
Math. Program., Ser. B (2008) 112:45–64
DOI 10.1007/s10107-006-0084-2

F U L L L E N G T H PA P E R

Submodular function minimization

Satoru Iwata

Received: 5 February 2006 / Accepted: 2 June 2006 / Published online: 25 January 2007
© Springer-Verlag 2007

Abstract Submodular functions often arise in various fields of operations
research including discrete optimization, game theory, queueing theory and
information theory. In this survey paper, we give overview on the fundamental
properties of submodular functions and recent algorithmic devolopments of
their minimization.
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1 Introduction

Let V be a finite set. A set function f : 2V → R is said to be submodular if it
satisfies

f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y), ∀X, Y ⊆ V.

Submodular function minimization is to compute the minimum value as well as
a minimizer of a submodular function f , provided that an oracle for evaluating
the function value f (X) for X ⊆ V is available. A set fucntion f is supermodular
if −f is submodular. A set function that is both submodular and supermodular
is called a modular function.

Submodular functions arise in discrete optimization [41,68] and various other
fields of operations research such as game theory [74], information theory [28]
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and queueing theory [19,73]. Examples include the cut capacity functions of
networks, the rank functions of matroids, and the entropy functions of multiple
information sources. Submodular functions play important roles in statistical
physics as well [1,2].

Submodular functions are discrete analogue of convex functions. This anal-
ogy was exhibited by the discrete separation theorem of Frank [25] and the
Fenchel-type duality theorem of Fujishige [30]. A more direct connection was
established by Lovász [52], who clarified that the submodularity of a set func-
tion can be characterized by the convexity of a continuous function obtained by
extending the set function in an appropriate manner. This observation together
with valuated matroids invented by Dress and Wenzel [15] motivated Murota
[58–60] to develop the theory of discrete convex analysis.

The first polynomial algorithm for submodular function minimization is due
to Grötschel et al. [39]. The strongly polynomial version was also developed
by Grötschel et al. [40]. These algorithms employ the ellipsoid method, which
was used by Khachiyan [50] to develop the first polynomial-time algorithm for
linear programming. In spite of its polynomial time complexity, the ellipsoid
method is not so efficient in practice.

Cunningham [11] develpoed a combinatorial strongly polynomial algorithm
for solving the membership problem for matroid polyhedra, which is a special
case of submodular function minimization. Then Cunningham [12] extended
this method to compute the minimum value of a general submodular function
in pseudopolynomial time.

Recently, combinatorial strongly polynomial algorithms have been devel-
oped by Iwata et al.(IFF) [46] and by Schrijver [71]. Both of these algorithms
build on works of Cunningham [11,12]. The IFF algorithm employs a scaling
scheme developed in capacity scaling algorithms for the submodular flow prob-
lem [24,43,47]. In contrast, Schrijver [71] directly achieves a strongly polynomial
bound by introducing a novel subroutine in framework of lexicographic aug-
mentation. Subsequently, Fleischer and Iwata [22,23] have described a push/
relabel algorithm using Schrijver’s subroutine to improve the running time
bound. Combining the scaling scheme with the push/relabel technique yields a
faster combinatorial algorithm [45], which currently achieves the best running
time bound for general submodular function minimization.

All of these combinatorial algorithms perform multiplications and divisions,
although the problem of submodular function minimization does not involve
these arithmetic operations. Schrijver [71] has asked if one can minimize a sub-
modular function in strongly polynomial time using only additions, subtractions,
comparisons, and the oracle calls for function values. It turns out that the IFF
strongly polynomial algorithm can be converted to such a fully combinatorial
algorithm [44].

This paper provides a survey of these recent developments on submodular
function minimization. Section 2 exhibits examples of submodular functions
and related minimization problems. Section 3 is an introduction to the polyhe-
dral approach to submodular functions. It describes the greedy algorithm and
the connection between submodularity and convexity. In Sect. 4, we expound a
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general framework that are commonly used by the combinatorial algorithms for
submodular function minimization. In Sects. 5, 6, 7, 8, 9, we describe combinato-
rial algorithms for submodular function minimization. Then Sect. 10 is devoted
to Queyranne’s algorithm for symmetric submodular function minimization.
We also describe an extension of the IFF scaling algorithm to bisubmodular
function minimization in Sect. 11. Finally, Sect. 12 provides some open prob-
lems.

Other surveys on submodular function minimization have been given by
Fleischer [21], Fujishige [33], and McCormick [53]. The readers are also referred
to related chapters of Fujishige [34], Korte and Vygen [51], Murota [60], and
Schrijver [72].

Throughout this paper, let RV denote the set of all the real valued functions
x : V → R, which forms a linear space of dimension n = |V|. We identify a
vector x ∈ RV with a modular function defined by x(Y) = ∑

v∈Y x(v).

2 Examples of submodular functions

In this section, we describe four examples of submodular functions. The first
two come from discrete mathematics, while the others are taken from queueing
theory and information theory.

Matroids

The concept of matroids was introduced by Whitney [77] as a combinatorial
abstraction of linear independence. Let V be a finite set and I be a family of
subsets of V. A pair (V, I) is a matroid if it satisfies a certain system of axioms.
The rank function ρ of a matroid is defined by ρ(X) = max{|J| | J ⊆ X, J ∈ I}.
Then ρ is a monotone nondecreasing submodular function that satisfies ρ(∅) = 0
and ρ(X) ≤ |X| for X ⊆ V. Conversely, such a set function defines a matroid
by I = {J | J ⊆ V, ρ(J) = |J|}.

The convex hull of the characteristic vectors of the independent sets in RV

coincides with

MP(ρ) = {z | z ∈ R+V, ∀X ⊆ V, z(X) ≤ ρ(X)},

which is called the matroid polyhedron. Testing if a given vector z ∈ R+V

is in MP(ρ) can be reduced to minimizing the submodular function f (X) =
ρ(X) − z(X). Cunningham [11] presented a combinatorial strongly polynomial
algorithm for this special type of submodular function minimization.

Connected detachment

Let G = (V, E) be a connected graph with vertex set V and edge E. Consider
a function b : V → Z+. A b-detachment of G is a new graph G′ = (W, E)
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obtained by splitting each vertex v ∈ V into b(v) vertices. Each edge e ∈ E
incident to v ∈ V in G should be incident in G′ to one of the b(v) vertices that
come from v. For any X ⊆ V, let e(X) denote the number of edges incident to
X. We also denote by c(G \ X) the number of connected components in the
graph obtained from G by deleting the vertices in X. Nash-Williams [64] found
the following theorem on the existence of a connected b-detachment.

Theorem 1 (Nash-Williams [64]) There exists a connected b-detachment of G =
(V, E) if and only if

b(X) ≤ e(X) − c(G \ X) + 1 (1)

holds for any X ⊆ V.

Let f (X) denote the right-hand side of (1). Then we have f (∅) = 0 and
f (V) = |E| + 1. Furthermore, it can be shown that f is a submodular function.
Theorem 1 suggests that one can check the existence of a connected b-detach-
ment by minimizing the submodular function f (X) − b(X).

The original proof was based on the matroid intersection theorem. Simple
alternative proofs have been given to this theorem [65–67]. The submodularity
of f plays a crucial role in the one that uses orientations [66].

Detachments with higher edge-connectivity requirements have recently been
investigated by Fleiner [20] and by Jordán and Szigeti [49]. See Frank [27,26]
for other interesting applications of submodular functions in graph theory.

Multiclass queueing systems

Consider a queueing system which deals with various types of jobs. Each job
of different classes waits in different queues and the server chooses the job to
serve the next by a control policy. One of the most fundamental models of this
type is the so-called preemptive M/M/1, where the arrival interval and service
time of each class of jobs follow exponential distributions and the premption is
allowed in its control policy.

If the average arrival rates and the average service rates of the job classes
are given, the performance of the system depends only on the control policy.
Let V be the set of job classes. The region of performance-measuring vectors
in RV achieved by all control policies is called the achievable region. The per-
formance of a multiclass M/M/1 is often measured by the average staying time
vector s ∈ RV . If the preemption is allowed, the performance region of the
staying time vector is explicitly given as follows.

Theorem 2 (Coffman and Mitrani [8]) For each job j ∈ V, let λj and µj be the
average arrival rates and the average service rates, respectively. Suppose that the
utilization ρj = λj/µj satisfies

∑
j∈V ρj < 1. Then the achievable region of the

average staying time vector is the set of vectors s ∈ RV that satisfy
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∑

j∈X

ρjsj ≥

∑

j∈X

ρj

µj

1 −
∑

j∈X

ρj

(2)

for every X ⊆ V.

The right hand side of (2) can be written as f (X) = y(X)h(x(X)), where

x(j) := ρj, y(j) := ρj

µj
and h(x) = 1

1 − x
. If we assign z(j) := ρjsj, the problem

of checking the achievability of a given vector s is reduced to minimizing a set
function f defined by

f (X) = z(X) − y(X)h(x(X)).

Since h is a monotone nondecreasing convex function, one can verify that f is
a submodular function.

A recent paper [42] presents an efficient algorithm for minimizing this type
of submodular functions in O(n2) time. The algorithm utilizes the topological
sweeping method of Edelsbrunner and Guibas [16] for line arrangements in the
plane.

Apart from the multiclass preemptive M/M/1, submodular functions often
arise in the analysis of achievable regions of various types of multiclass queueing
systems [3,19,73].

Entropy functions

Let V be a set of discrete memoryless information sources (random variables).
For each nonempty subset X of V, let h(X) denote the Shannon entropy of the
corresponding joint distrubution. In addition, we assign h(∅) = 0. Then the set
function h is a submodular function, which follows from the nonnegativity of
conditional mutual information.

Consider the situation that we encode data generated by this set of sources.
Each source has its encoder, which compresses each data and transmits the
code to the central decoder, which decodes all the codes it receives. We call the
rate vector R ∈ RV achievable if there exists a coding method of rate R with
arbitraily small error probability. The following theorem of Slepian and Wolf
[75] suggests that one can exploit the correlation among the sources to reduce
the total rate required for the transmission. See also Cover [9] and Cover and
Thomas [10, Sect.14.4].

Theorem 3 (Slepian and Wolf [75]) The rate vector R is achievable if and only
if

R(X) > h(V) − h(V \ X) (3)

holds for any nonempty X ⊆ V.
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Note that the right-hand side of (3) is a supermodular function. Theorem 3
implies that one can check if a specified rate vector R is achievable by mini-
mizing a submodular function R(X) − h(V) + h(V \ X). The rate vector R is
achievable if and only if the empty set is the only minimizer. The only known
method to do this is to apply an algorithm for general submodular function
minimization.

Let K be a positive definite symmetric matrix whose row/column set is
indexed by V. For each X ⊆ V, let K[X] denote the principal submatrix of K
indexed by X. The set function f defined by f (∅) = 0 and f (X) = log det K[X]
for nonempty X is a submodular function. The submodularity of this function f ,
known as Ky Fan’s inequality, is a refinement of Hadamard’s inequality. It can
be interpreted as the submodularity of the entropy function of a multivariate
normal distribution with covariance matrix K.

3 Greedy algorithm and discrete convexity

For a submodular function f with f (∅) = 0, we consider the submodular poly-
hedron P(f ) and the base polyhedron B(f ) defined by

P(f ) = {x | x ∈ RV , ∀Y ⊆ V, x(Y) ≤ f (Y)},
B(f ) = {x | x ∈ P(f ), x(V) = f (V)}.

A vector in B(f ) is called a base. In particular, an extreme point of B(f ) is called
an extreme base. The base polyhedron B(f ) is the set of maximal vectors in
P(f ).

An extreme base can be computed by the greedy algorithm of Edmonds [17]
and Shapley [74] as follows.

Let L = (v1, . . . , vn) be a linear ordering of V. For any vj ∈ V, we denote
L(vj) = {v1, . . . , vj}. The greedy algorithm with respect to L generates an ex-
treme base y ∈ B(f ) by

y(u) := f (L(u)) − f (L(u) \ {u}). (4)

Conversely, any extreme base can be obtained in this way with an appropriate
linear ordering.

Given a nonnegative vector p ∈ R+V , consider a linear ordering L =
(v1, . . . , vn) such that p(v1) ≥ p(v2) ≥ · · · ≥ p(vn). The greedy algorithm with
respect to L yields an optimal solution to the problem of maximizing the inner
product 〈p, x〉 = ∑

v∈V p(v)x(v) in P(f ).
Let p1 > p2 > · · · > pk be the distinct values of p. For j = 1, . . . , k, we denote

Uj = {v | p(v) ≥ pj}. Then p can be expressed as

p =
k∑

j=1

qjχUj ,
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with qj = pj − pj+1 for j = 1, . . . , k − 1 and qk = pk ≥ 0. We now define f̂ (p) by

f̂ (p) =
k∑

j=1

qjf (Uj).

Then the function f̂ satisfies

f̂ (p) = max{〈p, x〉 | x ∈ P(f )}, (5)

which follows from the validity of the greedy algorithm.
Note that the above definition of f̂ is free from the submodularity of f . For a

set function f in general, we define f̂ in the same way. Then f̂ (χX) = f (X) holds
for any X ⊆ V. Hence we may regard f̂ as an extension of f .

The restriction of f̂ to the hypercube [0, 1]V can be interpreted as follows. A
linear ordering L corresponds to the simplex whose extreme points are given
by the characteristic vectors of L(v) for v ∈ V and the empty set. Since there
are n! linear orderings of V, the hypercube [0, 1]V can be partitioned into n!
congruent simplices obtained by this way. Determine the function values of f̂
in each simplex by the linear interpolation of the values at the extreme points.
The resulting function f̂ is a continuous function on the hypercube.

The following theorem provides a connection between submodularity and
convexity.

Theorem 4 (Lovász [52]) A set function f is submodular if and only if f̂ is
convex.

Proof If f is a submodular function, then it follows from (5) that f̂ is a convex
function. Conversely, if f̂ is convex, then we have

f̂ (χX + χY) ≤ f̂ (χX) + f̂ (χY) = f (X) + f (Y).

On the other hand, it follows from the definition of f̂ that

f̂ (χX + χY) = f̂ (χX∩Y) + f̂ (χX∪Y) = f (X ∩ Y) + f (X ∪ Y)

holds for any X, Y ⊆ V. Thus f is a submodular function. �

4 Min-max theorem

For any vector x ∈ RV , we denote x−(v) := min{x(v), 0}. The following min-
max theorem plays a central role in combinatorial algorithms for submodular
function minimization.
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Theorem 5 (Edmonds [17]) For a submodular function f with f (∅) = 0, we have

min
X⊆V

f (X) = max{z(V) | z ∈ P(f ), z ≤ 0}
= max{x−(V) | x ∈ B(f )}.

Moreover, if f is an integer valued function, then the maximum in the right-hand
side is attained by an integer verctor z.

Proof If z ∈ P(f ) and z ≤ 0, then z(V) ≤ z(X) ≤ f (X) holds for any X ⊆ V.
Consider a set function f ◦ : 2V → R defined by

f ◦(X) = min
Y⊆X

f (Y).

Then f ◦ is submodular, and P(f ◦) ⊆ P(f ) holds. Any base z ∈ B(f ◦) satisfies
z ≤ 0 and z(V) = f ◦(V) = minX⊆V f (X), which imply the first equality. The
second equality follows from the existence of a base x ∈ B(f ) with x ≥ z. More-
over, if f is integer valued, then so is f ◦, which implies that an extreme base
z ∈ B(f ◦) is an integer vector. �

Theorem 5 seems to provide a good characterization of the minimum value
of f . In fact, if we have a pair of W ⊆ V and x ∈ B(f ) with f (W) = x−(V), then
it follows from Theorem 5 that W attains the minimum value of f . This suggests
a natural way to find the minimum by moving x ∈ B(f ) so that x−(V) increases.
However, it is not easy to verify that the vector x in our hand stays in B(f ). A
direct way to check this by the definition requires an exponential number of
steps. On the other hand, an extreme base y of B(f ) can be verified by a linear
ordering of V generating y. According to Caratheodory’s theorem, an arbitrary
point in a bounded polyhedron can be expessed as a convex combination of its
extreme points. Keeping x ∈ B(f ) as a convex combination x = ∑

i∈I λiyi of
extreme bases yi, we are able to verify x ∈ B(f ) efficiently, provided that I is not
too large. A base x ∈ B(f ) expressed by this way provides a compact certificate
of f (W) being the minimum value if x−(V) = f (W) holds.

This approach was introduced by Cunningham [11] in the separation prob-
lem for matroid polyhedra. Bixby et al. [4] employed this approach to develop a
combinatorial algorithm for minimizing a submodular function by a finite num-
ber of steps. Furthermore, Cunningham [12] improved this algorithm to the
first combinatorial pseudopolynomial algorithm for computing the minimum
value of an integer valued submodular function. In general, a pseudopolyno-
mial algorithm runs in time polynomial in the number of inputs and the max-
imum absolute value of the inputs. The running time bound of Cunningham’s
algorithm is O(n6γ M log nM), where γ is the time required for computing the
function value and M is the maximum absolute value of f .

Since the dimension of a base polyhedron is at most n − 1, it follows from
Caratheodory’s theorem that any base x ∈ B(f ) can be expressed as a convex
combination of at most n extreme bases. When the set I becomes large, we are
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able to reduce |I| to at most n as follows. Consider a V × I matrix that consists
of extreme bases yi for i ∈ I. Let H be a matrix obtained by attaching a row
with all components being one to this matrix. Applying the Gaussian elimina-
tion by row transformations to H, detect a linear dependence

∑
i∈I µiyi = 0,∑

i∈I µi = 0. Compute θ = max{λi/µi | µi > 0} and update λi := λi − θµi for
each i ∈ I. At least one index i ∈ I will satisfy λi = 0, and then delete such i
from I. Repeat this process until H becomes lenearly independent. This process
will be referred to as Reduce(x, I).

5 Schrijver’s algorithm

In this section, we describe the combinatorial strongly polynomial algorithm of
Schrijver [71] for submodular function minimization. Following the framework
of Cunningham [11,12], the algorithm keeps a base x ∈ B(f ) as a convex com-
bination x = ∑

i∈I λiyi of extreme bases yi ∈ B(f ) generated by linear orderings
Li. We denote u ≺i v if u precedes v in Li. We also denote u �i v to mean u ≺i v
or u = v.

Consider an auxiliary graph GI = (V, AI) with the vertex set V and the arc
set AI = {(u, v) | ∃i ∈ I, v �i u}. Let S and T be the vertex subsets defined
by S = {v | v ∈ V, x(v) < 0} and T = {v | v ∈ V, x(v) > 0}. If there is no
directed path from S to T in GI , let W be the set of vertices reachable from
S. Then yi(W) = f (W) holds for each i ∈ I, and so does x(W) = f (W). Since
S ⊆ W ⊆ V \ T, we have x−(V) = x(W) = f (W), which implies that f (W)

attains the minimum value of f .
On the other hand, if there is a directed path from S to T in GI , let d(v) be

the smallest number of arcs in a directed path from S to v. Let t be the vertex
in T with maximumm d(t). If two or more vertices attain the maximum, select
the maximum one in a fixed total order ≤ on V. Let u be the maximum vertex
in ≤ such that (u, t) ∈ AI and d(u) = d(t) − 1 hold. Furthermore, select i ∈ I
with maximum |Li(u) \ Li(t)|. To the triple i ∈ I, u ∈ V, t ∈ T thus obtained, the
algorithm applies the following procedure Interval(i, u, t).

For each vertex v in the interval Li(t, u) = Li(u)\Li(t), let Ltv
i denote the lin-

ear ordering obtained from Li by moving v to the place immediately before t. We
also denote by ytv

i the extreme base generated by the greedy algorithm with the
linear ordering Ltv

i . For each v ∈ Li(t, u) and w ∈ V, assign Hwv = ytv
i (w)−yi(w).

Solve a linear system of equations

∑

v∈Li(t,u)

Hwvξv = χu − χt

to obtain ξv for v ∈ Li(t, u). It follows from the submodularity of f that Hvv ≥ 0
for each v ∈ Li(t, u) and that Hwv ≤ 0 if t �i w ≺i v �i u. Thus the coefficient
matrix H is in the form of
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H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u
t − − · · · −

+ − · · · −
0 + . . .

...
...

. . .
. . . −

u 0 · · · 0 +

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Note that the column sum is equal to zero. Because of the triangular form of H,
we obtain ξv ≥ 0. Compute α = min{x(u), λi/ξ}, where ξ = ∑

v ξv, and move
x ∈ B(f ) to x := x+α(χu −χt). For each v ∈ Li(t, u), add a new index iv to I with
Liv := Luv

i and λiv := αξv. Furthermore, update λi := λi−αξ . Then the new base
x ∈ B(f ) can be represented as the convex combination x = ∑

i∈I λiyi again. As
a consequence, |I| increases by |Li(t, u)|. The algorithm applies Reduce(x, I) to
reduce |I| to at most n.

Schrijver [71] showed that the algorithm terminates after O(n6) iterations
of this process. Since one execution of Interval takes O(n2γ + n3) time, the
total running time bound is O(n8γ + n9). Employing the push/relabel frame-
work introduced by Goldberg and Tarjan [38] for the maximum flow problem,
Fleischer and Iwata [22,23] devised an improved variant that runs in O(n7γ +n8)

time. Then Vygen [76] refined the complexity analysis of Schrijver’s algorithm
to show that it runs in O(n7γ + n8) time.

The push/relabel framework was also employed by Fujishige and Zhang [36]
to devise an algorithm for the intersection problem on a pair of submodular
polyhedra. Analogously to the result of Gallo et al. [37] on parametric maxi-
mum flow problems, Iwata et al. [48] extended this algorithm to the parametic
intersection problem for strong map sequences without expense of running
time bound. Fleischer and Iwata [23] also obtained a similar result for para-
metric submodular function minimization, which led to an algorithm to find the
lexicographically optimal base [29] in O(n7γ + n8) time.

6 A scaling algorithm

This section is devoted to the scaling algorithm of Iwata et al. [46] for minimiz-
ing an integer-valued submodular function. The scaling technique is a generic
method of making pseudopolynomial algorithms run in polynomial time. It was
introduced by Edmonds and Karp [18] so as to develop the first polynomial
algorithm for the minimum cost flow problem.

The scaling algorithm uses a parameter δ > 0. It starts with an arbitrary linear
ordering L and an extreme base x ∈ B(f ) generated by L. The initial value of
δ is given by δ := min{|x−(V)|, x+(V)}/n2. In each scaling phase, the algorithm
cuts the value of δ in half. Finally, the algorithm terminates when δ < 1/n2.
The algorithm expresses x ∈ B(f ) as a convex combination

∑
i∈I λiyi of extreme

bases yi generated by Li. The initial setting is I = {0}, y0 = x, L0 = L, λ0 = 1.
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Since the initial value of δ satisfies δ < M/n2, the algorithm performs O(log M)

scaling phases.
The key idea of this scaling algorithm is to consider a flow in the complete

directed graph on vertex set V. The flow is represented as a skew-symmetric
function ϕ : V × V → R, which satisfies ϕ(u, v) + ϕ(v, u) = 0 for each (u, v).
The arc capacity is δ for each arc. Hence the cut capacity function is given by
κδ(X) = δ |X| · |V \ X|. A flow ϕ is said to be feasible if −δ ≤ ϕ(u, v) ≤ δ holds
for each arc (u, v). The boundary ∂ϕ of ϕ is defined by

∂ϕ(u) =
∑

v∈V

ϕ(u, v).

Then we have ∂ϕ ∈ B(κδ).
In each scaling phase, the algorithm keeps z = x + ∂ϕ ∈ B(f + κδ) and

aims at increasing z−(V) insetad of x−(V). For a feasible flow ϕ, construct an
auxliary graph Gϕ = (V, Eϕ) with arc set Eϕ = {(u, v) | u �= v, ϕ(u, v) ≤ 0}. A
directed path from S = {v | v ∈ V, z(v) ≤ −δ} to T = {v | v ∈ V, z(v) ≥ δ}
in Gϕ is called an augmenting path. If there exists an augmenting path P, the
algorithm augment the flow ϕ through P by δ, namely ϕ(u, v) := ϕ(u, v) + δ

and ϕ(v, u) := ϕ(v, u) − δ for each (u, v) ∈ P. This procedure is written as
Augment(ϕ, P). As a result of Augment(ϕ, P), z−(V) increases by δ.

If there is no augmenting path, let W be the set of vertices reachable from S
in Gϕ . Then the algorithm finds a triple of i ∈ I, u ∈ W, v ∈ V \ W such that v
immediately precedes u in Li. Such a triple is called admissible. For an admis-
sible triple (i, u, v), the algorithm performs Double-Exchange(i, u, v) described
as follows.

The procedure Double-Exchange(i, u, v) interchanges u and v in Li. Then
yi generated by Li moves to an adjacent extreme base in B(f ). This move can
be written as yi := yi + β(χu − χv), where β is given by β = f (Li(u) \ {v}) −
y(Li(u) \ {v}). If we keep the coefficients of the convex combination as before,
x moves to x := x + λiβ(χu − χv). We want to keep z invariant by changing
ϕ(u, v) and ϕ(v, u). However, if λiβ is too large, this would violate the feasibility
of ϕ. Instead, we determine the step size α of x by α = min{λiβ, ϕ(u, v)}, namely
x := x +α(χu −χv), ϕ(u, v) := ϕ(u, v)−α, and ϕ(v, u) := ϕ(v, u)+α. If α < λiβ,
we add a new index k to I with Lk and yk being the previous Li and yi. By
partitioning the coefficient λi into λk := λi − α/β and λi = α/β, we keep the
relation x = ∑

j∈I λjyj. Since v becomes reachable from S in Gϕ , the set W of
reachable vertices gets enlarged. This can happen at most n times before an
augmenting path is found. We keep |I| ≤ 2n by applying Reduce(x, I) each
time the algorithm performs Augment.

If there is neither an augmenting path nor an admissble triple, we have
yi(W) = f (W) for each i ∈ I and hence x(W) = f (W). Since ∂ϕ(W) ≥ 0 and
S ⊆ W ⊆ V \ W, this implies z−(V) ≥ f (W) − nδ and x−(V) ≥ f (W) − δ/n2.
Then the algorithm terminates the current scaling phase by cutting the values
of δ and ϕ in half and goes to the new scaling phase. Note that this maintains the
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feasibility of ϕ. Since z−(V) ≤ f (X) + n2δ/4 holds for any X ⊆ V, the number
of executions of Augment as well as Reduce in each scaling phase is O(n2).

The procedure Double-Exchange(i, u, v) interchanges u ∈ W and v ∈ V \ W
in Li. Then the triple (i, u, v) will never become admissible again before an exe-
cution of Augment. Therefore, the number of executions of Double-Exchange
is bounded by the number of triples, which is O(n3). Since Double-Exchange
(i, u, v) can be performed in O(γ ) time, each scaling phase requires O(n5γ ) time.
Thus the total running time of the scaling algorithm is O(n5γ log M).

Finally, at the end of the last scaling phase with δ < 1/n2, we have x−(V) ≥
f (W)− n2δ > f (W)− 1. Since x−(V) ≤ f (X) for any X ⊆ V, it follows from the
integrality of f that W is a minimizer of f .

7 A faster scaling algorithm

Incorporating the push/relabel framework improves the running time of the
scaling algorithm. The resulting algorithms achieve the currently best bounds
among combinatorial algorithms for submodular function minimization [45].

The new algorithm keeps a valid labeling d in each scaling phase. A labeling
d : V → Z is valid if d(u) = 0 for u ∈ S and v �i u implies d(v) ≤ d(u) + 1. A
valid labeling d(v) serves as a lower bound on the number of arcs from S to v in
the directed graph GI = (V, AI) with the arc set AI = {(u, v) | ∃i ∈ I, v �i u}.

Instead of Double-Exchange, the new algorithm performs Multiple-
Exchange described below. Suppose there is no augmenting path in Gϕ =
(V, Eϕ). Let W be the set of vertices reachable from S in Gϕ . Let Z be the set
of vertices that attains the minimum labeling in V \ W. A triple (i, u, v) is called
active if v is the first vertex of Z in Li and u is the last vertex in Li with v �i u
and d(v) = d(u) + 1. The procedure Multiple-Exchange(i, u, v) is applicable to
an active triple (i, u, v).

For an active triple (i, u, v), the set of vertices from v to u in Li is called an
active interval. The active interval is divided into Q = {w | w ∈ W, v ≺i w �i u}
and R = {w | w ∈ V \ W, v �i w ≺i u}.

The procedure Multiple-Exchange(i, u, v) moves the vertices in R to the place
immediately after u in Li, without changing the ordering in Q and in R. Then
it computes an extreme base yi generated by the new Li. This results in yi(q) ≥
y◦

i (q) for q ∈ Q and yi(r) ≤ y◦
i (r) for r ∈ R, where y◦

i denotes the previous yi.
Consider a complete bipartite graph with the vertex sets Q and R. The algo-

rithm finds a flow ξ : Q × R → R+ such that
∑

r∈R ξ(q, r) = yi(q) − y◦
i (q) for

each q ∈ Q and
∑

q∈Q ξ(q, r) = y◦
i (r) − yi(r) for each r ∈ R. Such a flow can

be obtained easily by the so-called northwest corner rule. Then the procedure
computes α = min{λi, δ/β} with β = max{ξ(q, r) | q ∈ Q, r ∈ R}, and moves
x to x := x + α(yi − y◦

i ). In order to keep z invariant, the procedure adjusts
the flow ϕ by ϕ(q, r) := ϕ(q, r) − αξ(q, r) and ϕ(r, q) := ϕ(r, q) + αξ(q, r) for
every (q, r) ∈ Q×R. The resulting ϕ satisfies the capacity constraints due to the
choice of α, and the vertices in W remain reachable from S in Gϕ .
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If α < λi, a new index k is added to I. The associated linear ordering Lk
is the previous Li. The coefficient λk is determined by λk := λi − α, and then
λi is replaced by λi := α. Thus the algorithm continues to keep x as a convex
combination x = ∑

i∈I λiyi.
Each scaling phase begins with setting d(v) = 0 for each v ∈ V. If there exists

an augmenting path P in Gϕ , then the algorithm performs Augment(x, P) and
Reduce(x, I). Otherwise, the algorithm computes  = min{d(v) | v ∈ V \ W}. If
 < n, then the algorithm applies Multiple-Exchange(i, u, v) to an active triple
(i, u, v). If there is no active triple, it applies Relabel(v), which increases d(v) by
one, to each v ∈ Z. Finally, if  = n, there is no directed path from S to V \ W
in GI . Then the set X of vertices reachable from S in GI satisfies x(X) = f (X),
which gives the end of the current scaling phase. The algorithm goes to the next
scaling phase by cutting the value of δ in half.

The number of applications of Augment and Relabel are both O(n2) in each
scaling phase. The total number of function evaluations is O(n2) in consecutive
applications of Multiple-Exchange between Relabel or Augment. Thus each
scaling phase takes O(n4γ + n5) time. Since the algorithm performs O(log M)

scaling phases, the total running time bound is O((n4γ + n5) log M).

8 A strongly polynomial scaling algorithm

This section describes a strongly polynomial algorithm for minimizing a real-
valued submodular function. The algorithm keeps a directed acyclic graph D =
(U, F) and a subset Z ⊆ V. It starts with U = V, F = ∅, Z = ∅. The set Z rep-
resents the set of elements that turns out to be contained in any minimizer of
f . The vertex set U of the directed acyclic graph D corresponds to the partition
of V \ Z. For a subset Y ⊆ U, we denote by �(Y) the union of the subsets of V
represented by the vertices in U. An edge (u, v) reflects an implication that any
minimizer that includes �({u}) must include �({v}) as well.

A submodular function f̃ : 2U → R is defined by

f̃ (Y) =
{

f (�(Y) ∪ Z) − min{f (V), f (Z)} (∅ �= Y ⊂ U)

0 (Y = ∅, U)

Then a minimizer of X of f can be represented as X = �(Y)∪Z by a minimizer
Y of f̃ .

For each vertex u ∈ U, we denote by R(u) the set of vertices reachable from
u in D. At the start of each iteration, the algorithm computes

η = max{f̃ (R(u)) − f̃ (R(u) \ {u}) | u ∈ U} (6)

If η ≤ 0, then it turns out that either V or Z is a minimizer of f .
On the other hand, if η > 0, then the vertex u ∈ U that attains the maximum

in the right-hand side must satisfy either f̃ (R(u)\{u}) ≤ −η/2 or f̃ (R(u)) > η/2.
In the former case, apply Fix(f̃ , η) described below to detect a vertex w ∈ R(u)
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that is contained in every minimizer of f̃ . Then the algorithm deletes w from U
and adds �({w}) to Z. In the latter case, define a submodular function f̃u by

f̃u(Y) = f̃ (Y ∪ R(u)) − f̃ (R(u)) (Y ⊆ U \ R(u))

and apply Fix(f̃u, η) to find a vertex w ∈ U \ R(u) contained in every minimizer
of f̃u. Then the algorithm adds (u, w) to F. If the resulting graph contains a
directed cycle, then the algorithm shrinks it to a new vertex.

The procedure Fix(f̃ , η) is applicable to a submodular function f̃ such that
f̃ (Y) ≤ −η/2 for some Y. It performs the scaling algorithm with the arc set
of Gϕ replaced by Eϕ ∪ F. If x(w) < −m2η holds for m = |U| at the end of a
scaling phase, w must be contained in every minimizer of f̃ . The existence of Y
with f̃ (Y) ≤ −η/2 ensures that such a vertex w must be found within O(log n)

scaling phases.
Therefore, the algorithm runs in O(n7γ log n) time. Replacing the scaling

algorithm by the faster version, we improve this bound to O((n6γ + n7) log n),
which is currently the best strongly polynomial bound among combinatorial
algorithms.

9 A fully combinatorial algorithm

This section briefly explains a technique to turn the strongly polynomial scaling
algorithms to a fully combinatorial one. In the design of a fully combinatorial
algorithm, we are allowed to perform additions, subtractions, and comparisons.
These fundamental operations, however, enable us to simulate multiplications
if the multiplier is an integer bounded by a polynomial in the dimension n of
the problem. We are also able to compute an integer rounding of a ratio of two
numbers, provided that the answer is bounded by a polynomial in n.

Expressing a base as a convex combination of extreme bases does not seem
suitable for fully combinatorial algorithms because it involves multiplications.
Nevertheless, this is not a crucial obstracle if we keep the coefficients as rational
numbers whose common denominators are bounded by a polynomial in n.

The first step towards a fully combinatorial implementation of the strongly
polynomial scaling algorithm is to neglect Reduce. This causes growth of the
number of extreme bases for convex combination. However, the number is
still bounded by a polynomial in n. Since the number of extreme bases gener-
ated between augmentations is at most n, each scaling phase yields O(n3) new
extreme bases. Hence the number of extreme bases through the O(log n) scal-
ing phases is O(n3 log n). This is in contrast to Schrijver’s algorithm which may
generate an exponential number of extreme bases without performing Reduce.

The next step is to choose an appropriate step length in Double-Exchange
so that the coefficients should be rational numbers with a common denomi-
nator bounded by a polynomial in n. Let θ denote the value of δ in the first
scaling phase. Then κ = θ/δ is an integer. For each i ∈ I, we keep λi = µi/κ



Submodular function minimization 59

with an integer µi. In the original version, the step length α is determined by
α = min{λiβ, ϕ(u, v)}. If λiβ > ϕ, the step length α can be replaced by any
value that satisfies ϕ(u, v) ≤ α ≤ ϕ(u, v)+ δ. Let ν be the minimum integer such
that νβ > ϕ(u, v)κ . Such an integer ν can be computed by binary search. Then
the new coefficients λk and λi are determined by µk := µi − ν and µi := ν.
Thus the coefficients are rational numbers whose common denominator is κ ,
which is bounded by a polynomial in n through the O(log n) scaling phases.
Then it is easy to implement this algorithm using additions, subtractions, com-
parisons, and oracle calls for the function values. The resulting algorithm runs
in O(n9γ log2 n) time.

By a similar technique, one can implement the faster scaling algorithm in
a fully combinatorial manner. A straightforward implementation would result
in an O((n8γ + n9) log2 n) algorithm. McCormick [53] has suggested a more
careful implementation to achieve an O(n8γ log2 n) bound.

An advantage of a fully combinatorial algorithm from theoretical point of
view is not only aesthetic. Suppose we are given a vector z ∈ P(f ) and a direc-
tion vector a ∈ RV . Then what is the maximum t ∈ R such that ta + z ∈ P(f )?
A recent paper of Nagano [63] presents the first strongly polynomial algorithm
for solving this problem. The algorithm is based on the parametric search tech-
nique of Megiddo [56,57], which requires a fully combinatorial subroutine for
submodular function minimization.

10 Symmetric submodular function minimization

A set function f is said to be symmetric if f (X) = f (V \X) holds for any X ⊆ V.
A symmetric submodular function f satisfies f (X) ≥ f (∅) for any X ⊆ V. Hence
it is trivial to compute the minimum value of f . Symmetric submodular func-
tion minimization is the problem of finding the minimum value of f (X) among
proper nonempty subsets X.

Examples of symmetric submodular functions are the cut capacity function
of an undirected network and the connectivity function of a matroid. Symmetric
submodular function minimization for the cut capacity functions in undirected
networks corresponds to the minimum cut problem. As a generalization of
the minimum cut algorithm of Nagamochi and Ibaraki [61], Queyranne [69]
presented a fully combinatorial strongly polynomial algorithm for symmetric
submodular function minimization.

Queyranne’s algorithm in fact deals with an arbitrary submodular function f
to find a proper nonempty subset X that minimizes f (X) + f (V \ X). It adopts
a novel procedure Pendant-Pair that provides an ordering of V as follows.
First, select an arbitrary element as v1. Susequenlty, for j = 1 to n − 1, given
Wj = {v1, . . . , vj}, the procedure selects an element u ∈ V \ Wj that minimizes
f (Wj ∪ {u}) − f ({u}) as vj+1. The pair (vn−1, vn) is called a pendent pair.

Theorem 6 (Queyranne [69]) For any subset X that separates the pendent pair
vn−1 and vn, we have f (X) + f (V \ X) ≥ f ({vn}) + f (V \ {vn}).
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Theorem 6 suggests a way to find the minimum value of f (X)+ f (V \ X). Let
(u, v) be the pendant pair obtained by applying Pendant-Pair to f . Consider a
submodular function f ′ on the ground set V′ := V \ {v} defined by

f ′(X) =
{

f (X) (u /∈ X)

f (X ∪ {v}) (u ∈ X).

Then the mimimum value of f (X)+ f (V \ X) is equal to f ({v})+ f (V \ {v}) or to
the minimum value of f ′(X) + f ′(V′ \ X), which can be computed recursively.
Thus we obtain an algorithm to find the minimum value of f (X) + f (V \ X) by
applying Pendant-Pair O(n) times. Since one application of Pendant-Pair takes
O(n2γ ) time, the total running time bound is O(n3γ ).

This algorithm is further generalized in two different directions by Nagamo-
chi and Ibaraki [62] and by Rizzi [70].

11 Bisubmodular function minimization

A function g defined on the ordered pairs of disjoint subsets of V is said to be
bisubmodular if it satisfies

g(X1, Y1) + g(X2, Y2) ≥ g(X1 ∪ X2 − Y1 ∪ Y2, Y1 ∪ Y2 − X1 ∪ X2)

+ g(X1 ∩ X2, Y1 ∩ Y2)

for (X1, Y1) and (X2, Y2). Talking about minimization of bisubmodular func-
tion, we may assume that g(∅, ∅) = 0. With such a bisubmodular function g,
consider a bisubmodular polyhedron P(g) defined by

P(g) = {x | x ∈ RV , x(X) − x(Y) ≤ g(X, Y)}.

For a vector x ∈ RV , we denote ‖x‖ = ∑
v∈V x(v). Then the following theorem

characterizes the minimum value of g.

Theorem 7 Fujishige [32] For a bisubmodular function g with g(∅, ∅) = 0, we
have

min{g(X, Y) | X, Y ⊆ V, X ∩ Y = ∅} = max{−‖x‖ | x ∈ P(g)}.

Moreover, if g is integer valued, then there is an integer vector x that attains the
maximum in the right-hand side.

The scaling algorithm for submodular function minimization has been
extended to bisubmodular function minimization by Fujishige and Iwata [35].
The algorithm keeps x ∈ P(f ) as a convex combination

∑
i∈I λiyi of extreme

points of P(f ). Instead of the complete directed graph, we employ a complete
bidirected graph. The resulting algorithm computes the minimum value of an
integer valued bisubmodular function in O(n5γ log M) time, where γ is the time
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for evaluating the function value and M is the maximum absolute value of g.
Subsequently, McCormick and Fujishige [54] have devised a strongly polyno-
mial version of this algorithm.

Examples of bisubmodular functions include the rank functions of delta-
matroids introduced independently by Bouchet [5] and by Chandrasekaran
and Kabadi [7]. A delta-matroid is a set system (V, F) with F being a nonempty
family of subsets of V that satisfies the following exchange property:

∀F1, F2 ∈ F , ∀v ∈ F1�F2, ∃u ∈ F1�F2 : F1�{u, v} ∈ F ,

where � denotes the symmetric difference. A slightly restricted set system with
an additional condition ∅ ∈ F had been introduced by Dress and Havel [14].
A member of F is called a feasible set of the delta-matroid. Note that the base
and the independent-set families of a matroid satisfy this exchange property.
Thus, a delta-matroid is a generalization of a matroid.

Chandrasekaran and Kabadi [7] showed that the rank function � : 3V → Z
defined by

�(X, Y) = max{|X ∩ F| − |Y ∩ F| | F ∈ F}

is bisubmodular. The convex hull of the characteristic vectors of the feasible
sets coincides with P(�), which is called the delta-matroid polyhedron. This fact
follows from the greedy algorithm [5,7] for optimizing a linear function over
the feasible sets. Given a vector x ∈ RV , one can test if x belongs to P(�) by
minimizing a bisubmodular function g(X, Y) = �(X, Y) − x(X) + x(Y).

The concept of delta-matroid is extended to that of jump system by Bouchet
and Cunningham [6]. A jump system is a set of lattice points satisfying a certain
axiom. Examples include the set of degree sequences of a graph. The lattice
points contained in an integral bisubmodular polyhedron form a jump system,
called a convex jump system, and conversely the convex hull of a jump system
is an integral bisubmodular polyhedron. See Cunningham [13] for a survey on
jump systems.

12 Conclusion

We now conclude this paper by mentioning some open problems concerning
submodular function minimization.

1. An obvious one is of course to improve theoretical efficiency of submod-
ular function minimization. In particular, the stronly polynomial bound is
far from being satisfactory.

2. Fujishige [31] showed a connection between submodular funtion minimi-
zation and the minimum Euclidean norm point in the base polyhedron. A
practical algorithm to solve the minimization problem based on this result
is presented in Fujishige [34, Sect. 7.1 (a)]. It remains open to analyse the
complexity of this algorithm.
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3. What is the lower bound on the number of oracle calls for function evalu-
ation required before determining the minimum value?

Acknowledgements The author thanks Fabian Chudak, Lisa Fleischer, Satoru Fujishige, and Tom
McCormick for fruitful discussions on the topics of this paper.
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