous variable xj, and lj :=
max{lj , lj�} on an integer variable xj. We call this algorithm lowerBoundStrengthening
(xj; (IEQ)).

In general mixed-integer preprocessing, the above steps are carried out iteratively for all con-
straints i = 1, . . . , m and for all variables j = 1, . . . , n. Then the next round of presolve starts again
from the beginning. This is performed until either no improved bounds are found anymore, or an
infeasibility is detected. The latter is the case if after an update of the bounds we obtain lj > uj, and
hence the MIP has no feasible solution at all because of a contradiction in the constraint system.
In practice, a termination of the bounds strengthening procedure might also be forced if a given
number of iteration rounds is reached, or if the improvements in the bounds fall below a certain
level.

Another results of bounds strengthening is given by the case lj = uj for some variable xj. In
this case, the variable is determined to have the value lj in every feasible solution to the problem.
Hence this value can be used in all constraints, and the variable can be removed from the problem.

Note that from some inequality i we obtain either a new lower bound (candidate) on variable xj

or a new upper bound (candidate) on the same variable, whereas from equality constraints we get
upper and lower bounds (candidates) at the same time. In practice, one would not split an equality
constraint into two seperate inequalities and sequentially perform presolving on them, but in one
single step. For an equality constraint

(EQ) ai1x1 + ai2x2 + · · · + ainxn = bi (A8)

we write boundsStrengthening (xj; (EQ)) for the algorithm that tries to obtain better
lower and upper bounds on xj from (EQ). If aij > 0 then this is carried out by applying
upperBoundStrengthening (xj; (IEQ1)) on

(IEQ1) ai1x1 + ai2x2 + · · · + ainxn ≤ bi, (A9)

and lowerBoundStrengthening (xj; (IEQ2)) on

(IEQ2) ai1x1 + ai2x2 + · · · + ainxn ≥ bi. (A10)

Otherwise, if aij < 0, then we strengthen the lower bound with (IEQ1) and the upper bounds with
(IEQ2).
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When implementing the bounds strengthening algorithm in computer code, one is faced with the
limitations of a finite precision floating point arithmetic. Hence one has to be careful with effects
due to numerical instabilities, which in particular occur when presolving equality constraints. As
we will see below, an instance of our model can be falsely declared as infeasible by the bounds
strengthening procedure. This can be avoided by updating the bounds only if they improve the
existing ones by at least a value ε: = 10−12. In a double precision floating point arithmetic the
ULP (unit in the last place) for numbers with an exponent of 0 is about 10−16 (or precisely 2−23),
hence our choice of ε leaves room of four decimal digits for computations.

Appendix 2. Further computational results

To demonstrate that we are able to solve also large scale networks with our methods, we consider
networks of k × 6 interior vertices, where k runs from 1 to 101 (see Figure A1). We measure the
presolve time consumed by Cplex for the pure MIP, the L1-presolved MIP, and the L3-presolved
MIP.

For the inflow arcs i1, . . . , i3, we choose maximal processing rates of μi = 100 (i ∈ {i1, . . . , i3})
and for the remaining arcs μe = 1. In contrast to the 4 × 4 block network considered above, we

Figure A1. k × 6 block network.

Table A1. Total preprocessing times for MIPs corresponding to k × 6 block networks.

k Cplex pre L1 Cplex pre L1 total L3 Cplex pre L3 total

1 0.01 0.00 0.01 0.01 0.00 0.01 0.01
11 0.91 0.05 0.60 0.65 0.04 0.09 0.13
21 1.34 0.10 0.63 0.73 0.08 0.10 0.18
31 1.64 0.14 0.64 0.78 0.11 0.10 0.21
41 1.88 0.19 0.64 0.83 0.15 0.10 0.25
51 2.35 0.24 0.66 0.90 0.19 0.09 0.28
61 2.83 0.29 0.66 0.95 0.22 0.10 0.32
71 3.02 0.35 0.70 1.05 0.25 0.11 0.36
81 3.48 0.39 0.70 1.09 0.29 0.11 0.40
91 3.76 0.41 0.73 1.14 0.33 0.11 0.44

101 4.05 0.47 0.70 1.17 0.36 0.10 0.46
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choose velocities ve = 1 for all arcs. The processor lengths are set to Le = 1. We choose a time
horizon of T = 8 time units and a timestep size of �t = 0.25. The inflow profile on each network
inflow arc i ∈ {i1, . . . , i3} is given by f in

i (t) = 5 for t ≤ 2 and f in
i (t) = 0 otherwise.

In Table A1, we compare the overall computing times for preprocessing in dependence of the
network size k. Columns 1, 5, and 8 show the total preprocessing times in seconds for each run.
These are the sum of the computing time of scmip-presolve in the particular levels and Cplex
presolve time for the remaining MIP (shown in columns 3 and 4 for L1, and in columns 6 and 7
for L3).

Similar to the previous example we observe that scmip-presolve is an efficient technique to
shorten the time spent for preprocessing the MIP and strongly improves the solution time of
the remaining MIP. It clearly outperforms Cplex black-box preprocessing. Further, the more
sophisticated presolve levels are nearly as expensive as the simpler levels but reduce the time
necessary for the solution of the remaining MIP.






